

Фторированные тетракетоны ряда *N*-замещенных карбазолов и их комплексы с европием(III) для иммунофлуоресцентного медико-биологического анализа

Дмитрий Е. Пугачёв^{1,2}, Татьяна С. Кострюкова², Георгий В. Затонский², Сергей З. Вацадзе³, Николай В. Васильев^{1,2}*

¹ Московский государственный областной университет, ул. Радио, 10-а, Москва 105005, Россия; e-mail: nikolai-vasilev@mail.ru

² ГосНИИ биологического приборостроения,

Волоколамское ш., 75, корп. 1, Москва 125424, Россия; e-mail: pugachovdmitry@gmail.com

³ Московский государственный университет им. М. В. Ломоносова,

Ленинские горы, д. 1, стр. 3, Москва 119991, Россия; e-mail: zurabych@gmail.com

Поступило 7.11.2017 Принято 28.03.2018

R = H, Me, Ph, 4-O₂NC₆H₄, CH₂Ph, 4-NO₂C₆H₄CH₂

Синтезированы новые фторированные тетракетоны ряда *N*-замещенных карбазолов и изучены в качестве лигандов для иммунофлуоресцентного анализа. Исследованы спектральные свойства полученных гетероциклических тетракетонов и их комплексов с европием(III). У комплексов длинноволновое поглощение (360–380 нм), высокие значения коэффициента экстинкции, длительные времена жизни возбужденных состояний и интенсивная люминесценция, что позволяет говорить о перспективности их использования в лантанидном иммунофлуоресцентном медико-биологическом анализе.

Ключевые слова: европий, производные карбазола, тетракетоны, фторированные β-дикетоны, иммунофлуоресцентный анализ, люминесценция.

Комплексы фторированных ароматических β-дикетонов с ионом европия являются одними из самых vспешно применяемых реагентов для иммунофлуоресцентного анализа заболеваний и патологий.¹⁻⁵ Перспективные реагенты должны удовлетворять следующим требованиям: максимальная устойчивость комплекса с ионом редкоземельного элемента, высокие значения коэффициента экстинкции лиганда, достаточная для сенсибилизации иона металла энергия триплетного состояния лиганда, а также долгоживущая люминесценция образующихся комплексов. 6-9 В последние десятилетия получен ряд новых гетероциклических соединений с улучшенными свойствами, а именно длинноволновым поглошением комплексов (360–380 нм). высоким значением коэффициента экстинкции и повышенными константами устойчивости комплексов с европием.¹⁰⁻¹⁵ Устойчивость комплексов возрастает за счет увеличения количества хелатирующих групп, а удлинение общей цепи сопряжения лиганда и использование дибензогетероциклического фрагмента приводит как к повышению коэффициента экстинкции, так и к батохромному сдвигу максимума поглощения комплексов.¹²

Среди соединений ряда дибензогетероциклических тетракетонов (бис- β -дикетонов) известны различные дибензотиофены **1a**^{10,11} и **1b**,¹² дибензофураны **2**,¹² 2,7-дизамещенный карбазол **3a**¹³ и 3,6-дизамещенные карбазолы **3b**,c.¹² Особый интерес представляют тетракетоны на основе карбазола **3** в силу того, что их комплексы с ионами европия в водных растворах имеют длинноволновое поглощение с высокими значениями коэффициентов экстинкции (λ_{max} 370–400 нм, ϵ 3–4·10⁴ моль⁻¹·л·см⁻¹) и временем жизни люминесцентного состояния от 500 до 700 мкс.^{12–14} Тетракетон ряда карбазола **3**, содержащий кетонный мостик с функциональными группами R = (CF₂)₄CO₂Me, является маркером, который можно использовать в качестве универсального реагента для различных схем биологического микроанализа.¹⁶

Рисунок 1. Структурные формулы тетракетонов дибензогетероциклического ряда.

В патенте¹² и в статье¹³ описаны получение и комплексообразование с европием фторсодержащих тетракетонов на основе *N*-этилзамещенных карбазолов **3а**,**b**. Другие *N*-замещенные фторсодержащие тетракетоны ряда карбазола не были получены и их свойства в качестве потенциальных комплексонов и сенсибилизаторов люминесценции европия не изучены. Таким образом, в настоящей работе представлялось целесообразным получить фторсодержащие тетракетоны на основе N-замещенных карбазолов и изучить их спектральные свойства, а также люминесцентно-спектральные свойства их комплексов с европием, в том числе в условиях среды для проведения иммуноанализа -"буфер-анализа".¹⁷ Введение арильных заместителей к атому азота рассматривалось как предпочтительное, так как они обладают ауксохромным эффектом и могут приводить к улучшению спектральных характеристик соединений.

Для синтеза целевых соединений 3c-h использовались различные синтетические схемы, позволяющие получать целевые соединения с препаративными выходами (схемы 1-4). Карбазол 4с алкилируется иодистым метилом в присутствии гидроксида натрия с образованием *N*-метилкарбазола 4d¹⁸ с выходом 95%. Для получения известного ранее *N*-фенилкарбазола 4е проводилось арилирование карбазола 4с фенилиодидом в присутствии хлорида лития и иодида меди.¹⁹ 4-Нитрофенилкарбазол 4f получен арилированием калиевой соли карбазола нитробензолом по литературному методу,²⁰ который предусматривает реализацию окислительного процесса.

