

Взаимное кинетическое разделение 3-метил-3,4-дигидро-2*H*-1,4-бензоксазинов и хлорангидридов 2-алкилоксикислот

Сергей А. Вакаров¹*, Дмитрий А. Груздев¹, Лилия Ш. Садретдинова¹, Михаил И. Кодесс^{1,2}, Андрей А. Тумашов^{1,2}, Евгений Б. Горбунов^{1,2}, Галина Л. Левит¹, Виктор П. Краснов¹

¹ Институт органического синтеза им. И. Я. Постовского УрО РАН, ул. Софьи Ковалевской, 22 / Академическая, 20, Екатеринбург 620137, Россия e-mail: savakarov@ios.uran.ru

² Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, ул. Мира, 19, Екатеринбург 620002, Россия: e-mail: a.a.tumashov@urfu.ru Поступило 24.11.2017 Принято 16.01.2018

 $(R^*, S^*)/(R^*, R^*)$ up to 97:3 (s 32)

Изучено стереоселективное ацилирование рацемического 3-метил-3,4-дигидро-2*H*-1,4-бензоксазина и его 7,8-дифторзамещенного аналога хлорангидридами рацемических 2-алкилоксикислот. Установлено, что реакции 3-метил-3,4-дигидро-2*H*-1,4-бензоксазинов с хлорангидридом 2-метоксиизовалериановой кислоты протекают более селективно (фактор селективности *s* 31–32), чем ацилирование хлорангидридами других изученных производных пропионовой кислоты (*s* 18–21). Этот факт, вероятно, объясняется большими пространственными затруднениями, создаваемыми изопропильным заместителем хлорангидрида, в сравнении с метильной группой реагентов на основе пропионовой кислоты.

Ключевые слова: 2-алкилоксикислоты, гетероциклические амины, хлорангидриды, ацилирование, кинетическое разделение, стереоселективность.

Кинетическое разделение (КР) рацематов относится к распространенным способам получения индивидуальных энантиомеров органических соединений различных классов. Метод КР основан на различии в скорости реакции энантиомеров рацемического субстрата и хирального разделяющего агента.^{1,2} Этот подход позволяет получать стереоизомерно обогащенные продукт и не вступивший в реакцию субстрат, что в конечном итоге открывает путь к обоим энантиомерам целевого соединения. Один из востребованных путей получения энантиочистых аминов, в том числе имеющих практическую ценность, основан на их хиральными стереоизбирательном ацилировании агентами на основе карбоновых кислот.^{3,4} Соответственно, энантиочистые амины могут быть использованы как хиральные реагенты для разделения рацемических кислот и получения их оптических изомеров. Изучение реакций между рацемическими аминами и

рацемическими ацилирующими агентами может оказаться полезным в плане разработки эффективных методов синтеза стереоизомеров как аминов, так и кислот. Кроме того, исследование стереоселективных реакций между хиральными аминами и ацилирующими агентами помогает установить причины стереоселективности и выявить структурные требования к субстратам и реагентам, используемым в КР.

Индивидуальные энантиомеры как гетероциклических ароматических аминов, так и 2-замещенных карбоновых кислот представляют значительный интерес в качестве предшественников и структурных фрагментов природных и синтетических биологически активных соединений (лекарств, гербицидов и др.).^{5,6} Ранее нами исследованы диастереоселективные реакции между рацемическими гетероциклическими аминами и хлорангидридами хиральных 2-арилпропионовых кислот,^{7–10} *N*-защищенных аминокислот^{9–17} и 2-фенокси-

кислот.^{18,19} Наибольшая стереоселективность в отношении производных 3-метилбензоксазина **1а,b** (схема 1) наблюдалась при взаимодействии с реагентами, содержащими 2-феноксигруппу, поэтому представлялось интересным исследовать стереоизбирательное ацилирование этих аминов хлорангидридами 2-алкилоксикислот.

Цель настоящей работы – изучение электронных и пространственных факторов, влияющих на стереоселективность взаимодействия 3-метилбензоксазинов **1а,b** и хлорангидридов 2-алкилоксизамещенных хиральных кислот **2а-е** (схема 1).

При изучении факторов, определяющих стереоселективность ацилирования рацемических аминов la,b хиральными хлорангидридами, мы использовали подход, основанный на реакции рацемических реагентов, иными словами, предельный вариант взаимного KP.² В этом случае соотношение образующихся диастереомерных амидов равно фактору селективности *s*, представляющему собой отношение скоростей реакции быстро и медленно реагирующих энантиомеров субстрата. Причем соотношение исходных реагентов, их концентрация и продолжительность реакции не влияют на стереохимический результат, и поэтому значение *s* может быть определено достаточно точно.²⁰

Ацилирование рацемических аминов 1а, b хлорангидридами 2а-е проводили при 20 °С в течение 6 ч при мольном соотношении амин-хлорангидрид, равном 2:1, и начальной концентрации амина 0.1 М (схема 1). Ранее мы установили, что ацилирование аминов 1а, b хлорангидридами 2-феноксикислот с наибольшей селективностью протекает в толуоле.¹⁸ поэтому в настоящем исследовании именно толуол был выбран в качестве растворителя. В результате реакции происходило образование смеси 4 стереоизомеров (3R,2'R)/(3S,2'S)- и (3R,2'S)/(3S,2'R)-амидов 3 и 4 а-е (далее (3*R**,2'S*)- и (3*R**,2'*R**)-амидов). Диастереомерное соотношение (dr) амидов 3 и 4 a-e, равное фактору селективности s, определяли методами ГЖХ и ВЭЖХ.

Преобладающие диастереомеры $(3R^*,2'S^*)$ -**3**а,е и $(3R^*,2'S^*)$ -**4**а,е получены в диастереомерно чистом виде перекристаллизацией продуктов ацилирования. Соединения $(3R^*,2'S^*)$ -**3**b-**d** и $(3R^*,2'S^*)$ -**4**b-**d** выделены из реакционных смесей в результате колоночной флеш-хроматографии на силикагеле.

Из эквимолярных количеств (S)-аминов **1a**,**b** и рацемических хлорангидридов **2a**–е в присутствии N,N-диэтиланилина (в качестве акцептора HCl) синтезированы смеси (3R,2'S)- и (3R,2'R)-диастереомеров амидов **3** и **4 a**–е (соотношение диастереомеров 1:1), которые выделены из реакционных смесей колоночной флеш-хроматографией и охарактеризованы набором физико-химических методов. Анализ полученных смесей амидов **3**, **4 a**–е позволил однозначно отнести сигналы (3S,2'R)- и (3S,2'S)-изомеров на хроматограммах продуктов взаимного KP.

Для установления конфигурации полученных амидов **3**, **4 a**–**e** проведено ацилирование энантиочистых (*S*)-аминов **1а**,**b** хлорангидридами рацемических кислот **2а**–**e** в присутствии *N*,*N*-диэтиланилина (в качестве акцептора HCl) в соотношении 3-метилбензоксазин–хлорангидрид–*N*,*N*-диэтиланилин = 1:2:1 (схема 2).

В этом случае максимально возможная конверсия исходного хлорангидрида составляла 50%, и происходило КР рацемического ацилирующего агента. В результате реакции мы получили диастереомерно обогащенные амиды **3**, **4 a**–**e** и непрореагировавшие энантиомерно обогащенные хлорангидриды **2a**–**e**, щелочной гидролиз которых приводил к соответствующим кислотам **5a**–**e** (схема 2). Для определения энантиомерного состава (*ee*, %) полученных таким образом кислот мы провели конденсацию кислот **5a**,**b** и (*R*)-1-фенилэтиламина с использованием карбодиимида (EDC·HCl) в качестве конденсирующего агента в присутствии 1-гидроксибензотриазола (HOBt) и *N*-метилморфолина (NMM) (схема 3). Полученные смеси (*R*,*S*)и (*R*,*R*)-диастереомеров амидов **6а**,**b** были проанализи-

438

Схема 3

i: (*R*)-1-phenylethylamine (1 equiv), EDC·HCI (1.5 equiv), NMM (1.5 equiv), HOBt (1.5 equiv), DMF, rt, 48 h

рованы методом ВЭЖХ. На основании литературных данных о порядке выхода с хроматографической колонки диастереомеров амида **6a** было установлено, что скалемическая кислота, полученная из не вступившего в реакцию хлорангидрида, обогащена (S)-энантиомером.²¹

Стереоконфигурация (1R,2'S)-диастереомера амида **6b** была определена с помощью рентгеноструктурного анализа (рис. 1), что позволило отнести пики диастереомеров на хроматограммах ВЭЖХ.

