

Синтез и туберкулостатическая активность функционализированных пиразолов на основе (трифторметил)пиразола, содержащего гидразонную группу

Денис Н. Бажин^{1,2}*, Юлия С. Кудякова¹, Александра Я. Оноприенко², Павел А. Слепухин^{1,2}, Янина В. Бургарт¹, Виктор И. Салоутин¹

¹ Институт органического синтеза им. И. Я. Постовского УрО РАН, ул. С. Ковалевской, 22 / Академическая, 20, Екатеринбург 620990, Россия e-mail: bazhin@ios.uran.ru

² Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, ул. Мира, 19, Екатеринбург 620002, Россия; e-mail: dnbazhin@gmail.com

Поступило 27.09.2017 Принято 28.11.2017

Конденсацией 5-(1-гидразинилиденэтил)-3-(трифторметил)-1*H*-пиразола с триметилортоацетатом, диметилацеталем диметилформамида и арилтиоизоцианатами синтезирован ряд функционализированных пиразолов и исследована их туберкулостатическая активность.

Ключевые слова: гидразоны, пиразол, тиосемикарбазиды, конденсация.

В настоящее время пиразольный фрагмент является популярным в структурах многих биологически активных соединений, разрабатываемых фармацевтической и агрохимической промышленностью.¹ Одним из подходов к синтезу пиразолов является конструирование гетероциклической системы за счет реакций конденсации и циклоприсоединения, что позволяет осуществить сборку молекул, варьируя заместители.² Особое внимание уделяется использованию фторсодержащих строительных блоков с последующим формированием пиразольного цикла, поскольку фторалкильные заместители зачастую улучшают мембранную проницаемость, биодоступность и повышают метаболическую стабильность соединений.³ При этом дальнейшая функционализация пиразолов расширяет возможности поиска биологически активных соединений на их основе.4

Ранее нами был разработан подход к получению различных пиразолов на основе фторсодержащих про-

изводных 2,3-бутандиона.^{5,6} В частности, из литиевой соли 1 через фураноновый интермедиат 2 был синтезирован трифторметилпиразол 3, содержащий гидразонную группу в боковой цепи (схема 1).⁶ В соединении 3 присутствует несколько нуклеофильных центров: аминогруппа гидразонного фрагмента, а также атомы азота пиразольного цикла, что определяет возможность дальнейших реакций конденсации и алкилирования.

Схема 1

В данной работе нами рассмотрены подходы к функционализации пиразола 3 под действием ацеталей и арилизотиоцианатов, а также представлены результаты тестирования туберкулостатической активности синтезированных соединений. Выбор реагентов обусловлен прежде всего возможностью получения полифункциональных и конденсированных пиразолов. К примеру, конденсацией пиразола 3 с триалкилортоформиатами и триметилортобензоатом нами были получены трифторметилсодержащие пиразоло[1,5-d]-[1,2,4]триазины **4a,b** (схема 2).⁶ Ранее также было показано, что взаимодействие гидразона 2-ацетилимидазо[4,5-b]пиридина 5 с изотиоцианатами открывает возможность для синтеза пиридоимидазо[1,2-d]-[1,2,4]триазина 6 через стадию внутримолекулярной циклизации образующихся тиосемикарбазидов.⁷ Использование диметилацеталя N,N-диметилформамида (ДМА-ДМФА) в конденсации с 1,5-N,N-динуклеофилом 7 позволило синтезировать пиразоло[3,4-d]пиримидин-4-он 8, при этом ДМА-ДМФА выступил в качестве СН-источника при формировании азинового цикла (схема 2).⁸

Схема 2

Нами установлено, что при взаимодействии пиразола 3 с триметилортоацетатом происходит селективное образование ациклического продукта 9 с хорошим выходом (схема 3). Использование кислотных катализаторов и кислот Льюиса не приводило к желаемому гетероциклу 10. Появление метоксиэтилиденового

фрагмента в спектре ЯМР ¹Н соединения **9** соответствует двум синглетам метильных групп при 2.30 и 3.78 м. д. Пиразольный фрагмент не участвует в данном превращении, о чем свидетельствуют химические сдвиги трифторметильной группы (102.2 м. д.) и протона NH пиразольной группы (13.98 м. д.), совпадающие со значениями в спектре исходного соединения **3**.⁶