Ацетилирование карбазолов 4с-е проводилось в условиях реакции Фриделя-Крафтса по стандартной

iii: PhNO₂, t-BuOK, Et₂O, 50°C, 16 h

методике²¹ в хлористом метилене, образование диацетилкарбазолов 5с-е проходило с удовлетворительными выходами (схема 2).

Схема 2

Диацетилкарбазол 5с оказался хорошим исходным реагентом для получения N-бензил- и N-4-нитробензилзамещенных диацетилкарбазолов 5g,h, образующихся при действии соответствующих бензилгалогенидов в присутствии сильных оснований (схема 3). Алкилирование осуществляется однозначно по атому азота, не затрагивая ацетильные группы, о чем свидетельствуют спектры ЯМР.

Схема 3

Синтез целевых тетракетонов 3с-h проводился по реакции Кляйзена с использованием гидрида лития в качестве основания. Известно, что использование гидрида лития упрощает проведение конденсации с использованием эфиров фторсодержащих кислот,²² при этом соединения 3с-h были получены с достаточно высокими выхолами (схема 4). в том числе и ранее известное соединение 3c.¹²

Спектры ЯМР ¹Н и ¹⁹F полученных соединений 3c-hне противоречат их строению. Особенностью физикохимических свойств большинства синтезированных карбазолов является их низкая растворимость в

растворителях различных типов, в связи с этим спектры ЯМР ¹³С соединений **3f**,**h** не идентифицируются. Так же, как и другие фторированные 1,3-дикарбонильные соединения,²³ соединения **3c-h** в растворах находятся в енольной форме, и, как правило, протон енольной формы в их спектрах ЯМР ¹H не проявляется. В ИК спектрах также проявляются полосы поглощения, характерные для енольной формы СОС=СОН в области 1583–1675 см^{-1.24}

N-Замещенные тетракетоны 3d-g хорошо подвергаются перекристаллизации из смеси *i*-PrOH–EtOAc, соединение 3f – из ДМСО, а соединение 3h – из EtOAc. В случае NH-производного 3c не удалось подобрать подходящую систему для перекристаллизации. Очистку соединения 3c проводили с помощью сорбции на оксиде алюминия с последующей отмывкой сорбата на сорбенте от примесей и элюированием целевого соединения смесью CHCl₃–MeOH с 10% добавкой муравьиной кислоты.

На спектрах поглощения водных растворов замещенных карбазолов 3c-h в УФ диапазоне (табл. 1) наблюдаются выраженные максимумы в области 354–364 нм, и, как правило, в области 321-325 нм. Последний отсутствует в УФ спектре соединения 3f, что можно объяснить влиянием сопряженной нитрогруппы. Спектры поглощения согласуются с известными ранее данными о длинноволновом поглощении тетракетонов на основе ряда карбазола. ^{12,16}

Люминесцентно-спектральные свойства комплексов тетракетонов **3с**–**h** с Eu^{3+} в соотношении 3:2 изучались в водных растворах в присутствии избытка известного синергиста люминесценции – триоктилфосфиноксида (ТОФО) в буферных (Трис-буфер) растворах в присутствии поверхностно-активного вещества (Тритона X-100) и без него. Роль гидрофобного солиганда ТОФО заключается в насыщении координационной сферы европия и вытеснении из нее молекул воды, которые являются тушителями люминесценции.²⁵

Таблица 1. Спектры поглощения карбазолов 3с-h в водном растворе Трис-буфера (0.05 М) и Тритоне X-100 (0.1%)*

Соеди- нение	$\lambda_{\text{погл}},$ нм	Оптическая плотность, отн. ед.	$\epsilon \cdot 10^4$ моль $\cdot \pi^{-1} \cdot cm^{-1}$
3c	321, 355	0.356; 0.371	3.7 (355 нм)
3d	323, 364	0.379; 0.381	3.8 (364 нм)
3e	325, 357	0.436; 0.393	3.9 (357 нм)
3f	354	0.428	4.3
3g	325, 362	0.399; 0.376	3.8 (362 нм)
3h	325, 358	0.369; 0.340	3.4 (358 нм)

* Концентрация соединений **3с-h** 10⁻⁵ М.

Рисунок 2. Спектры поглощения карбазолов **3с**,е и их комплексов с Eu^{3+} в присутствии ТОФО (лиганд–Eu–TОФО = 3:2:6) (концентрация лиганда 10^{-5} M) в Трис-буфере (0.05 M) и Тритоне X-100 (0.1%).

Спектр поглощения *N*-фенилзамещенного карбазола 3е, в сравнении со спектром незамещенного карбазола 3с, а также спектры их комплексов с европием в присутствии ТОФО приведены на рис. 2; люминесцентные характеристики комплексов приведены в табл. 2. Комплексообразование соединений 3с-h с ионом европия фиксируется по спектрам поглошения: максимумы поглощения комплексов смещаются в длинноволновую область по сравнению со свободными молекулами, а также наблюдается увеличение оптической плотности и формирование максимума в области 380 нм, что характерно для комплексообразования фторированных бис-*β*-дикетонов.^{12,16} Кроме этого, комплексы всех соединений имеют высокие значения интенсивности и длительно люминесцируют (табл. 2).