Установлено, что в продуктах дериватизации скалемической кислоты 5b преобладает (1R,2'S)-амид, следовательно, взятая в реакцию с (R)-фенилэтиламином кислота была обогащена (S)-энантиомером. Отнесение конфигурации скалемических кислот 5с-е, полученных в результате КР 3-метилбензоксазинами 1a,b, проводили путем сравнения знака оптического вращения полученных образцов с литературными данными. 22-24 Из полученных результатов следует, что во всех случаях в кислотах, полученных из не вступивших в реакцию хлорангидридов, преобладают (S)-энантиомеры, следовательно (S)-амины **1a**,**b** быстрее вступают в реакцию с (R)-хлорангидридами **2а**-е и преимущественно образуются (3S,2'R)-диастереомеры амидов 3, 4 а-е. В свою очередь, в продуктах взаимодействия рацемических аминов и рацемических хлорангидридов преобладает пара (3*R**,2'S*)-амидов **3**, **4**а-е.

В табл. 1 представлены стереохимические результаты ацилирования аминов 1а, b хлорангидридами 2а-е. Как видно по этим данным, наибольшая стереоселективность (s 31-32) наблюдается в случае ацилирования 3-метилбензоксазинов хлорангидридом 2-метоксиизовалериановой кислоты (2b) (опыты 5 и 6). Однако фактор селективности s был ниже, чем при ацилировании аминов 1а, b хлорангидридами, содержащими 2-феноксипропиониларилоксигруппу, например хлоридом (s 35 и 56, опыты 1 и 2). Замена изопропильной группы (хлорангидрид 2b) при хиральном центре хлорангидрида 2-метоксикислоты на метильную (хлорангидрид 2а) приводила к снижению стереоизбирательности реакции. Взаимодействие 3-метилбензоксазинов 1a,b и производных молочной (2a), миндальной (2c) и 3-фенилмолочной кислот (2d) протекало с одинаковой селективностью (s около 20, опыты 3, 4, 7–9). 2-(Бензилокси)пропионилхлорид (2е) реагировал с аминами 1а, b с такой же стереоселективностью, как и 2-метоксипропионилхлорид (2а) (опыты 3.4 и 11.12).

Интересно отметить, что, в отличие от реагентов на основе 2-феноксикислот,¹⁸ хлорангидриды 2-метокси-

Рисунок 1. Молекулярная структура амида (1*R*,2'S)-6b в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью.

кислот 2а-е взаимодействовали как с 3-метилбензоксазином 1а, так и с его 7,8-дифторсодержащим аналогом 1b с примерно одинаковой селективностью. Этот факт, по всей видимости, связан с тем, что в случае ацилирования аминов хлорангидридами 2-арилоксикислот характер взаимодействий молекул ацилирующего агента и нуклеофила в ходе реакции во многом определяется межмолекулярными ароматическими взаимодействиями, а следовательно зависит от электронных эффектов заместителей в ароматическом фрагменте амина. В случае ацилирования 3-метилбензоксазинов 1а, b хлорангидридами 2-метоксикислот стереоселективность, вероятно, определяется исключительно пространственными затруднениями, возникающими между молекулами амина и ацилирующего агента при их взаимодействии.

Таким образом, мы исследовали влияние электронных и пространственных факторов на стереохимические результаты ацилирования рацемических 3-метил-

Таблица 1. Результаты стереоселективного ацилирования рацемических аминов **1а,b** рацемическими хлорангидридами **2а**-е в толуоле при 20 °C (средние значения двух параллельных экспериментов)

_		. –	-	
Опыт	Амин	Хлорангидрид	Амид, <i>dr</i> ((<i>R*,S*</i>):(<i>R*,R*</i>))	Фактор селективности <i>s</i>
1	1 a	OPh	97.2:2.8 ¹⁸	35
2	1b	Me CI	98.2:1.8 ¹⁸	56
3	1a	2a	3a , 94.9:5.1*	19
4	1b	2a	4a , 94.6:5.4*	18
5	1a	2b	3b , 96.9:3.1**	31
6	1b	2b	4b , 97.0:3.0*	32
7	1a	2c	3c , 95.4:4.6*	21
8	1b	2c	4c , 95.3:4.7*	20
9	1a	2d	3d , 95.2:4.8*	20
10	1b	2d	4d , 95.2:4.8*	20
11	1a	2e	3e , 95.4:4.6***	21
12	1b	2e	4e , 95.2:4.8***	20

* Данные ВЭЖХ (ReproSil 100 Si).

** Данные обращенно-фазовой ВЭЖХ (Phenomenex Luna C18). *** Данные ГЖХ.

бензоксазинов хлорангидридами 2-алкилоксикислот. Установлено, что взаимодействие 3-метил-3,4-дигидробензоксазинов с хлорангидридом 2-метоксиизовалериановой кислоты протекает более стереоселективно, чем реакции указанных аминов с хлорангидридами производных пропионовой кислоты. Этот результат, вероятно, связан со значительными пространственными затруднениями, создаваемыми изопропильным заместителем хлорангидрида. Ранее было установлено, что фактор селективности ацилирования 3-метилбензоксазинов хлорангидридом 2-феноксипропионовой кислоты составляет 35 и 56 соответственно, то есть 2-феноксипропионилхлорид проявляет большую стереоселективность по сравнению с близкими по структуре хлорангидридами 2-метокси-2-фенилуксусной, 2-метокси-3-фенилпропионовой И 2-бензилоксипропионовой кислот. Этот сравнительный анализ результатов ацилирования 3-метилбензоксазинов хлорангидридами 2-феноксикислот и 2-алкилоксикислот позволяет предположить, что для обеспечения высокой стереоселективности необходимо наличие фенильной группы непосредственно при атоме кислорода в положении 2 хлорангидрида.

Экспериментальная часть

Спектры ЯМР ¹H, ¹³С и ¹⁹F зарегистрированы на приборах Bruker DRX-400 (400, 100 и 376 МГц соответственно) или Bruker Avance 500 (500, 126 и 470 МГц соответственно) с использованием ТМС и гексафторбензола в качестве внутренних стандартов. Спектры ЯМР ¹Н амидов 3 и 4 а-е, а также спектры ЯМР ¹³С амилов **3** и **4** a-с.е зарегистрированы при 100 °С. спектры остальных соединений - при комнатной температуре. Масс-спектры высокого разрешения амидов (3*R**,2'S*)-**3b**, (3*R**,2'S*)-**4b**, (3*R**,2'S*)-**4c** а также кислот (S)-5с-е зарегистрированы на массспектрометре Bruker maXis Impact HD (ионизации электрораспылением) в положительном (соединения **3b**, **4b**,**c**) или отрицательном (соединения 5c-e) режиме, скорость газа носителя (N₂) 4 л/мин, 0.4 бар, напряжение на игле 4.5 кВ. Температуры плавления определены на приборе SMP3 (Barloworld Scientific, UK). Элементный анализ выполнен на анализаторах Perkin-Elmer 2400 II или EuroVector EA3000. Содержание фтора в синтезированных соединениях определено методом, основанном на минерализации по Шёнигеру, с последующим спектрофотометрическим анализом полученных образцов (в сравнении со стандартными образцами). Аналитическая ТСХ проведена на пластинах Sorbfil (ООО "Имид", Россия). Флеш-хроматография проведена на силикагеле (230-400 меш) (Alfa Aesar, UK).

ВЭЖХ 2-метоксикислот **5а,b** проведена на приборе Кпаиег Smartline-1100 после предколоночной дериватизации (R)-1-фенилэтиламином: колонка ReproSil 100 Si; детектирование при 220 нм, скорость потока элюента 1 мл/мин. ВЭЖХ кислот **5с–е** проведена на приборах Knauer Smartline-1100 (соединения **5с,е**) и Shimadzu LC-20 Prominence (соединение **5d**): колонки Chiralpak AD (250 × 4.6 мм, Daicel Corp., Japan) (соединение 5c), Chiralcel OD-H (250 \times 4.6 мм, Daicel Corp., Japan) (соединение 5d) и S,S-Whelk O1 (250×4.6 мм, Regis Technologies Inc.) (соединение 5е); детектирование при 220 и 230 нм, скорость потока элюента 1 мл/мин. Подвижная фаза гексан-*i*-PrOH-CF₃COOH, 40:1:0.02 (соединения **5с**,**d**) или 20:1:0.02 (соединение **5е**): $\tau_{(R)-5c}$ 20.8 мин; т_{(S)-5с} 18.8 мин; т_{(R)-5d} 14.0 мин; т_{(S)-5d} 20.4 мин; т_{(S)-5е} 7.1 мин; т_{(R)-5е} 7.8 мин. Удельное вращение определено на поляриметре PerkinElmer 341. ВЭЖХ амидов **За,с** и **4а-с** проведена на приборе Knauer Smartline-1100: колонка ReproSil 100 Si; детектирование при 220 нм, скорость потока элюента 1 мл/мин. ВЭЖХ амидов 3d и 4d проведен на приборе Shimadzu LC-20 Prominence: колонка ReproSil 100 Si; детектирование при 220 нм, скорость потока элюента 1 мл/мин. ВЭЖХ амида 3b проведена на хроматографе Agilent 1100: колонка Phenomenex Luna C 18(2) (250 × 4.6 мм), скорость элюирования 0.8 мл/мин, детектирование при 220 нм.