Взаимодействие пиразола 3 с ДМА-ДМФА привело к образованию региоизомерных пиразолов (схема 3). Как и в случае с триметилортоацетатом, в данном превращении происходило образование диметиламинометиленового фрагмента с участием гидразонного фрагмента пиразола 3. При этом избыток ДМА-ДФМА приводил к метилированию атомов азота пиразольного цикла в соотношении, близком к 1:1. Возможность *N*-метилирования связана с образованием биэлектрофильного интермедиата из ДМА-ДМФА.⁹ С помощью методов ТСХ и аналитической ГХ/МС была установлена возможность разделения 3-CF₃- и 5-CF₃-*N*-метилпиразолов 11, 12. Пиразолы 11 и 12 были выделены в чистом виде с использованием колоночной хроматографии на силикагеле и охарактеризованы методами спектроскопии ЯМР и РСА. Полученные региоизомеры 11 и 12 различимы спектрально по химическому сдвигу атомов фтора в спектрах ЯМР ¹⁹F (99.7 и 101.0 м. д. соответственно), атомам углерода трифторметильной группы (121.5 и 120.0 м. д. соответственно) и смежного с ней атома углерода (140.4 и 132.7 м. д. соответственно) в спектрах ЯМР ¹³С.

Согласно данным РСА, гетероциклический остов пиразолов 11 и 12 находится в одной плоскости с непредельной системой гидразонной группы (рис. 1, 2). Отличие соединения 12 от 3-СF₃-изомера 11 заключается в образовании единой N,N-полости из атомов азота азольного и гидразонного фрагментов аналогично исходному пиразолу $3.^6$

Предполагаемый механизм образования продуктов 4a,b, 9, 11, 12 включает несколько стадий (схема 4). Известно, что триалкилформиаты и ДМА–ДФМА при нагревании генерируют стабилизированные карбкатионы A и A', участвующие далее во взаимодействии с аминогруппой гидразонного фрагмента пиразола 3, образуя интермедиаты B и B'. Основанием в данном процессе выступает образующийся *in situ* метанолятанион, способствующий дегидрированию гидразонного фрагмента (в случае интермедиатов C и C') и пиррольного атома азота (в случае интермедиатов D и D'). В случае образования пиразолов 11 и 12 ДМА–ДФМА дополнительно выступает в качестве алкилирующего агента пиразольного цикла интермедиата D'. Согласно полученным данным и работе,⁷ наличие электроно-

Рисунок 1. Молекулярная структура соединения **11** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью.

донорного заместителя в исходных ацеталях приводит к образованию ациклических производных. Таким образом, можно предположить влияние гиперконъюгации метильной группы, а также положительного мезомерного эффекта диметиламинного заместителя на термодинамическую стабильность соединений 9, 11, 12 с модифицированной гидразонной группой. В случае фенильного заместителя, по-видимому, решающим фактором являются его электроноакцепторные свойства, которые способствуют внутримолекулярной циклизации интермедиата D в E с последующим образованием соединения 4b.

Взаимодействие пиразола 3 с ароматическими изотиоцианатами приводило к образованию тиосемикарб-

Схема 4

Рисунок 2. Молекулярная структура соединения **12** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью.

азидов **13а–с** с хорошими выходами (схема 5). Проведение аналогичного превращения при более высокой температуре (кипячение в толуоле) показало устойчивость образующихся соединений **13а–с** к циклизации в соответствующие пиразоло[1,5-*d*][1,2,4]триазины.

a R = Ph (84%), **b** R = *m*-MeOC₆H₄ (88%), **c** R = CH₂Ph (86%)

Рисунок 3. Аналоги пиразола **3** с потенциальной туберкулостатической активностью.