Следует отметить, что для *N*-замещенных карбазолов **3d-h** введение заместителей донорного типа

Таблица 2. Люминесценция комплексов тетракетонов **3**с–h с Eu^{3+} и ТОФО в водном растворе Трис-буфера (0.05 M) и Тритоне X-100 (0.1%)*

Лиганд	Трис-буфер, рН 7.2			Трис-буфер, рН 7.2 + Тритон Х-100		
	λ _{возб,} нм	<i>I</i> , отн. ед. ×10 ⁴	τ, мкс	λ _{возб} , ΗΜ	<i>I</i> , отн. ед. ×10 ⁴	τ, мкс
3c	378	35.6	560	372	125.4	686
3d	378	48.3	575	374	142.5	701
3e	374	55.4	565	368	161.8	711
3f	368	19.1	520	362	68.9	692
3g	376	56.2	575	370	150.0	710
3h	374	11.8	434	334	37.2	568

* Лиганд–Еu–TO Φ O = 3:2:6, концентрация лиганда 10^{-5} M, λ_{3M} 615 ± 2 нм.

(R = Me (соединение **3d**), Ph (соединение **3e**), CH₂Ph (соединение **3g**)) увеличивает время жизни и интенсивность люминесценции по сравнению с незамещенным карбазолильным тетракетоном **3c** в воде и мицеллах, а также с нитросодержащими **3f**,h. Снижение люминесцентных характеристик комплексов **3f**,h может быть связано с известным эффектом тушения люминесценции нитрогруппой.²⁶ В мицеллярном растворе в присутствии Тритона X-100 интенсивность люминесценции существенно выше. Между соединениями с находящимся в сопряжении с карбазольным фрагментом фенильным циклом и несопряженным бензильным аналогом существенных отличий в параметрах люминесценции не наблюдается.

Квантовые выходы оценивались относительно известного значения для нафтоилтрифторацетона (НТА) в усиливающем растворе (0.69)²⁷ по следующей формуле:²⁸

$$\Phi_{\rm x} = ((I_{\rm t,x} \cdot \varepsilon_{\rm ref} \cdot c_{\rm ref})/(I_{\rm t,ref} \cdot \varepsilon_{\rm x} \cdot c_{\rm x})) \cdot \Phi_{\rm ref},$$

где $I_{t,x}$ и $I_{t,ref}$ – интегральные интенсивности люминесценции неизвестного и эталонного соединений, ε (моль/(л·см)) – значения коэффициентов экстинкции, c (моль/л) – концентрации определяемого и известного соединений, Φ – квантовый выход. Усиливающий раствор готовился по данным патента.²⁹

Несмотря на то, что квантовые выходы комплексов полученных соединений меньше, чем у эталонного НТА, так называемый показатель светимости – произведение коэффициента экстинкции на квантовый выход (табл. 3), изучаемых комплексов выше, что в свою очередь позволяет получить более высокие значения интенсивности люминесценции и, как следствие, увеличить чувствительность анализа.

Соединения **3е**,**g** были выбраны для изучения люминесценции в условиях среды для иммуноанализа ("буфер-анализа", табл. 4). Для того чтобы снизить влияние белка, входящего в состав коммерческого реагента, на процесс комплексообразования, комплексы формировали в диметилформамиде, выдерживая смесь лиганд-Eu³⁺-ТОФО (3:2:6) в течение 2 ч. При этом была выявлена хорошая интенсивность и время жизни люминесценции. При концентрации лиганда на уровне 10⁻⁵ М комплексы соединений **3е**,**g** показали

Таблица 3. Относительные квантовые выходы комплексов тетракетонов 3с-h с Eu³⁺ в условиях усиливающего раствора* и их показатели светимости

Лиганд	Квантовый выход	Φ·3
3c	0.24	26640
3d	0.27	30780
3e	0.28	34440
3f	0.11	14190
3g	0.27	31890
3h	0.07	7770
HTA	0.69	26320

* Концентрация Eu³⁺ 10⁻⁶ M ($\lambda_{возб}$ 340 ± 2, $\lambda_{_{3M}}$ 615 ± 2 нм).

Лиганд	1 ч			3 сут		
	λ _{возб} , ΗΜ	<i>I</i> , отн. ед. ×10 ⁴	т, мкс	λ _{возб} , ΗΜ	<i>I</i> , отн. ед. ×10 ⁴	τ, мкс
3c	372	116,0	657	376	64,4	601
3e	370	153,4	628	372	110,0	617
3g	374	138,4	614	376	105,1	594

* Лиганд–Еu–TO Φ O = 3:2:6, концентрация лиганда 10⁻⁵ M, λ_{3M} 615 ± 2 нм.

лучшую стабильность в течение нескольких суток по сравнению с незамещенным карбазолом **3c**. Комплекс с НТА теряет 90% своей люминесценции в течение первых 4 ч.

В результате изучения методов получения фторированных тетракетонов на основе *N*-замещенных карбазолов разработаны препаративные методики синтеза целевых соединений, в том числе новых 1,1'-(9*H*-карбазол-3,6-диил)бис(4,4,4-трифторбутан-1,3дионов). Исследованные в различных условиях люминесцентно-спектральные характеристики комплексов полученных тетракетонов с ионом европия позволяют считать их перспективными реагентами для использования в иммунофлуоресцентном анализе с временным разрешением.