ГЖХ амидов **3e** и **4e** проведена с использованием газового хроматографа Shimadzu GC 2010 с пламенноионизационным детектором, кварцевой капиллярной колонкой ZB-5 (длина 30 м, диаметр 0.25 мм, толщина пленки 0.25 мкм); начальная температура колонки 40 °C (выдержка 3 мин), программирование со скоростью 10 К/мин до 280 °C (выдержка 30 мин). Температура испарителя 250 °C, детектора 300 °C. Газ-носитель – азот, деление потока 1:30, расход через колонку 1.0 мл/мин, с вводом 1.0 мкл раствора амида с концентрацией 1–3 мг/мл в МеСN. Пики диастереомеров на хромато-граммах отнесены на основании данных хромато-масс-спектрометрии.

(*RS*)-3-Метил-3,4-дигидро-2*H*-1,4-бензоксазин (**1a**),²⁵ (*RS*)-3-метил-7,8-дифтор-3,4-дигидро-2*H*-1,4-бензоксазин (**1b**),²⁵ (3*S*)-3-метил-2,3-дигидро-4*H*-1,4-бензоксазин ((*S*)-**1a**),¹¹ (3*S*)-3-метил-7,8-дифтор-2,3-дигидро-4*H*-1,4бензоксазин ((*S*)-**1b**),²⁶ (*RS*)-2-метоксипропионовая (**5a**),²⁷ (*RS*)-2-метоксиизовалериановая (**5b**),²⁸ (*RS*)-2-метокси-2-фенилуксусная (**5c**),²⁹ (*RS*)-2-метокси-3-фенилпропионовая (**5d**)^{30,31} и (*RS*)-2-бензилоксипропионовая (**5e**)³² кислоты получены по известным методикам. Другие реагенты коммерчески доступны. Растворители очищены по стандартным методикам.

Получение хлорангидридов 2а–е (общая методика). К раствору 5 ммоль соответствующей кислоты в 20 мл CH₂Cl₂ (кислоты 2а–с,е) или бензола (кислота 2d) добавляют оксалилхлорид (0.87 мл (10 ммоль) – для кислоты 5а, 1.31 мл (15 ммоль) – для кислот 5b,d,e, 4.38 мл (50 ммоль) – для кислоты 5c) и 5 мкл ДМФА. Реакционную смесь перемешивают при комнатной температуре в течение 6 ч, затем упаривают при пониженном давлении. Остаток сушат при пониженном давлении над P_2O_5 . Хлорангидрид 2а используют сразу после упаривания. Ацилирующие агенты 2а–е неустойчивы при хранении, поэтому их используют свежеприготовленными (при химической чистоте по данным спектроскопии ЯМР ¹Н не менее 97%).

(*RS***)-2-Метоксипропаноилхлорид (2а)**. Выход 610 мг (99%), желтое масло. Спектр ЯМР ¹Н (500 МГц,

CDCl₃), δ, м. д. (*J*, Γц): 1.53 (3H, д, *J* = 6.9, CH₃); 3.45 (3H, c, OCH₃); 4.01 (1H, κ, *J* = 7.1, CH).

(*RS*)-2-Метокси-3-метилбутаноилхлорид (2b). Выход 750 мг (99%), желтое масло. Спектр ЯМР ¹H (500 МГц, CDCl₃), δ , м. д. (*J*, Гц): 0.97 (3H, д, *J* = 6.9, CH(C<u>H</u>₃)₂); 1.03 (3H, д, *J* = 6.9, CH(C<u>H</u>₃)₂); 2.27–2.57 (1H, септет д, *J* = 6.9; *J* = 4.9, C<u>H</u>(CH₃)₂); 3.44 (1H, c, OCH₃); 3.72 (1H, д, *J* = 4.9, CH).

(*RS*)-2-Метокси-2-фенилацетилхлорид (2с). Выход 940 мг (98%), желтое масло. Спектр ЯМР ¹Н (400 МГц, CDCl₃), δ, м. д.: 3.51 (3H, с, OCH₃); 4.99 (1H, с, CH); 7.39–7.48 (5H, м, H Ph).

(*RS*)-2-Метокси-3-фенилпропаноилхлорид (2d). Выход 980 мг (99%), бесцветное масло. Спектр ЯМР ¹Н (500 МГц, CDCl₃), δ, м. д. (*J*, Гц): 3.07 (1H, д. д, *J* = 14.2, *J* = 8.0, CH₂); 3.20 (1H, д. д, *J* = 14.2, *J* = 4.3, CH₂); 3.40 (3H, с, OCH₃); 4.18 (1H, д. д, *J* = 8.0, *J* = 4.4, CH); 7.24–7.34 (5H, м, H Ph).

(*RS*)-(2-Бензилокси)пропаноилхлорид (2е). Выход 980 мг (99%), желтое масло. Спектр ЯМР ¹Н (400 МГц, CDCl₃), δ, м. д. (*J*, Гц): 1.57 (3H, д, *J* = 6.8, CH₃); 4.28 (1H, к, *J* = 6.8, CH); 4.46 (1H, д, *J* = 11.4, CH₂); 4.75 (1H, д, *J* = 11.4, CH₂); 7.29–7.39 (5H, м, H Ph).

Стереоселективное ацилирование рацемических аминов 1а,b хлорангидридами 2а-е (общая методика). К раствору 1.0 ммоль амина 1а или 1b в 5 мл соответствующего растворителя при 20 °С добавляют раствор 0.5 ммоль соответствующего хлорангидрида в 5 мл того же растворителя и термостатируют при 20 °С в течение 6 ч. Реакционную смесь последовательно промывают 4 н. HCl (2×4 мл), насыщенным раствором NaCl (4×5 мл), 5% раствором NaHCO₃ (2×5 мл), H₂O (2×5 мл), сушат над Na₂SO₄ и упаривают при пониженном давлении. Диастереомеры амидов выделяют с помощью перекристаллизации или флеш-хроматографии.

(2S*)-1-((3R*)-3-Метил-2,3-дигидро-4H-1,4-бензоксазин-4-ил)-2-метоксипропан-1-он ((2S*,3R*)-3a). Выход 54 мг (46%) после перекристаллизации из гексана, бесцветный порошок, т. пл. 86-87 °С (гексан). ВЭЖХ (ReproSil 100 Si; гексан-*i*-PrOH, 20:1): т_{(3R*2S*)-3a} 8.5 мин, т $(3R^*, 2'R^*)$ -3a 6.5 MUH; $(3R^*, 2'S^*)/(3R^*, 2'R^*) = 99.5:0.5.$ Спектр ЯМР ¹Н (500 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 1.15 (3Н, д, J = 6.8, 3-СН₃); 1.33 (3Н, д, J = 6.4, СНСН₃); 3.20 (3H, с, ОСН₃); 4.12 (1H, д. д, *J* = 11.0, *J* = 2.7, CH₂); 4.21 (1H, д. д, J = 11.0, J = 1.6, CH₂); 4.43 (1H, к, J = 6.4, СНСН₃); 4.64–4.68 (1Н, м, 3-СН); 6.83–6.90 (2Н, м, Н-6,8); 7.03 (1Н, д. д. д, J = 8.2, J = 7.2, J = 1.2, Н-7); 7.70-7.71 (1Н, м, Н-5). Спектр ЯМР ¹³С (126 МГц, ДМСО-*d*₆), б, м. д.: 14.8; 15.9; 45.0; 54.9; 69.2; 73.9; 115.8; 119.4; 123.2; 124.2; 124.7; 145.5; 169.2. Найдено, %: С 66.37; Н 7.27; N 5.96. С₁₃Н₁₇NO₃. Вычислено, %: C 66.36; H 7.28; N 5.95.