Далее была исследована туберкулостатическая активность синтезированных соединений в опытах *in vitro* в отношении лабораторного штамма микобактерий туберкулеза $H_{37}Rv$, в том числе в сравнении с ранее полученными аналогами пиразола **3** (рис. 3).⁶ Стоит отметить, что ранее для некоторых пиразолилсодержащих тиосемикарбазидов была отмечена высокая туберкулостатическая активность в отношении лабораторного штамма $H_{37}Rv$.¹⁰

Туберкулостатическая активность вновь синтезированных производных 9, 11, 13а в опытах *in vitro* в отношении лабораторного штамма $H_{37}R_V$ оказалась ниже в сравнении с исходным пиразолом 3, что подтверждается значениями минимальной ингибирующей концентрации (МИК) (табл. 1). Как видно из представленных результатов, активность пиразолов 3, 14–16 ниже активности 4-метил-2-(трифторметил)пиразоло-[1,5-*d*][1,2,4]триазина (4а). Это подтверждает тенденцию к повышению биологической активности конденсированных гетероциклических соединений по сравнению с их моноциклическими предшественниками.^{4b,11}

Таким образом, показано, что 5-(1-гидразинилиденэтил)-3-(трифторметил)-1*H*-пиразол является удобным строительным блоком для получения функционализированных производных. Установлено, что в конденсации исходного пиразола с триметилортоацетатом реакция останавливается на стадии образования метоксиэтилиденового фрагмента с участием гидразонной группы, тогда как действие ДМА–ДМФА дополнительно приводит к метилированию атомов азота пиразольного фрагмента. Взаимодействие пиразола с

Таблица 1. Туберкулостатическая активность синтезированных соединений в опытах *in vitro* в отношении лабораторного штамма H₂₂Rv (изониазил МИК 0.1 мкг/мп)

Соединение	МИК (мкг/мл)	Соединение	МИК (мкг/мл)
3	6.25	13 a	12.5
4a	3.1	14	6.25
9	12.5	15	6.2
11	12.5	16	12.5

замещенными изотиоцианатами приводит к соответствующим тиосемикарбазидам. На основании исследований туберкулостатической активности ряда трифторметилсодержащих пиразолов наиболее перспективной структурой для дальнейших исследований и химической модификации является 4-метил-2-(трифторметил)пиразоло[1,5-*d*][1,2,4]триазин.

Экспериментальная часть

ИК спектры записаны на фурье-спектрометре PerkinElmer Spectrum One в интервале 400–4000 см⁻¹ с использованием приставки диффузного отражения для твердых веществ. Спектры ЯМР¹Н, ¹³С, ¹⁹F зарегистрированы на спектрометре Bruker DRX-500 (500, 125 и 470 МГц соответственно) с ТМС или С₆F₆ в качестве внутреннего стандарта. Элементный анализ выполнен на автоматическом анализаторе PerkinElmer PE 2400 Series II. Температуры плавления определены в открытых капиллярах на аппарате Stuart SMP3. Контроль за ходом реакций осуществлен методом тонкослойной хроматографии на пластинах Alugram Sil G/UV254. Колоночная хроматография проведена с использованием силикагеля 60 фирмы Alfa Aesar (0.060-0.2 мм). Синтез соединений 9, 11, 12 проведен в микроволновом реакторе CEM Discover SP с рабочей частотой 2.45 ГГц.

В работе использованы следующие коммерческие реагенты (Alfa Aesar): триметилортоацетат (99%), 3-метоксифенилизотиоцианат (98%), бензилизотиоцианат (98%), фенилизотиоцианат (98%), ДМА–ДМФА (99%).

5-(1-Гидразоноэтил)-3-(трифторметил)-1*Н*-пиразол (3) и соединения **14–16** синтезированы согласно работе.⁶

Получение соединений 9, 11, 12 (общая методика). Смесь 5 ммоль пиразола и 30 ммоль $MeC(OMe)_3$ (или ДМА–ДМФА) помещают в герметичную стеклянную тубу и выдерживают в микроволновом реакторе при температуре 120 °С и мощности 30 Вт в течение 2 ч при перемешивании. Затем в реакционную смесь добавляют 50 мл воды, твердый осадок отфильтровывают. В случае соединения 9 вещество очищают перекристаллизацией из смеси диэтиловый эфир – гексан, 1:2. Пиразолы 11 и 12 разделяют с помощью колоночной хроматографии, используя в качестве элюента смесь хлороформ-гексан, 4:1. Кристаллы для РСА получены медленным упариванием растворов соединений 11, 12 в гексане.