Экспериментальная часть

ИК спектры (400-3600 см⁻¹) зарегистрированы на спектрометре Vector 22 в таблетках КВг. Спектры ЯМР¹H. ¹⁹F и ¹³C записаны на спектрометрах JEOL JNM-ECX400 (400, 376 и 100 МГц соответственно) и Bruker Avance III 500 (500, 470 и 125 МГц соответственно) в ДМСО-d₆, внутренний стандарт ТМС для спектров ЯМР ¹Н и ¹³С, CFCl₃ для спектров ЯМР ¹⁹F. Отнесение сигналов в спектрах ЯМР ¹Н и ¹³С проведено с использованием градиентных версий двумерных экспериментов ${}^{1}H-{}^{1}H$ COSY, ${}^{1}H-{}^{1}H$ TOCSY, ${}^{1}H-{}^{1}H$ ROESY, ${}^{1}H-{}^{13}C$ HSQC и ${}^{1}H-{}^{13}C$ HMBC. Время смешивания: в эксперименте ${}^{1}H{}^{-1}H$ TOCSY – 80 мс, в эксперименте ${}^{1}H{-}^{1}H$ ROESY – 200 мс; эксперимент ${}^{1}H{-}{}^{13}C$ НМВС был оптимизирован для константы спинспинового взаимодействия J_{CH} = 8.0 Гц. Элементный анализ выполнен на приборе PerkinElmer CHN PE 2400 SII. Температуры плавления определены в стеклянных капиллярах на приборе Gallenkamp MPD350.BM3.5. Спектры поглощения записаны на приборе Shimadzu UV-1650PC в кварцевой кювете 1 см. Люминесценция комплексов карбазолов 3с-h с ионом европия зарегистрирована на микропланшетном ридере Varioscan Flash фирмы Thermofisher Scientific с временной задержкой 100 мкс (t_d) и временем интегрирования 1000 мкс (t_g) в присутствии кислорода воздуха.

В работе использованы коммерческие реагенты и растворители, приготовленные в соответствии с известными рекомендациями.³⁰ Среда "буфер-анализа" из коммерческого набора реагентов "ТТГ-Неоскрин" (ЗАО "Иммуноскрин").

Свойства и спектральные характеристики соединений **3c**, **4d–f**, **5c**,**d** соответствуют приведенным в литературе.^{12,18–21,28,31}

9-Метил-9*Н***-карбазол (4d)**.¹⁸ К смеси 1.0 г (5.99 ммоль) карбазола **4c** в 15 мл ДМСО и 0.48 г (12.00 ммоль) NaOH при охлаждении добавляют 1.28 г (9.01 ммоль) MeI, перемешивают при комнатной температуре в течение 5 ч. Смесь выливают в 100 мл воды со льдом. Выпавший осадок отфильтровывают, промывают водой (3 × 25 мл), сушат при пониженном давлении над P_2O_5 . Соединение используют дальше без дополнительной очистки. Выход 1.03 г (95%), белый порошок, т. пл. 90–93 °C (т. пл. 90–92 °C¹⁸).

9-Фенил-9*Н***-карбазол (4е).**¹⁹ К раствору 0.50 г (2.99 ммоль) карбазола **4с** в 25 мл ДМФА добавляют 1.24 г (8.98 ммоль) K₂CO₃, 0.57 г (0.29 ммоль) Cul, 0.13 г (2.99 ммоль) LiCl и 0.67 г (3.29 ммоль) иодбензола. Перемешивают при температуре 140 °C в течение 48 ч в атмосфере аргона. После охлаждения до комнатной температуры, выливают в 50 мл 10% раствора NH₄Cl, экстрагируют EtOAc (3 × 20 мл), органическую фазу промывают 10% раствором NH₄Cl (2 × 10 мл) и H₂O (2 × 10 мл), сушат над Na₂SO₄. Растворитель упаривают при пониженном давлении, остаток перекристаллизовывают из MeOH. Выход 0.51 г (70%), белые иглы, т. пл. 87–88 °C (т. пл. 86–87 °C¹⁹).

9-(4-Нитрофенил)-9*Н*-карбазол (4f).²⁰ К суспензии 2.42 г (14.49 ммоль) карбазола 4с в 50 мл сухого Et₂O одной порцией добавляют 1.95 г (17.41 ммоль) t-BuOK и перемешивают при комнатной температуре в течение 1.5 ч. Осадок отфильтровывают и промывают Et₂O (2 × 15 мл), сушат при пониженном давлении. Полученную калиевую соль карбазола добавляют к 30 мл нитробензола и перемешивают темно-коричневую смесь при 50 °C в течение 16 ч. Затем добавляют ~50 мл воды и отгоняют нитробензол с паром, процедуру повторяют и проводят до прекращения отгонки нитробензола, после чего реакционную смесь охлаждают, отфильтровывают желто-коричневый осадок, промывают водой (3 × 40 мл), сушат на воздухе, перекристаллизовывают из PhMe. Выход 2.84 г (68%), желтые кристаллы, т. пл. 208–210 °С (т. пл. 205–208 °С²⁰).