(2S*)-((3R*)-3-Метил-7,8-дифтор-2,3-дигидро-4H-1,4бензоксазин-4-ил)-2-метоксипропан-1-он ((2S*,3R*)-4а). Выход 80 мг (59%) после перекристаллизации из смеси гексан–EtOAc, бесцветный порошок, т. пл. 78–80 °С (гексан–EtOAc). ВЭЖХ (Reprosil 100 Si; гексан–*i*-PrOH, 40:1): $\tau_{(3R*,2'S*)-4a}$ 17.9 мин, $\tau_{(3R*,2'R*)-4a}$ 12.8 мин; (3R*,2'S*)/(3R*,2'R*) = 99.9:0.1. Спектр ЯМР ¹Н (500 МГц, ДМСО-*d*₆), δ, м. д. (*J*, Гц): 1.18 (3H, д, *J* = 6.8, 3-CH₃); 1.32 (3H, π , J = 6.4, CHCH₃); 3.23 (3H, c, OCH₃); 4.19 (1H, д. д, J = 11.0, J = 2.6, CH₂); 4.37 (1H, д. д, $J = 11.0, J = 1.4, CH_2$; 4.43 (1H, $\kappa, J = 6.4, CHCH_3$); 4.69 (1Н, к. д. д. *J* = 6.7, *J* = 2.6, *J* = 1.5, 3-СН); 6.86 (1Н, д. д. д. *J* = 9.8, *J* = 9.8, *J* = 8.4, H-6); 7.62 (1H, д. д. д. *J* = 9.4, *J* = 5.5, J = 2.6, H-5). Спектр ЯМР ¹³С (126 МГц, ДМСО- d_6), δ, м. д. (Ј, Гц): 14.7; 15.6; 45.0; 54.9; 69.7; 74.0; 106.2 (д, *J* = 18.2); 118.8 (д. д. *J* = 7.9, *J* = 4.2); 121.2; 135.8 (д. д. *J* = 10.1, *J* = 3.2); 138.6 (д. д. *J* = 243.9, 15.5); 146.4 (д. д. J = 242.2, J = 10.4); 169.4. Спектр ЯМР ¹⁹F (470 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 2.0 (д. д. д, *J* = 20.6, *J* = 8.6, J = 2.4, F-8; 20.5 (д. д. д. J = 21.0, J = 10.1, J = 5.4, F-7). Найдено, %: С 57.71; Н 5.71; F 14.07; N 5.23. С₁₃Н₁₅F₂NO₃. Вычислено, %: С 57.56; Н 5.57; F 14.01; N 5.16.

(2S*)-1-((3R*)-3-Метил-2,3-дигидро-4H-1,4-бензоксазин-4-ил)-3-метил-2-метоксибутан-1-он ((2S*,3R*)-3b). Выход 112 мг (85%) после флеш-хроматографии (элюент гексан-ЕtOAc, 95:5), бесцветное масло. ВЭЖХ (Phenomenex Luna C 18(2); 50% MeCN): т_{(3R*,2'5*)-3b} 17.5 мин, $\tau_{(3R^*,2'R^*)-3b}$ 16.7 мин; $(R^*,S^*)/(R^*,R^*) = 99.0:1.0.$ Спектр ЯМР ¹Н (500 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 0.95 (3Н, д, J = 6.8, CH(C<u>H</u>₃)₂); 0.99 (3H, д, J = 6.6, CH(C<u>H</u>₃)₂); 1.15 (3H, д, J = 6.8, CHCH₃); 2.01–2.12 (1H, м, C<u>H</u>(CH₃)₂); 3.23 (3H, c, OCH₃); 3.92 (1H, μ , J = 7.8, CH*i*-Pr); 4.09 (1Н, д. д, *J* = 11.0, *J* = 2.9, CH₂); 4.24 (1Н, д. д, *J* = 11.0, *J* = 1.7, CH₂); 4.83 (1Н, к. д. д, *J* = 6.8, *J* = 2.9, *J* = 1.7, СНСН3); 6.86-6.89 (2Н, м, Н-6,8); 7.02-7.06 (1Н, м, H-7); 7.80 (1H, д. д, J = 8.5, J = 1.1, H-5). Спектр ЯМР ¹³С (126 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 14.9; 17.5; 18.0; 29.4; 44.7; 56.4; 69.3; 84.8; 115.9; 119.4; 123.2; 124.5; 124.9; 145.6; 168.5. Найдено, *m/z*: 264.1598 [М+Н]⁺. С₁₅Н₂₂NO₃. Вычислено, *m/z*: 264.1594.

(2S*)-1-((3R*)-3-Метил-7,8-дифтор-2,3-дигидро-4H-1,4-бензоксазин-4-ил)-3-метил-2-метоксибутан-1-он ((2S*,3R*)-4b). Выход 153 мг (85%) после флешхроматографии (элюент гексан-EtOAc, 95:5), бесцветное масло. ВЭЖХ (ReproSil 100 Si; гексан-*i*-PrOH, 40:1): $\tau_{(3R^*,2'S^*)-4b}$ 4.2 мин, $\tau_{(3R^*,2'R^*)-4b}$ 4.7 мин; $(3R^*,2'S^*)/(3R^*,2'R^*) =$ = 99.5:0.5. Спектр ЯМР ¹Н (500 МГц, ДМСО-*d*₆), б, м. д. $(J, \Gamma \mu)$: 0.94 (3H, μ , J = 6.8, CH(CH₃)₂); 0.99 (3H, μ , J = 6.6, CH(CH₃)₂); 1.17 (3H, μ , J = 6.8, CHCH₃); 2.01– 2.10 (1H, м, CH(CH₃)₂); 3.26 (3H, с, OCH₃); 3.90 (1H, д, J = 7.8, CH*i*-Pr); 4.16 (1H, μ , μ , J = 11.0, J = 2.7, CH₂); 4.40 (1H, д. д, J = 11.0, J = 1.5, CH₂); 4.87 (1H, к. д. д, *J* = 6.8, *J* = 2.8, *J* = 1.6, <u>СН</u>СН₃); 6.87 (1Н, т. д, *J* = 9.9, *J* = 8.2, H-6); 7.62 (1Н, д. д. д. *J* = 9.4, *J* = 5.5, *J* = 2.6, H-5). Спектр ЯМР ¹³С (126 МГц, ДМСО-*d*₆), б, м. д. (Ј, Гц): 14.8; 17.5; 17.9; 29.4; 44.7; 56.5; 69.8; 85.1; 106.2 (д. J = 18.1); 119.0 (д. д. J = 7.9, J = 4.2); 121.0; 136.0 (д. д, J = 9.9, J = 3.3); 138.6 (д. д, J = 244.0, J = 15.5); 146.5 (д. д. J = 242.7, J = 9.9); 168.7. Спектр ЯМР ¹⁹F (470 МГц, ДМСО-*d*₆), δ, м. д. (*J*, Гц): 2.0 (д. д. д. *J* = 21.0, *J* = 8.2, *J* = 2.4, F-8); 20.8 (д. д. д. *J* = 20.8, *J* = 10.1, *J* = 5.5, F-7). Найдено, *m/z*: 300.1405 [M+H]⁺. C₁₅H₂₀F₂NO₃. Вычислено, *m/z*: 300.1406.

(2S*)-1-((3R*)-3-Метил-2,3-дигидро-4*H*-1,4-бензоксазин-4-ил)-2-метокси-2-фенилэтанон ((2S*,3R*)-3с). Выход 110 мг (74%) после флеш-хроматографии (элюент гексан–ЕtOAc, 95:5), бесцветное масло. ВЭЖХ (ReproSil 100 Si; гексан–*i*-PrOH, 100:1): $\tau_{(3R^*,2'S^*)-3c}$ 6.1 мин, $\tau_{(3R^*,2'R^*)-3c}$ 7.0 мин; $(3R^*,2'S^*)/(3R^*,2'R^*) = 98.1:1.9.$ Спектр ЯМР ¹H (500 МГц, ДМСО-*d*₆), δ , м. д. (*J*, Гц): 0.98 (3H, д, *J* = 6.8, СНС<u>Н</u>₃); 3.35 (3H, с, OCH₃); 3.86 (1H, д. д, *J* = 10.9, *J* = 2.8, CH₂); 4.12 (1H, д. д, *J* = 10.9, *J* = 1.7, CH₂); 4.66 (1H, к. д. д, *J* = 6.8, *J* = 2.7, *J* = 1.7, C<u>H</u>CH₃); 5.29 (1H, с, CHPh); 6.81–6.90 (2H, м, H-6,8); 7.03 (1H, т. д, *J* = 7.7, *J* = 1.5, H-7); 7.32–7.45 (5H, м, H Ph); 7.82–7.83 (1H, м, H-5). Спектр ЯМР ¹³С (126 МГц, ДМСО-*d*₆), δ , м. д. (*J*, Гц): 14.6; 45.1; 56.4; 68.9; 81.8; 115.8; 119.4; 123.1; 124.2; 124.9; 126.7; 127.6; 127.8; 136.0; 145.4; 167.1. Найдено, %: С 72.71; H 6.74; N 4.71.