Метил-*N*-{1-[3-(трифторметил)-1*H*-пиразол-5-ил]этилиден}этангидразонат (9). Выход 1.02 г (82%), белый кристаллический порошок, т. пл. 134–135 °С. ИК спектр, v, см⁻¹: 3325, 3160, 3019, 2989, 2951, 1636, 1592, 1563, 1493, 1444, 1410, 1375, 1302, 1255, 1195, 1130, 1089, 1070, 1052, 1007, 976, 947, 858, 820, 766, 750, 717, 643, 588, 558, 468, 441. Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д.: 2.17 (3H, с, CH₃); 2.30 (3H, с, CH₃); 3.78 (3H, с, OCH₃); 7.12 (1H, с, CH); 13.98 (1H, с, NH). Спектр ЯМР ¹³С (ДМСО- d_6), δ , м. д. (*J*, Гц): 14.4; 14.9; 53.6; 103.9; 121.6 (кв, ¹*J*_{CF} = 268, CF₃); 141.0 (кв, ²*J*_{CF} = 37, <u>C</u>CF₃); 143.2; 151.3; 168.2. Спектр ЯМР ¹⁹F (ДМСО- d_6 – C_6F_6), δ , м. д.: 102.2 (с, CF₃). Найдено, %: С 43.32; Н 4.37; N 22.42. С₉H₁₁F₃N₄O. Вычислено, %: С 43.55; Н 4.47; N 22.57.

N,*N*-Диметил-*N*'-{1-[1-метил-3-(трифторметил)-1*H*-пиразол-5-ил]этилиден}гидразоноформамид (11). Выход 0.40 г (31%), белый кристаллический порошок, т. пл. 56–57 °С. ИК спектр, v, см⁻¹: 3149, 2989, 2922, 2811, 1745, 1697, 1627, 1574, 1476, 1460, 1428, 1405, 1360, 1327, 1296, 1276, 1217, 1166, 1119, 1058, 1040, 1028, 978, 876, 827, 777, 710, 622, 528. Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 2.35 (3H, с, CH₃); 3.04 (6H, с, 2CH₃); 4.17 (3H, с, CH₃); 6.63 (1H, с, CH); 8.05 (1H, с, CH). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 15.7; 41.4; 105.0; 121.5 (кв, ¹*J*_{CF} = 268, CF₃); 140.4 (кв, ²*J*_{CF} = 38, <u>C</u>CF₃); 142.7; 148.6; 160.6. Спектр ЯМР ¹⁹F (CDCl₃–C₆F₆), δ , м. д.: 99.7 (с, CF₃). Найдено, %: C 45.83; H 5.35; N 26.73. C₁₀H₁₄F₃N₅. Вычислено, %: C 45.97; H 5.40; N 26.81.

N,*N*-Диметил-*N*'-{1-[1-метил-5-(трифторметил)-1*H*-пиразол-3-ил]этилиден}гидразоноформамид (12). Выход 0.44 г (34%), белый кристаллический порошок, т. пл. 92–93 °С. Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 2.41 (3H, c, CH₃); 3.01 (6H, c, 2CH₃); 3.99 (3H, c, CH₃); 7.01 (1H, c, CH); 8.07 (1H, c, CH). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 13.7; 38.1; 105.3; 120.0 (кв, ¹*J*_{CF} = 268, CF₃); 132.7 (кв, ²*J*_{CF} = 39, <u>C</u>CF₃); 151.2; 152.1; 160.0. Спектр ЯМР ¹⁹F (CDCl₃-C₆F₆), δ , м. д.: 101.0 (c, CF₃). Найдено, %: С 45.79; H 5.33; N 26.70. C₁₀H₁₄F₃N₅. Вычислено, %: С 45.97; H 5.40; N 26.81.