1,1'-(9*H***-Карбазол-3,6-диил)диэтанон (5с)**.²¹ К суспензии 4.27 г (32.10 ммоль) AlCl₃ в 35 мл CH₂Cl₂ при охлаждении добавляют 1.72 мл (24.07 ммоль) AcCl в 8 мл CH₂Cl₂. После образования смеси светло-желтого цвета к ней порциями при охлаждении вносят 1.34 г (8.08 ммоль) карбазола 4с, смесь перемешивают в течение 1 ч при комнатной температуре, а затем кипятят в течение 1.5 ч. Реакционную смесь выливают в 200 мл 15% соляной кислоты со льдом. Фильтруют выпавший серо-коричневый осадок, промывают 5% соляной кислотой, затем водой до нейтральной реакции. Перекристаллизовывают из смеси EtOH– CHCl₃ с углем. Выход 1.52 г (75%), белые кристаллы, т. пл. 233–235 °C (т. пл. 233 °C²¹).

1,1'-(9-Метил-9*Н***-карбазол-3,6-диил)диэтанон (5d)** получают из 3.10 г (23.48 ммоль) AlCl₃, 1.18 мл (16.44 ммоль) AcCl и 0.85 г (4.69 ммоль) карбазола **4d** аналогично методике получения карбазола 5с. Перекристаллизовывают из Me₂CO. Выход 0.94 г (76%), белые кристаллы, т. пл. 191–193 °C (т. пл. 195 °C³¹).

1,1'-(9-Фенил-9*Н***-карбазол-3,6-диил)диэтанон (5е)** получают при комнатной температуре из 0.685 г (5.14 ммоль) AlCl₃, 0.22 мл (3.08 ммоль) AcCl и 0.25 г (1.03 ммоль) соединения **4e** (добавляют в виде 10% раствора в CH₂Cl₂) аналогично методике получения карбазола **5c**. Перекристаллизовывают из EtOH. Выход 0.28 г (81%), белый порошок, т. пл. 163–165 °C. ИК спектр, v, см⁻¹: 1690 (C=O). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 2.68 (6H, c, CH₃); 7.39 (2H, д, *J* = 7.8, H карбазол); 7.57– 7.72 (5H, м, H Ph); 8.05 (2H, д. д, *J* = 7.8, *J* = 1.2, H карбазол); 9.11 (2H, д, *J* = 1.2, H карбазол). Найдено, %: C 80.65; H 5.19; N 4.11. C₂₂H₁₇NO₂. Вычислено, %: C 80.71; H 5.23; N 4.28.

1,1'-[9-(4-Нитрофенил)-9*Н***-карбазол-3,6-диил]диэтанон (5f)** получают из 2.31 г (17.37 ммоль) AlCl₃, 0.87 мл (12.12 ммоль) AcCl и 1.00 г (3,47 ммоль) соединения **4f** (добавляют в виде 3% раствора в CH₂Cl₂) аналогично методике получения карбазола **5c**. При выделении желтый порошок промывают 40 мл EtOH и 40 мл Me₂CO. Выход 1.07 г (83%), желтый порошок, устойчив до 320 °C. ИК спектр, v, см⁻¹: 1687 (C=O). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 2.70 (6H, с, CH₃); 7.57 (2H, д, *J* = 7.8, H карбазол); 8.00 (2H, д, *J* = 8.0, H Ar); 8.09 (2H, д, *J* = 8.0, H Ar); 8.52 (2H, д, *J* = 7.8, H карбазол); 9.15 (2H, с, H карбазол). Найдено, %: C 70.90; H 4.27; N 7.47. C₂₂H₁₆N₂O₄. Вычислено, %: C 70.96; H 4.33; N 7.52.

1,1'-(9-Бензил-9Н-карбазол-3,6-диил)диэтанон (5g). К суспензии 0.31 г (1.24 ммоль) карбазола 5с и 0.55 г (4.96 ммоль) *t*-BuOK в 10 мл ДМФА добавляют раствор 0.31 г (1.86 ммоль) бензилхлорида в 10 мл ДМФА. После добавления всего раствора смесь перемешивают при комнатной температуре в течение 6 ч. Реакционную смесь выливают в 40 мл 5% соляной кислоты со льдом, фильтруют, промывают выпавший осадок H₂O (3 × 30 мл) и охлажденным EtOH. Перекристаллизовывают из EtOAc. Выход 0.33 г (77%), желтоватые кристаллы, т. пл. 236–238 °С. ИК спектр, v, см⁻¹: 1698 (C=O). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 2.66 (6Н, с, CH₃); 3.75 (2H, c, CH₂); 7.15–7.27 (5H, м, H Ph); 7.66 (2H, д, J = 7.8, Н карбазол); 8.06 (2H, д. д. J = 7.8, J = 1.2, Н карбазол); 9.05 (2Н, д, J = 1.2, Н карбазол). Найдено, %: С 80.96; Н 5.65; N 4.14. C₂₃H₁₉NO₂. Вычислено, %: С 80.92; Н 5.61; N 4.10.