(2S*)-1-((3R*)-3-Метил-7,8-дифтор-2,3-дигидро-4H-1,4-бензоксазин-4-ил)-2-метокси-2-фенилэтанон ((2S*,3R*)-4c). Выход 145 мг (87%) после флешхроматографии (элюент гексан-EtOAc, 95:5), бесцветное масло. ВЭЖХ (ReproSil 100 Si; гексан-i-PrOH, 100:1): $\tau_{(3R^*,2'S^*)-4c}$ 7.1 мин, $\tau_{(3R^*,2'R^*)-4c}$ 8.3 мин; $(3R^*,2'S^*)/(3R^*,2'R^*) =$ = 96.8:3.2. Спектр ЯМР⁻¹Н (500 МГц, ДМСО-*d*₆), б, м. д. $(J, \Gamma \mu)$: 0.99 (3H, μ , J = 6.8, CHCH₃); 3.37 (1H, c, OCH₃); 3.92 (1H, д. д, J = 10.9, J = 2.6, CH₂); 4.29 (1H, д. д, *J* = 11.0, *J* = 1.5, CH₂); 4.70 (1Н, к. д. д. *J* = 6.8, *J* = 2.7, J = 1.6, CHCH₃); 5.30 (1H, c, CHPh); 6.87 (1H, T. д, *J* = 9.9, *J* = 8.2, H-6); 7.32–7.43 (5H, м, H Ph); 7.71 (1H, д. д. д. J = 9.5, J = 5.5, J = 2.6, H-5). Спектр ЯМР ¹³С (126 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 14.4; 45.1; 56.5; 69.4; 81.9; 106.3 (д, J = 18.1); 118.9 (д. д, J = 7.8, J = 4.3); 121.0; 126.6; 127.7; 127.9; 135.7; 135.9 (д. д. J = 12.8, J = 9.7); 138.6 (д. д. J = 244.0, J = 15.3); 146.5 (д. д. J = 242.7, J = 9.9; 167.4. Спектр ЯМР ¹⁹F (470 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 2.0 (д. д. д, *J* = 21.0, *J* = 8.2, *J* = 2.5, F-8); 20.8 (д. д. д. *J* = 21.0, *J* = 10.3, *J* = 5.5, F-7). Найдено, *m/z*: 356.1071 [M+Na]⁺. С₁₈H₁₇F₂NNaO₃. Вычислено, *m/z*: 356.1069.

(2S*)-1-((3R*)-3-Метил-2,3-дигидро-4H-1,4-бензоксазин-4-ил)-2-метокси-3-фенилпропан-1-он ((2S*,3R*)-3d). Выход 65 мг (42%) после перекристаллизации из смеси гексан-ЕtOAc, желтоватый кристаллический порошок, т. пл. 76-78 °С (гексан-ЕtOAc). ВЭЖХ (ReproSil 100 Si; гексан-*i*-PrOH, 60:1): т_{(3*R**,2'5*)-3d} 6.8 мин, т_{(3*R**,2'*R**)-3d} 6.1 мин; $(3R^*, 2'S^*)/(3R^*, 2'R^*) = 99.5:0.5$. Cnextp SMP ¹H (500 MFu, ДМСО- d_6), δ , м. д. (J, Γ ц): 1.12 (3H, д, J = 6.8, CHCH₃); 3.02 (1H, μ , J = 14.0, J = 7.2, CH₂Ph); 3.09 (1H, μ , $J = 14.0, J = 6.4, CH_2Ph$); 3.19 (3H, c, OCH₃); 3.81 (1H, д. д. *J* = 11.0, *J* = 2.7, CH₂); 4.10 (1H, д. д, *J* = 11.0, *J* = 1.3, CH₂); 4.55–4.65 (2H, м, CHCH₃, CHBn); 6.80–6.87 (2H, м, H-6,8); 7.02 (1Н, т. д, J = 7.7, J = 1.2, H-7); 7.17–7.30 (5H, м, H Ph); 7.56–7.61 (1H, м, H-5). Спектр ЯМР ¹³С (126 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 15.4; 37.2; 46.0; 55.8; 69.0; 78.7; 116.5; 120.0; 122.9; 124.8; 125.4; 126.5; 128.3; 129.5; 137.1; 145.5; 168.9. Найдено, %: С 73.09; Н 6.98; N 4.31. C₁₉H₂₁NO₃. Вычислено, %: С 73.29; Н 6.80; N 4.50.

(2*S**)-1-((3*R**)-3-Метил-7,8-дифтор-2,3-дигидро-4*H*-1,4-бензоксазин-4-ил)-2-метокси-3-фенилпропан-1-он ((2*S**,3*R**)-4d). Выход 111 мг (64%) после перекристаллизации из смеси гексан–ЕtOAc, бесцветный кристаллический порошок, т. пл. 72-74 °С (гексан-EtOAc). ВЭЖХ (ReproSil 100 Si; гексан-*i*-PrOH, 60:1): т_{(3R*.2'S*)-4d} 8.3 мин, $\tau_{(3R^*,2'R^*)-4d}$ 7.5 мин; $(3R^*,2'S^*)/(3R^*,2'R^*) = 98.9:1.1.$ Спектр ЯМР ¹Н (500 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 1.15 (3H, д, J = 6.8, CHC<u>H</u>₃); 3.03 (1H, д. д, J = 14.0, *J* = 7.2, CH₂Ph); 3.08 (1H, д. д, *J* = 14.0, *J* = 6.4, CH₂Ph); 3.22 (3H, с, OCH₃); 3.85 (1H, д. д, *J* = 11.0, *J* = 2.7, CH₂); 4.27 (1H, д. д, *J* = 11.0, *J* = 1.4, CH₂); 4.59 (1H, т, *J* = 6.8, CHBn); 4.61–4.68 (1H, м, CHCH₃); 6.85 (1H, т. д, *J* = 9.8, J = 2.3, H-6); 7.18–7.30 (5H, м, H Ph); 7.50–7.58 (1H, м, H-5). Спектр ЯМР ¹³С (126 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 15.3; 36.9; 45.8; 55.7; 69.7; 78.6, 106.9 (д, *J* = 17.9); 119.4 (д. д. J = 7.5, J = 3.9); 120.9; 126.4; 128.2; 129.4; 136.0 (д. д. *J* = 9.8, *J* = 2.1); 137.0, 138.9 (д. д. *J* = 243.5, J = 15.4; 145.6–147.9 (м); 169.15. Спектр ЯМР ¹⁹F (470 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 2.1 (д. д. д. J = 21.0, J = 8.0, J = 1.7, F-8; 20.8–21.0 (M, F-7). Найдено, %: С 65.91; Н 5.77; F 10.92; N 3.86. С₁₉Н₁₉F₂NO₃. Вычислено, %: С 65.70; Н 5.51; F 10.94; N 4.03.

(2S*)-2-(Бензилокси)-1-((3R*)-3-метил-2,3-дигидро-4H-1,4-бензоксазин-4-ил])пропан-1-он ((2S*,3R*)-3e). Выход 86 мг (55%) после перекристаллизации из смеси гексан-ЕtOAc, бесцветный кристаллический порошок, т. пл. 77-80 °С (гексан-ЕtOAc). ГЖХ: т_{(3R*2'S*)-3e} 28.0 мин, $\tau_{(3R^*,2'R^*)-3e}$ 28.3 мин; $(3R^*,2'S^*)/(3R^*,2'R^*) = 97.4:2.6.$ Спектр ЯМР ¹Н (500 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 1.09 (3H, д, J = 6.8, CHCH₃); 1.40 (3H, д, J = 6.4, СНОС<u>Н</u>₃); 4.09 (1Н, д. д, *J* = 11.0, *J* = 2.6, CH₂); 4.18 (1Н, д. д, J = 11.0, J = 1.6, CH₂); 4.40 (1Н, д, J = 11.7, CH₂Ph); 4.44 (1H, π , J = 11.7, CH₂Ph); 4.64 (1H, κ , J = 6.4, CHOCH₃); 4.70 (1Н, к. д. д. J = 6.7, J = 2.8, J = 1.7. СНСН₃): 6.84–6.87 (2Н. м. Н-6.8): 7.03 (1Н. д. д. д. *J* = 8.3, *J* = 7.1, *J* = 1.4, H-7); 7.18–7.30 (5H, м, H Ph); 7.67 (1Н, д, J = 8.2, H-5). Спектр ЯМР ¹³С (126 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 14.8; 16.6; 44.7; 69.2; 69.7; 72.2; 115.8; 119.4; 123.2; 124.3; 124.9; 126.9; 127.1; 127.5; 137.4; 145.6; 169.2. Найдено, %: С 73.45; Н 6.80; N 4.61. С₁₉Н₂₁NO₃. Вычислено, %: С 73.29; Н 6.80; N 4.50.