Получение тиосемикарбазидов 13а-с (общая методика). К смеси 5 ммоль пиразола 3 в 15 мл этанола добавляют 5 ммоль соответствующего изотиоцианата и кипятят в течение 5 ч. В случае соединений 13а,b выпавший осадок фильтровывают и промывают эфиром. Пиразол 13с выделяют из реакционной смеси добавлением 50 мл воды с последующей перекристаллизацией из этилацетата.

2-{1-[3-(Трифторметил)-1*Н***-пиразол-5-ил]этилиден}-***N*-фенилгидразинкарботиоамид (13а). Выход 1.37 г (84%), светло-желтый порошок, т. пл. 210–211 °С. Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д.: 2.35 (3H, c, CH₃); 7.23 (1H, c, CH); 7.25–7.28 (1H, м, H Ph); 7.41–7.44 (2H, м, H Ph); 7.51–7.52 (2H, м, H Ph); 10.33 (1H, c, NH); 10.92 (1H, c, NH); 14.21 (1H, c, NH). Спектр ЯМР ¹³С (ДМСО- d_6), δ , м. д. (*J*, Гц): 14.3; 104.6; 121.5 (кв, ¹*J*_{CF} = 268, CF₃); 125.8; 126.4; 128.3; 137.9; 138.8; 141.6 (кв, ²*J*_{CF} = 37, <u>С</u>СF₃); 142.7 (С=N); 177.1 (С=S). Спектр ЯМР ¹⁹F (ДМСО- d_6 – C_6 F₆), δ , м. д.: 102.2 (c, CF₃). Найдено, %: С 47.53; H 3.54; N 21.26. C₁₃H₁₂F₃N₅S. Вычислено, %: С 47.70; H 3.70; N 21.40.

N-(3-Метоксифенил)-2-{1-[3-(трифторметил)-1*H*пиразол-5-ил]этилиден}гидразинкарботиоамид (13b). Выход 1.57 г (88%), белый порошок, т. пл. 222–223 °С. ИК спектр, v, см⁻¹: 3298, 3248, 3183, 1603, 1594, 1573, 1534, 1490, 1465, 1432, 1373, 1310, 1286, 1259, 1226, 1192, 1170, 1129, 1077, 1039, 988, 970, 857, 785, 733, 750, 715, 700, 682, 660, 609, 575, 547, 460. Спектр ЯМР ¹H (ДМСО-*d*₆), δ, м. д.: 2.33 (3H, с, CH₃); 3.76 (3H, с, OCH₃); 6.79–6.85 (1H, м, H Ar); 7.08–7.12 (1H, м, H Ar); 7.17 (1H, с, H Ar); 7.21 (1H, с); 7.28–7.38 (1H, м, H Ar); 10.27 (1H, с, NH); 10.90 (1H, с, NH); 14.21 (1H, с, NH). Спектр ЯМР ¹³С (ДМСО- d_6), δ , м. д. (J, Γ ц): 14.3; 55.2; 104.6; 111.2; 112.0; 118.4; 121.5 (кв, ${}^{1}J_{CF} = 268$, CF₃); 129.0; 137.9; 139.9; 141.6 (кв, ${}^{2}J_{CF} = 37$, <u>C</u>CF₃); 142.7 (C=N); 159.1 (<u>C</u>OCH₃); 176.9 (C=S). Спектр ЯМР ¹⁹F (ДМСО- d_6 - C_6F_6), δ , м. д.: 102.2 (с, CF₃). Найдено, %: С 46.52; H 3.78; N 19.43. С₁₄H₁₄F₃N₅OS. Вычислено, %: С 47.05; H 3.95; N 19.60.