1,1'-[9-(4-Нитробензил)-9*H*-карбазол-3,6-диил]диэтанон (5h). К раствору 0.51 г (2.03 ммоль) соединения 5с и 0.08 г (10.13 ммоль) LiH в 20 мл ДМФА при охлаждении добавляют раствор 0.57 г (2.64 ммоль) 4-нитробензилбромида в 10 мл ДМФА. После добавления выпадает бежевый осадок, суспензию перемешивают в течение 14 ч при комнатной температуре, затем выливают в 40 мл ледяного 5% раствора соляной кислоты, отфильтровывают осадок, промывают H₂O, EtOH и Me₂CO. Выход 0.73 г (93%), желтый порошок. т. пл. 283–286 °C (с разл.). ИК спектр, v, см⁻¹: 1694 (С=O). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 2.68 (6H, с, CH₃); 5.95 (2H, с, CH₂); 7.32 (2H, д, *J* = 7.8, Н карбазол); 7.74 (2H, д, J = 7.9, H Ar); 8.08 (2H, д. д, J = 7.8, J = 1.2, H карбазол); 8.13 (2H, д, J = 7.9, H Ar); 9.09 (2H, д, J = 1.2, H карбазол). Найдено, %: С 71.57; H 4.75; N 7.33. С₂₃H₁₈N₂O₄. Вычислено, %: С 71.49; H 4.70; N 7.25.

Получение карбазолов 3с-h (общая методика). К смеси 0.68 ммоль карбазола 5с-h и 15 мл ТГФ при перемешивании добавляют 0.03 г (3.40 ммоль) LiH и 0.26 г (2.03 ммоль) метилтрифторацетата. Реакционную смесь перемешивают в течение 1.5-5 ч при температуре 63 °C, упаривают и добавляют 20 мл охлажденного раствора 5% соляной кислоты. Фильтруют, промывают водой, осадок сушат над P₂O₅.

1,1'-(9*H***-Карбазол-3,6-диил)бис(4,4,4-трифторбутан-1,3-дион) (3с).**¹² Осадок растворяют в CHCl₃, наносят на прокаленную окись алюминия по Брокману и элюируют примеси 200 мл системы CHCl₃–MeOH, 3:1. Карбазол **3с** элюируют с сорбента той же системой, но с добавлением 10% муравьиной кислоты. Элюат упаривают при пониженном давлении. Выход 0.26 г (87%), светло-желтый порошок, т. пл. 263–264 °C (с разл.) (т. пл. 260°C (с разл.)¹²).

1,1'-(9-Метил-9Н-карбазол-3,6-диил)бис(4,4,4-трифторбутан-1,3-дион) (3d). Осадок перекристаллизовывают из смеси *i*-PrOH-EtOAc, 1:1. Выход 0.26 г (83%), желтые кристаллы, т. пл. 229-232 °С. ИК спектр, ν, см⁻¹: 1611, 1583 (С(О)=СОН). Спектр ЯМР ¹Н, δ, м. д. (Ј, Гц): 3.95 (3H, с, CH₃); 7.15 (2H, с, =CH); 7.78 (2H, д, J = 7.8, Н карбазол); 8.27 (2Н, д. д. J = 7.8, J = 1.2, Н карбазол); 9.17 (2H, д, J = 1.2, Н карбазол). Спектр ЯМР¹⁹F, б, м. д.: -75.12 (6F, с, 2СF₃). Спектр ЯМР ¹³C, δ, м. д. (J, Гц): 30.3 (СН₃); 93.1 (2СН=); 111.0 (С-1,8 карбазол); 118.0 (к, J_{CF} = 293.6, 2CF₃); 123.6 (С-4а,b карбазол); 123.7 (С-4,5 карбазол); 128.2 (С-2,7 карбазол); 130.1 (С-3,6 карбазол); 144.9 (С-8а,9а карбазол); 173.3 (к, J_{CF} = 36.7, 2=СОН); 187.8 (2С=О). Найдено, %: С 55.23; Н 2.94; N 3.11. С₂₁Н₁₃F₆NO₄. Вычислено, %: C 55.15; H 2.87; N 3.06.

1,1'-(9-Фенил-9Н-карбазол-3,6-диил)бис(4,4,4-трифторбутан-1,3-дион) (Зе). Осадок перекристаллизовывают аналогично соединению 3d. Выход 0.28 г (79%), желтые пластины, т. пл. 222-225 °С. ИК спектр, v, см⁻¹: 1607, 1592 (С(О)=СОН). Спектр ЯМР ¹Н, б, м. д. (J, Γ_{II}) : 7.15 (2H, c, =CH); 7.45 (2H, J, J = 7.8, Н карбазол); 7.60-7.74 (5Н, м, Н Рh); 8.24 (2Н, д. д. J = 7.8, J = 1.2, Н карбазол); 9.32 (2H, д, J = 1.2, Н карбазол). Спектр ЯМР ¹⁹F, б, м. д.: -76.57 (6F, с, 2CF₃). Спектр ЯМР ¹³С, δ, м. д. (*J*, Гц): 93.1 (2CH=); 111.4 (С-1,8 карбазол); 118.0 (к, J_{CF} = 282.4, 2CF₃); 123.5 (С-4а, b карбазол); 123.6 (С-4,5 карбазол); 125.9 (C-4' Ph); 127.4 (C-2,7 карбазол); 127.8 (C-2',6' Ph); 129.6 (C-3',5' Ph); 131.0 (С-3,6 карбазол); 135.6 (С-1' Ph); 145.1 (С-8а,9а карбазол); 173.4 (к, J_{CF} = 36.5, 2=СОН); 187.3 (2C=O). Найдено, %: С 60.21; Н 2.96; N 2.77. С₂₆Н₁₅F₆NO₄. Вычислено. %: С 60.12: Н 2.91: N 2.70.