(2S*)-2-Бензилокси-1-((3R*)-3-метил-7,8-дифтор-2,3-дигидро-4Н-1,4-бензоксазин-4-ил)пропан-1-он ((2S*,3R*)-4e). Выход 49 мг (28%) после перекристаллизации из смеси гексан-EtOAc, бесцветный кристаллический порошок. т. пл. 90-92 °С (гексан-ЕtOAc). ГЖХ: $\tau_{(3S,2R)-4e}$ 28.1 мин, $\tau_{(R,S)-4e}$ 28.5 мин; $(3R^*,2'S^*)/(3R^*,2'R^*) =$ = 98.5:1.5. Спектр ЯМР ¹Н (500 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 1.10 (3H, д, *J* = 6.8, CHC<u>H</u>₃); 1.40 (3H, д, *J* = 6.4, CHOC<u>H</u>₃); 4.16 (1H, μ , μ , J = 11.0, J = 2.8, CH₂); 4.33 (1H, μ , J, J = 11.0, J = 1.3, CH₂); 4.44 (1H, μ , J = 11.8, CH₂Ph); 4.47 (1H, π , J = 11.8, CH₂Ph); 4.62 (1H, κ , J = 6.4, С<u>Н</u>ОСН₃); 4.74 (1Н, к. д. д, J = 6.8, J = 2.8, J = 1.5, CHCH₃); 6.81–6.87 (1H, м, H-6); 7.23–7.31 (5H, м, H Ph); 7.56 (1H, д. д. д. J = 9.0, J = 5.8, J = 2.8, H-5). Спектр ЯМР ¹³С (126 МГц, ДМСО-*d*₆), δ, м. д. (*J*, Гц): 14.7; 16.3; 44.7; 69.7 (2С); 72.2; 106.2 (д, J = 18.2); 118.8 (д. д. *J* = 8.0, *J* = 4.2); 121.1; 126.9; 127.1; 127.5; 135.9 (д. д. *J* = 10.2, *J* = 3.3); 137.3; 138.6 (д. д, *J* = 244.1, *J* = 15.5); 146.5 (д. д. J = 242.5, J = 10.0); 169.4. Спектр ЯМР ¹⁹F (470 МГц, ДМСО-d₆), б, м. д. (J, Гц): 2.0 (д. д. д, J = 20.9, J = 8.1, J = 2.2, F-8); 20.7 (д. д. д. J = 20.7, *J* = 9.8, *J* = 5.3, F-7). Найдено, %: С 65.68; Н 5.61; F 11.05; N 4.07. С₁₉Н₁₉F₂NO₃. Вычислено, %: С 65.70; H 5.51; F 10.94; N 4.03.

Получение смесей (3*S*,2'*R*)- и (3*S*,2'*S*)-диастереомеров 3, 4 а–е (общая методика). К раствору 0.5 ммоль (*S*)-амина 1а или 1b и 75 мг (0.5 ммоль) PhNEt₂ в 10 мл CH₂Cl₂ при 20 °C добавляют раствор 0.5 ммоль соответствующего хлорангидрида в 5 мл CH₂Cl₂ и оставляют при 20 °C. Через 24 ч реакционную смесь промывают 4 н. раствором HCl (2×5 мл), насыщенным раствором NaCl (3×15 мл), 10 мл 5% раствора NaHCO₃ и H₂O (2×15 мл). Органический слой сушат над Na₂SO₄, упаривают при пониженном давлении. Остаток очищают флеш-хроматографией (элюент гексан–EtOAc, 95:5).

1-(3-Метил-2,3-дигидро-4Н-1,4-бензоксазин-4-ил)-2метоксипропан-1-он (За) (смесь диастереомеров). Выход 95 мг (81%), бесцветное масло. ВЭЖХ (ReproSil 100 Si; гексан-*i*-PrOH, 20:1): т_{(35,2'R)-за} 8.5 мин, т_{(35,2'S)-за} 6.5 мин; (3S,2'R)/(3S,2'S) = 50.5:49.5. Спектр ЯМР ¹H (500 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 1.13 (1.5H, д, *J* = 6.8, CHCH₃ (S,S); 1.15 (1.5H, μ , J = 6.8, CHCH₃ (S,R)); 1.26 (1.5H, μ , J = 6.4, CHOCH₃ (S,S)); 1.33 (1.5H, μ , J = 6.4, CHOCH₃ (S,R); 3.20 (1.5H, c, OCH₃ (S,R)); 3.31 (1.5H, c, OCH₃ (S,S)); 4.08–4.13 (1Н, м, CH₂ (S,R) и (S,S)); 4.20–4.22 (1H, м, CH₂ (*S*,*R*) и (*S*,*S*)); 4.41 (1H, м, CHOCH₃ (*S*,*R*) и (S,S)); 4.63–4.68 (1Н, м, СНСН₃ (S,R)); 4.77 (0.5Н, к. д. д, J = 6.8, J = 2.9, J = 1.7, CHCH₃ (S,S)); 6.84–6.89 (2H, м, Н-6,8 (S,R) и (S,S)); 7.01-7.05 (1Н, м, Н-7 (S,R) и (S,S)); 7.70–7.71 (1H, м, H-5 (S,R) и (S,S)). Найдено, %: С 66.38; Н 7.11; N 5.90. С₁₃Н₁₇NO₃. Вычислено, %: C 66.36; H 7.28; N 5.95.

1-(3-Метил-7,8-дифтор-2,3-дигидро-4*H*-1,4-бензоксазин-4-ил)-2-метоксипропан-1-он (4а) (смесь диастереомеров). Выход 103 мг (76%), желтоватое масло. ВЭЖХ (ReproSil 100 Si; гексан-*i*-PrOH, 40:1): т_{(352'R)-4a} 17.9 мин, $\tau_{(3S,2'S)-4a}$ 12.8 мин; (3S,2'R)/(3S,2'S) = 52.3:47.7. Спектр ЯМР⁻¹Н (500 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 1.16 (1.5H, д. д, *J* = 6.9, *J* = 0.5, CHC<u>H</u>₃ (*S*,*S*)); 1.18 (1.5H, д. д, $J = 6.8, J = 0.5, CHCH_3(S,R)$; 1.29 (1.5H, J, J = 6.5, J = 0.5, J = 0.5СНСН₃ (S,S)); 1.29 (1.5H, д, J = 6.5, СНСН₃ (S,R)); 3.23 (1.5H, c, OCH₃ (S,R)); 3.30 (1.5H, c, OCH₃ (S,S)); 4.16 $(0.5H, A. A. A. J = 10.0, J = 2.8, J = 0.6, CH_2(S,S)); 4.19$ $(0.5H, \mu, \mu, J = 11.2, J = 2.9, J = 0.5, CH_2(S,R)); 4.35-$ 4.44 (2H, м, CH₂ (*S*,*R*) и (*S*,*S*)); 4.69 (0.5H, к. д. д, *J* = 6.8, $J = 2.8, J = 1.6, CHOCH_3$ (S,R)); 4.82 (0.5H, к. д. д. $J = 6.8, J = 2.9, J = 1.6, CHOCH_3(S,S)$; 6.85 (0.5H, д. д. д, *J* = 10.2, *J* = 8.2, *J* = 6.5, H-6 (*S*,*R*)); 6.88 (0.5H, д. д. д. J = 10.2, J = 8.2, J = 6.5, H-6 (S,S); 7.56 (0.5H, д. д. д. J = 9.5, J = 5.5, J = 2.6, H-5 (S,S)); 7.62 (0.5H, д. д. д. J = 9.5, J = 5.5, J = 2.6, H-5 (S,R)). Спектр ЯМР ¹⁹F (470 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 1.9 (0.5F, д. д. д, J = 21.0, J = 8.2, J = 2.5, F-8 (S,S)); 2.0 (0.5F, д. д. д. J = 21.0, J = 8.1, J = 2.4, F-8 (S,R); 20.5 (0.5F, д. д. д. J = 20.8, J = 10.2, J = 5.4, F-7 (S,R); 20.7–21.0 (0.5F, M, F-7 (S,S)). Найдено, %: С 57.67; Н 5.80; F 13.88; N 5.22. С₁₃Н₁₅F₂NO₃. Вычислено, %: С 57.56; Н 5.57; F 14.01; N 5.16.