N-Бензил-2-{1-[3-(трифторметил)-1H-пиразол-5-ил]этилиден}гидразинкарботиоамид (13с). Выход 1.47 г (86%), белый кристаллический порошок, т. пл. 185-186 °С. ИК спектр, v, см⁻¹: 3353, 3312, 3256, 1605, 1544, 1487, 1454, 1428, 1376, 1343, 1318, 1259, 1216, 1189, 1164, 1141, 1125, 1070, 1014, 980, 971, 811, 756, 745, 698, 607, 559. Спектр ЯМР ¹Н (ДМСО-*d*₆), б, м. д. (*J*, Гц): 2.31 (3H, c, CH₃); 4.92 (2H, π , ³J = 6.3, CH₂); 7.15–7.20 (1H, м, H Ph); 7.24–7.29 (1H, м); 7.34–7.37 (4H, м, H Ph); 9.37 (1H, τ , ${}^{3}J = 6.3$, NH); 10.75 (1H, c, NH); 14.05 (1H, c, NH). Спектр ЯМР ¹³С (ДМСО-*d*₆), б, м. д. (*J*, Гц): 14.1; 46.6; 104.2; 121.5 (кв, ${}^{1}J_{CF} = 268$, CF₃); 126.9; 127.0; 128.3; 137.2; 139.0; 141.5 (кв, ²J_{CF} = 37, ССF₃); 142.9; 178.7. Спектр ЯМР ¹⁹F (ДМСО-*d*₆-С₆F₆), б, м. д.: 102.15 (с, CF₃). Найдено, %: С 49.01; Н 4.05; N 20.34. С₁₄Н₁₄F₃N₅S. Вычислено, %: С 49.26; Н 4.13; N 20.52.

Рентгеноструктурный анализ соединений 11, 12 проведен на автоматическом четырехкружном рентгеновском дифрактометре Xcalibur 3 по стандартной процедуре ($CuK\alpha$ -излучение, графитовый монохроматор, 295(2) К, ω -сканирование). Введена эмпирическая поправка на поглощение. Структуры расшифрованы и уточнены с использованием пакета программ SHELXTL. Положения всех неводородных атомов уточнены в анизотропном приближении, положения атомов водорода рассчитаны геометрически и уточнены по модели "наездник" с зависимыми изотропными тепловыми параметрами.

Для анализа соединения **11** использован фрагмент бесцветной пластины размером $0.34 \times 0.18 \times 0.04$ мм. Кристалл моноклинный, пространственная группа $P2_1/c$, параметры элементарной ячейки: *а* 11.999(13), *b* 7.693(2), *c* 14.260(4) Å; β 93.22(5)°; *V* 1314.2(15) Å³; *Z* 4; $d_{\text{выч}}$ 1.320 г/см³; μ 0.994 мм⁻¹. В интервале углов 3.69 < θ < 65.35° собрано 14549 отражений, из них независимых 2233 (R_{int} 0.0511), в том числе 1577 с $I > 2\sigma(I)$, комплектность для θ 65.35° 99.4%. Окончательные параметры уточнения структуры: R_1 0.0458, wR_2 0.1164 (по отражениям), GOOF 1.000. Пики максимума и минимума остаточной электронной плотности $\Delta \rho = 0.177$ и 0.159 ē/Å³.

Для анализа соединения **12** использован фрагмент светло-желтой призмы размером 0.25 × 0.20 × 0.15 мм. Кристалл триклинный, пространственная группа *P*1, параметры элементарной ячейки: *a* 6.555(4), *b* 7.832(7), *c* 13.308(11) Å; α 78.23(7), β 80.96(6), γ 77.91(6)°; *V* 649.4(9) Å³; *Z* 2, *d*_{выч} 1.336 г/см³; μ 1.006 мм⁻¹. В интервале углов 3.42 < θ < 66.16° собрано 7499 отражений, из них независимых 2183 (*R*_{int} 0.0514), в том числе 1129 с *I* > 2 σ (*I*), комплектность для θ 66.16° 96.0%. Окончательные параметры уточнения структуры: R_1 0.0498, wR_2 0.1125 (по отражениям с $I > 2\sigma(I)$), R_1 0.0758, wR_2 0.1164 (по всем отражениям), GOOF 1.003. Пики максимума и минимума остаточной электронной плотности $\Delta \rho = 0.205$ и 0.166 ē/Å³.

Полный набор рентгеноструктурных данных соединений **11**, **12** депонирован в Кембриджском банке структурных данных (депоненты CCDC 1576654, CCDC 1576655 соответственно).

Файл сопроводительных материалов, содержащий спектры ЯМР ¹H, ¹³C и ¹⁹F соединений **9**, **11**, **12**, **13а–с**, доступен на сайте журнала http://hgs.osi.lv

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 16-33-00115 мол а).