1,1'-[9-(4-Нитрофенил)-9*Н***-карбазол-3,6-диил]бис-(4,4,4-трифторбутан-1,3-дион) (3f)**. Осадок перекристаллизовывают из ДМСО (120 °С). Выход 0.30 г (77%), желтые иглы, т. пл. 276 °С (с разл.). ИК спектр, v, см⁻¹: 1610, 1593 (С(О)=СОН). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 7.17 (2H, с, =CH); 7.62 (2H, д, J = 7.8, Н карбазол); 8.03 (2H, д, J = 7.7, H Ar); 8.25 (2H, д. д, J = 7.8, J = 1.2, Н карбазол); 8.54 (2H, д, J = 7.7, H Ar); 9.30 (2H, д, J = 1.2, Н карбазол). Спектр ЯМР ¹⁹F, δ , м. д.: -73.77 (6F, с, 2CF₃). Найдено, %: С 55.42; H 2.61; N 5.03. С₂₆H₁₄F₆N₂O₆. Вычислено, %: С 55.33; H 2.50; N 4.96.

1,1'-(9-Бензил-9Н-карбазол-3,6-диил)бис(4,4,4-трифторбутан-1,3-дион) (3g). Осадок перекристаллизовывают аналогично соединению 3d. Выход 0.32 г (88%), светло-желтые иглы, т. пл. 232-234 °С. ИК спектр, v, см⁻¹: 1609, 1584 (С(О)=СОН). Спектр ЯМР ¹Н, б, м. д. (J, Γц): 5.80 (1H, c, CH₂); 7.16 (2H, c, =CH); 7.17-7.29 (5H, м, H Ph); 7.86 (2H, д, J = 7.8, Н карбазол); 8.23–8.27 (2Н, д. д, J = 7.8, J = 1.2, Н карбазол); 9.24–9.26 (2Н, д, J = 1.2, Н карбазол). Спектр ЯМР ¹⁹F, δ , м. д.: -74.57 (6F, с, 2CF₃). Спектр ЯМР ¹³С, б, м. д. (*J*, Гц): 46.6 (CH₂); 92.9 (2CH=); 111.3 (С-1,8 карбазол); 117.9 (к, J_{CF} = 282.4, 2CF₃); 123.1 (С-4а, b карбазол); 123.2 (С-4,5 карбазол); 125.0 (С-3',5' Ar); 127.2 (С-2,7 карбазол); 127.3 (С-2',6' Ar); 128.1 (С-4' Ar); 129.2 (С-3,6 карбазол); 136.9 (С-1' Ar); 145.0 (С-8а,9а карбазол); 173.4 (к, *J*_{CF} = 36.7, 2=СОН); 187.5 (2С=О). Найдено, %: С 60.84; Н 3.30; N 2.71. С₂₇Н₁₇F₆NO₄. Вычислено, %: С 60.80; Н 3.21; N 2.63.

1,1'-[9-(4-Нитробензил)-9*Н***-карбазол-3,6-диил]бис-(4,4,4-трифторбутан-1,3-дион) (3h)**. Осадок перекристаллизовывают из ЕtOAc. Выход 0.27 г (69%), желтый порошок, т. пл. 246–250 °С (с разл.). ИК спектр, v, см⁻¹: 1675, 1667 (С(О)=СОН). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 5.90 (2H, с, CH₂); 7.17 (2H, с, =СН); 7.35 (2H, д, *J* = 7.7, H Ar); 7.87 (2H, д, *J* = 7.8, H карбазол); 8.13 (2H, д, *J* = 7.7, H Ar); 8.25 (2H, д. д, *J* = 7.8, *J* = 1.2, H карбазол); 9.30 (2H, д, *J* = 1.2, H карбазол). Спектр ЯМР ¹⁹F, δ , м. д.: -75.37 (6F, с, 2CF₃). Найдено, %: C 56.15; H 2.89; N 4.95. C₂₇H₁₆F₆N₂O₆. Вычислено, %: C 56.07; H 2.79; N 4.84.

Получение растворов комплексов карбазолов 3с-h с Eu³⁺ и ТОФО в Трис-буфере (общая методика). Растворяют необходимое количество лиганда 3с-h в 2 мл ДМФА до образования раствора с концентрацией 5 × 10⁻³ М. Отбирают аликвоту и разбавляют 0.05 М Трис-буфером (рН 7.2) до концентрации лиганда 10⁻⁵ М. Добавляют свежеприготовленный раствор 10⁻⁴ M Eu³⁺ в 10^{-5} M HCl. 2 × 10^{-4} M ТОФО в EtOH и необходимое количество Трис-буфера для получения конечного раствора лиганд-Ец-ТОФО в соотношении 3:2:6 с концентрацией лиганда 10⁻⁵ М, который оставляют для комплексообразования в отсутствие освещения на 2 ч. Для приготовления мицеллярного раствора добавляют 10% раствор Тритона X-100 в ЕtOH до конечной концентрации ПАВ 0.1%. Из растворов комплексов отбирают 100 мкл для исследования люминесцентноспектральных характеристик.