1-(3-Метил-2,3-дигидро-4*H*-1,4-бензоксазин-4-ил)-3-метил-2-метоксибутан-1-он (3b) (смесь диастереомеров). Выход 84 мг (64%), желтоватое масло. ВЭЖХ (Phenomenex Luna C 18(2); 50% MeCN): т_{(352'R)-3b} 17.5 мин, $\tau_{(3S,2'S)-3b}$ 16.7 мин; (3S,2'R)/(3S,2'S) = 53.5:46.5. Спектр ЯМР ¹Н (500 МГц, ДМСО-*d*₆), δ, м. д. (*J*, Гц): 0.83 $(1.38H, д, J = 6.8, CH(CH_3)_2$ (S,S)); 0.91 (1.38H, д, J = 6.7, CH(C<u>H</u>₃)₂ (S,S)); 0.95 (1.62H, д, J = 6.8 CH(C<u>H</u>₃)₂ (S,R); 0.99 (1.62H, μ , J = 6.6, $CH(CH_3)_2$ (S,R); 1.13 $(1.38H, \mu, J = 6.8, CHCH_3(S,S)); 1.15(1.62H, \mu, J = 6.8)$ СНС<u>Н</u>₃ (*S*,*R*)); 1.96–2.11 (1Н, м, С<u>Н</u>(СН₃)₂); 3.23 (1.5Н, c, OCH₃, (S,R)); 3.34 (1.38H, c, OCH₃, (S,S)); 3.92 (0.54H, д, J = 7.8, CHCH(CH₃)₂ (S,R)); 4.03 (0.46H, д, J = 7.4, СНСН(СН₃)₂ (S,S)); 4.06 (0.46H, д. д. J = 11.2, J = 3.2,CH₂ (S,S); 4.09 (0.54H, д. д. J = 11.0; J = 2.9, CH₂ (S,R)); 4.22 (0.46H, д. д, J = 11.0, J = 1.7, CH₂ (S,S)); 4.24 (0.54H, д. д. J = 11.0, J = 1.7, CH₂ (S,R)); 4.80–4.84 (1H, м, СНСН3); 6.86-6.89 (2Н, м, Н-6,8); 7.02-7.06 (1Н, м, Н-7); 7.61-7.62 (0.46Н, м, Н-5 (S,S)) 7.79-7.81 (0.54Н, м, Н-5 (S,R)). Найдено, %: С 68.43; Н 8.10; N 5.26. С₁₅H₂₁NO₃. Вычислено, %: С 68.42; Н 8.04; N 5.32.

1-(3-Метил-7,8-дифтор-2,3-дигидро-4H-1,4-бензоксазин-4-ил)-3-метил-2-метоксибутан-1-он (4b) (смесь диастереомеров). Выход 105 мг (70%), желтоватое масло. ВЭЖХ (ReproSil 100 Si; гексан-*i*-PrOH, 40:1): $\tau_{(3S,2'R)-4b}$ 4.2 мин, $\tau_{(3S,2'S)-4b}$ 4.7 мин; (3S,2'R)/(3S,2'S) == 58.7:41.3. Спектр ЯМР ¹Н (400 МГц, ДМСО-*d*₆), δ, м. д. $(J, \Gamma \mu): 0.85 (1.23 \text{ H}, \pi, J = 6.7, \text{ CH}(\text{CH}_3)_2 (S,S)); 0.93$ $(1.23H, д, J = 6.7, CH(CH_3)_2$ (*S*,*S*)); 0.94 (1.77H, д, J = 6.8, $CH(CH_3)_2(S,R)$; 0.99 (1.77H, д, J = 6.7, $CH(CH_3)_2(S,R)$); 1.15–1.18 (3Н, м, СНСН₃ (*S*,*R*) и (*S*,*S*)); 1.97–2.11 (1Н, м, CHi-Pr (S,R) и (S,S)); 2.61 (1.77H, с, OCH₃ (S,R)); 2.66 (1.23H, с, OCH₃ (*S*,*S*)); 3.90 (0.59H, д, *J* = 7.8, C<u>H</u>(CH₃)₂ (S,R); 3.99 (0.41H, π , J = 7.4, CH(CH₃)₂ (S,S)); 4.10–4.18 (2H, м, CH₂ (*S*,*R*) и (*S*,*S*)); 4.39 (0.41H, д. д. *J* = 11.0, J = 1.5, CH₂ (S,S)); 4.40 (0.59H, д. д. J = 11.1, J = 1.4, CH₂ (S,R)); 4.84–4.92 (1H, м, CHCH₃ (S,R) и (S,S)); 6.84– 6.91 (1H, м, H-6 (S,R) и (S,S)); 7.50 (0.41H, д. д. д. J = 9.3, J = 5.5, J = 2.6, H-5 (S,S)); 7.71 (0.59H, д. д. д. J = 9.5, J = 5.5, J = 2.6, H-5 (S,R)). Спектр ЯМР ¹⁹F (376 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 2.03 (0.59F, д. д. д. *J* = 21.0, *J* = 8.7, *J* = 2.2, F-8 (*S*,*R*)); 2.05–2.15 (0.41F, м, F-8 (*S*,*S*)); 20.8 (0.59F, д. д. д, *J* = 20.9, *J* = 10.1, *J* = 5.4, F-7 (S,R)); 20.9–21.0 (0.41F, м, F-7 (S,S)). Найдено, %: С 60.14; Н 6.63; F 12.95; N 4.64. С₁₅Н₁₉F₂NO₃. Вычислено, %: С 60.19; Н 6.40; F 12.69; N 4.68.

1-(3-Метил-2,3-дигидро-4H-1,4-бензоксазин-4-ил)-2-метокси-2-фенилэтанон (3c) (смесь диастереомеров). Выход 123 мг (83%), бесцветное масло. ВЭЖХ (ReproSil 100 Si; гексан-*i*-PrOH, 100:1): $\tau_{(3S,2R),3c}$ 6.1 мин, $\tau_{(3S,2S),3c}$ 7.0 мин; (3S,2'R)/(3S,2'S) = 50.2:49.8. Спектр ЯМР ¹H (500 МГц, ДМСО- d_6), δ , м. д. (J, Гц): 0.93 (1.5H, д, J = 6.8, CHC<u>H</u>₃ (S,S)); 0.98 (1.5H, д, J = 6.8, CHC<u>H</u>₃ (S,R)); 3.35 (1.5H, с, OCH₃ (S,R)); 3.41 (1.5H, с, OCH₃ (S,S)); 3.75 (0.5H, д. д, J = 10.9, J = 2.9, CH₂ (S,S)); 3.86 (0.5H, д. д, J = 11.0, J = 2.5, CH₂ (S,R)); 4.03 (0.5H, д. д, J = 10.9, J = 1.6, CH₂ (S,R)); 4.12 (0.5H, д. д, J = 10.9, J = 1.6, CH₂ (S,R)); 4.62–4.68 (1H, м, C<u>H</u>CH₃ (S,R) и (S,S)); 5.29 (0.5H, с, C<u>H</u>Ph (S,R)); 5.39 (0.5H, с, C<u>H</u>Ph (S,S)); 6.80–6.90 (2H, м, H Ph); 7.01–7.05 (1H, м, H Ph); 7.28–7.35 (5H, м, H Ph); 7.37–7.41 (1H, м, H Ph); 7.69 (0.5H, д. д, J = 1.4, H-5 (*S*,*S*)); 7.81–7.83 (0.5H, м, H-5 (*S*,*R*)). Найдено, %: С 72.53; Н 6.69; N 4.71. С₁₈Н₁₉NO₃. Вычислено, %: С 72.71; Н 6.44; N 4.71.