Список литературы

- (a) Ansari, A.; Ali, A.; Shamsuzzaman, M. New J. Chem. 2017, 41, 16. (b) Kaur, K.; Kumar, V.; Gupta, G. K. J. Fluorine Chem. 2015, 178, 306. (c) Kumar, H.; Saini, D.; Jain, S.; Jain, N. Eur. J. Med. Chem. 2013, 70, 248. (d) Giornal, F.; Pazenok, S.; Rodefeld, L.; Lui, N.; Vors, J.-P.; Leroux, F. R. J. Fluorine Chem. 2013, 152, 2.
- (a) Goulioukina, N. S.; Makukhin, N. N., Beletskaya, I. P. *Russ. Chem. Rev.* 2016, *85*, 667. [*Ycnexu xumuu* 2016, *85*, 667.] (b) Rulev, A. Y.; Romanov, A. R. *RSC Adv.* 2016, *6*, 1984. (c) Sloop, J. C.; Holder, C.; Henary, M. *Eur. J. Org. Chem.* 2015, *16*, 3405. (d) Kudyakova, Yu. S.; Bazhin, D. N.; Goryaeva, M. V.; Burgart, Ya. V.; Saloutin, V. I. *Russ. Chem. Rev.* 2014, *83*, 120. [*Ycnexu xumuu* 2014, *83*, 120.] (e) Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-

Fuentes, A. Chem. Rev. 2011, 111, 6984. (f) Remennikov, G. Ya. Chem. Heterocycl. Compd. 2017, 53, 101. [Химия гетероцикл. соединений 2017, 53, 101.]

- (a) Böhm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Müller, K.; Obst-Sander, U.; Stahl, M. *ChemBioChem* 2004, 5, 637. (b) Ledenyova, I. V.; Didenko, V. V.; Shikhaliev, Kh. S. *Chem. Heterocycl. Compd.* 2014, 50, 1214. [Химия гетероцикл. соединений 2014, 1318.]
- (a) Li, M.; Zhao, B.-X. *Eur. J. Med. Chem.* 2014, *85*, 311.
 (b) Garg, M.; Chauhan, M.; Singh, P. K.; Alex, J. M.; Kumar, R. *Eur. J. Med. Chem.* 2015, *97*, 444.
 (c) Güniz, Ş.; Şenkardeş, K. S. *Eur. J. Med. Chem.* 2015, *97*, 786.
- Bazhin, D. N.; Chizhov, D. L.; Röschenthaler, G.-V.; Kudyakova, Yu. S.; Burgart, Y. V.; Slepukhin, P. A.; Saloutin, V. I.; Charushin, V. N. *Tetrahedron Lett.* 2014, 55, 5714.
- Bazhin, D. N.; Kudyakova, Yu. S.; Röschenthaler, G.-V.; Burgart, Ya. V.; Slepukhin, P. A.; Isenov, M. L.; Saloutin, V. I.; Charushin, V. N. *Eur. J. Org. Chem.* 2015, *23*, 5236.
- Bukowski, L.; Zwolska, Z.; Augustynowics-Kopec, E. Chem. Heterocycl. Compd. 2006, 42, 1358. [Химия гетероцикл. соединений 2006, 1571.]
- Bondock, S.; Tarhoni, A. E.-G.; Fadda, A. A. J. Heterocycl. Chem. 2015, 52, 346.
- Loidreau, Y.; Melissen, S.; Levacher, V.; Logé, C.; Graton, J.; Questel, J.-Y. Le; Besson, T. Org. Biomol. Chem. 2012, 10, 4916.
- Alegaon, S. G.; Hirpara, M. B.; Alagawadi, K. R.; Jalalpure, S. S.; Rasal, V. P.; Salve, P. S.; Kumbar, V. M. *Med. Chem. Res.* 2017, 26, 1127.
- Raffa, D.; Maggio, B.; Raimondi, M. V.; Cascioferro, S.; Plescia, F.; Cancemi, G.; Daidone, G. *Eur. J. Med. Chem.* 2015, 97, 732.