Список литературы

- Yamada, S.; Miyoshi, F.; Kano, K.; Ogawa, T. Anal. Chim. Acta 1981, 127, 195.
- 2. Hemmilä, I. Clin. Chem. 1985, 31, 359.
- 3. Diamandis, E. P. Clin. Biochem. 1988, 21, 139.
- 4. Hemmilä, I. J. Alloys Compd. 1995, 225, 480.

- Бекман, Н. И.; Ларичева, С. Ю.; Помелова, В. Г.; Осин, Н. С. Клиническая лабораторная диагностика 2010, 12, 33.
- 6. Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A., Jr.; Bünzli, J.-C. G.; Pecharsky, V. K.; Eds.; Elsevier, 2005, vol. 35, chapter 225, p. 226.
- 7. Hemmilä, I.; Mukkala, V.-M. Crit. Rev. Clin. Lab. Sci. 2001, 38, 441.
- Comprehensive Inorganic Chemistry II: From Elements to Applications; Drozdov, A.; Kuzmina, N., Eds.; Elsevier, 2013, 2nd ed., vol. 2, p. 511.
- Уточникова, В. В.; Кузьмина, Н. П. Координационная химия 2016, 42, 640.
- 10. Yuan, J.; Matsumoto, K. J. Pharm. Biomed. Anal. 1997, 15, 1397.
- 11. Wu, F.-B.; Han, S.-Q.; Zhang, C.; He, Y.-F. Anal. Chem. 2002, 74, 5882.
- Романов, Д. В.; Лямин, А. И.; Ивановская, Н. П.; Моисеев. С. В.; Жедулов, А. Е.; Осин, Н. С.; Васильев, Н. В. Патент РФ 2296756.
- He, P.; Wang, H. H.; Liu, S. G.; Shi, J. X.; Wang, G.; Gong, M. L. *Inorg. Chem.* 2009, 48, 11382.
- 14. Романов, Д. В.; Лямин, А. И.; Ивановская, Н. П.; Жедулов, А. Е.; Осин, Н. С.; Васильев, Н. В. Патент РФ 2373200.
- Kostryukova, T. S.; Ivanovskaya, N. P.; Lyamin, A. I.; Romanov, D. V.; Osin, N. S.; Zatonsky, G. V.; Vasil'ev, N. V. *Russ. J. Gen. Chem.* **2012**, *82*, 455. [Журн. общ. химии, **2012**, *82*, 462.]
- Kostryukova, T. S.; Ivanovskaya, N. P.; Zatonsky, G. V.; Osin, N. S.; Vasil'ev, N. V. Russ. J. Bioorg. Chem. 2015, 41, 186. [Биоорган. химия 2015, 41, 212.]

- Осин, Н. С.; Помелова, В. Г.; Шлякова, С. Ю.; Булатов, А. А.; Осипова, Т. А.; Сигал, Е. Р.; Корязова, Л. К.; Мартынов, А. В. Биотехнология 1997, 9–10, 49.
- Stevens, S. T.; Tucker, S. H. J. Chem. Soc., Perkin. Trans. 1 1923, 123, 2140.
- Cho, J.-H.; Ryu, Y.-S.; Oh, S.-H.; Kwon, J.-K.; Yum, E.-K. Bull. Korean Chem. Soc. 2011, 32, 2461.
- 20. de Montmollin, G.; de Montmollin, M. *Helv. Chim. Acta* **1923**, *6*, 94.
- 21. Mitchell, D. R; Plant, S. G. P. J. Chem. Soc. 1936, 1295.
- 22. Filyakova, V. I.; Karpenko, N. S.; Kuznetsova, O. A.; Pashkevich, K. I. *Russ. J. Org. Chem.* **1998**, *34*, 381. [Журн. орган. химии **1998**, *34*, 411.]
- 23. Paskevich, K. I.; Saloutin, V. I.; Postovskii, I. Ya. Russ. Chem. Rev. **1981**, 50, 180. [Vcnexu xumuu **1981**, 50, 325.]
- 24. Structure Determination of Organic Compounds; Pretsch, E.; Bühlmann, P.; Badertscher, M., Eds.; Springer, 2000, p. 288.
- Yuan, J.; Sueda, S.; Somazava, R.; Matsumoto, K.; Matsumoto, K. Chem. Lett. 2003, 32, 492.
- Tsaryuk, V.; Zolin, V.; Legendziewicz, J. J. Lumin. 2003, 102-103, 744.
- Hemmilä, I.; Mukkala, V.-M.; Latva, M.; Kiilholma, P. J. Biochem. Biophys. Methods 1993, 26, 283.
- Latva, M.; Takalo, H.; Mukkala, V.-M.; Matachescu, C.; Rodriguez-Ubis, J. C.; Kankarea, J. J. Lumin. 1997, 75, 149.
- 29. Hemmilä, I.; Dakubu, S. US Patent 4565790.
- Гордон, А.; Форд, Р. Спутник химика; Мир: Москва, 1976, с. 571.
- 31. Buu-Hoi; Ryer, R. Recl. Trav. Chim. Pays-Bas Belg. 1947, 66, 533.