1-(3-Метил-7,8-дифтор-2,3-дигидро-4H-1,4-бензоксазин-4-ил)-2-метокси-2-фенилэтанон (4с) (смесь диастереомеров). Выход 162 мг (97%), бесцветное масло. ВЭЖХ (ReproSil 100 Si; гексан-*i*-PrOH, 100:1): $\tau_{(3S,2'R)-4c}$ 7.1 мин, $\tau_{(3S,2'S)-4c}$ 8.3 мин; (3S,2'R)/(3S,2'S) == 50.1:49.9. Спектр ЯМР⁻¹Н (500 МГц, ДМСО-*d*₆), δ, м. д. $(J, \Gamma \mu)$: 0.91 (1.5H, μ , J = 6.8, CHCH₃ (S,S)); 0.99 (1.5H, д, J = 6.9, CHCH₃ (S,R)); 3.37 (1.5H, с, OCH₃ (S,R)); 3.40 $(1.5H, c, OCH_3 (S,S)); 3.85 (0.5H, д. д, J = 11.0, J = 2.7)$ CH₂ (*S*,*S*)); 3.92 (0.5H, д. д, *J* = 11.0, *J* = 2.8, CH₂ (*S*,*R*)); 4.21 (0.5H, д. д, *J* = 11.0, *J* = 1.4, CH₂ (*S*,*S*)); 4.29 (0.5H, д. д. J = 11.0; J = 1.5, CH₂ (S,R)); 4.67–4.72 (1H, м, СНС<u>Н</u>₃ (S,R) и (S,S)); 5.30 (0.5H, c, CHPh (S,R)); 5.37 (0.5Н, м, СНРһ (S,S)); 6.84-6.91 (1Н, м, Н-6 (S,R) и (S,S)); 7.30–7.43 (5H, м, H Ph); 7.56 (0.5H, д. д. д. J = 9.4, *J* = 5.5, *J* = 2.5, H-5 (*S*,*S*)); 7.71 (0.5H, д. д. д, *J* = 9.5, J = 5.5, J = 2.6, H-5 (S,R)). Спектр ЯМР ¹⁹F (470 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 1.9–2.0 (1F, м, F-8); 20.8 (0.5F, д. д. д. J = 21.2, J = 10.0, J = 5.4, F-7 (S,R)); 21.0-21.1 (0.5F, м, F-7 (S,S)). Найдено, %: С 64.58; Н 5.18; F 11.25; N 4.19. С₁₈Н₁₇F₂NO₃. Вычислено, %: С 64.86; H 5.14; F 11.40; N 4.20.

1-(3-Метил-2,3-дигидро-4Н-1,4-бензоксазин-4-ил)-2-метокси-3-фенилпропан-1-он (3d) (смесь диастереомеров). Выход 112 мг (72%), бесцветное масло. ВЭЖХ (ReproSil 100 Si; гексан-*i*-PrOH, 60:1): т_{(3S 2'R)-3d} 6.7 мин, $\tau_{(3S,2'S)-3d}$ 5.9 мин; (3S,2'R)/(3S,2'S) = 49.3:50.7. Спектр ЯМР¹Н (500 МГц, ДМСО-*d*₆), δ, м. д. (*J*, Гц): 1.00 $(1.5H, J, J = 6.8, CHCH_3 (S,S)); 1.12 (1.5H, J, J = 6.8)$ СНС<u>Н</u>₃ (*S*,*R*)); 2.97 (0.5H, д. д, J = 13.6, J = 6.8, CH₂Ph (S,S), перекрывается с сигналом CH₂Ph (S,S); 3.00 (0.5H, д. д. J = 13.6, J = 6.6, CH₂Ph (S,R), перекрываетсяс сигналами CH₂Ph (S,S) и CH₂Ph (S,R)); 3.02 (0.5H, д. д. $J = 14.0, J = 7.2, CH_2Ph(S,R)$; 3.09 (0.5H, д. д. J = 14.0, JJ = 6.4, CH₂Ph (S,R)); 3.19 (1.5H, c, OCH₃ (S,R)); 3.35 (1.5H, с, ОСН₃ (*S*,*S*)); 3.71–3.78 (0.5H, м, СН₂ (*S*,*S*)); 3.81 $(0.5H, \mu, J, J = 11.0, J = 2.9, CH_2(S,R)); 4.09 (0.5H, \mu, J, J)$ $J = 10.9, J = 1.6, CH_2$ (*S*,*S*)); 4.10 (0.5H, д. д, J = 11.0, J = 1.7, CH₂ (R,S)); 4.56–4.64 (1.5H, м, CHBn (S,R) и *(S,S)*; СНСН₃ *(S,R)*); 4.72 (0.5Н, к. д. д. *J* = 6.8, *J* = 3.0, J = 1.6, CHBn (S,S)); 6.80–6.90 (2H, м, H Ph); 6.99–7.30 (5H, м, H Ph); 7.50–7.62 (1H, м, H-5 (*S*,*R*) и (*S*,*S*)). Найдено, %: С 73.30; Н 6.98; N 4.63. С₁₉Н₂₁NO₃. Вычислено, %: С 73.29; Н 6.80; N 4.50.

1-(3-Метил-7,8-дифтор-2,3-дигидро-4*H***-1,4-бензоксазин-4-ил)-2-метокси-3-фенилпропан-1-он** (4d) (смесь диастереомеров). Выход 111 мг (64%), бесцветное масло. ВЭЖХ (ReproSil 100 Si; гексан-*i*-PrOH, 60:1): $\tau_{(3S,2'R)-4d}$ 8.1 мин, $\tau_{(3S,2'S)-4d}$ 7.3 мин; (3S,2'R)/(3S,2'S) == 51.3:48.7. Спектр ЯМР ¹H (500 МГц, ДМСО- d_6), δ , м. д. (*J*, Гц): 1.02 (1.44H, д, *J* = 6.9, СНС<u>Н</u>₃ (*S*,*S*)); 1.15 (1.56H, д, *J* = 6.8, СНС<u>Н</u>₃ (*S*,*R*)); 2.95–3.11 (2H, м, СН₂Ph (*S*,*R*) и (*S*,*S*)); 3.26 (1.56H, с, ОСН₃ (*S*,*R*)); 3.34 (1.44H, с, ОСН₃ (*S*,*S*)); 3.81–3.89 (1H, м, СН₂ (*S*,*R*) и (*S*,*S*)); 4.27 (1H, д. д, *J* = 11.0, *J* = 1.3, СН₂ (*S*,*R*) и (*S*,*S*)); 4.59 (0.52H, т, *J* = 6.7, СНВп (*S*,*R*), перекрывается с сигналом СНВп (S,S); 4.60 (0.48H, т, J = 6.6, СНВп (S,R), перекрывается с сигналами СНВп (S,S) и С<u>Н</u>СН₃ (S,R)); 4.61–4.68 (0.52H, м, С<u>Н</u>СН₃ (S,R)); 4.78 (0.48H, к. д. д. J = 6.7, J = 2.9, J = 1.4, СНВп (S,S)); 6.81–6.91 (1H, м, 6-H); 7.12–7.31 (5H, м, H Ph); 7.38–7.44 (0.48H, м, H-5 (S,S)) 7.50–7.58 (0.52H, м, H-5 (S,R)). Спектр ЯМР ¹⁹F (470 МГц, ДМСО- d_6), δ , м. д. $(J, \Gamma$ ц): 2.0–2.1 (0.52F, м, F-8 (S,R)); 2.1–2.2 (0.48F, м, F-8 (S,S)); 20.8–21.0 (0.52F, м, F-7 (S,R)); 21.0–21.2 (0.48F, м, F-7 (S,S)). Найдено, %: С 65.48; H 5.72; F 10.99; N 4.23. С₁₉H₁₉F₂NO₃. Вычислено, %: С 65.70; H 5.51; F 10.94; N 4.03.

2-Бензилокси-1-(3-метил-2,3-дигидро-4H-1,4-бензоксазин-4-ил)пропан-1-он (Зе) (смесь диастереомеров). Выход 72 мг (46%), желтый аморфный порошок. ГЖХ: $\tau_{(3S,2'R)-3e}$ 28.0 мин, $\tau_{(3S,2'S)-3e}$ 28.3 мин; (3S,2'R)/(3S,2'S) == 79.2:20.8. Спектр ЯМР ¹Н (500 МГц, ДМСО-*d*₆), б, м. д. (J, Γ ц): 1.09 (2.25H, π , J = 6.6, CHCH₃ (S,R)); 1.10 $(0.75H, \mu, J = 6.6, CHCH_3(S,S)); 1.34 (0.75H, \mu, J = 6.5)$ CHOCH₃ (S,S); 1.40 (2.25H, μ , J = 6.4, CHOCH₃ (S,R)); 4.06 (0.25H, J_{10} , J_{10} = 10.9, J_{10} = 2.9, CH₂ (S,S)); 4.09 (0.75Н, д. д, J = 11.0, J = 2.9, CH₂ (S,R)); 4.17 (0.25Н, д. д, J = 10.9; J = 1.6, CH₂ (S,S), перекрывается с сигналом $CH_2(S,R)$; 4.18 (0.75H, д. д. $J = 11.0, J = 1.6, CH_2(S,R)$); 4.39 (0.75H, д, J = 11.7, CH₂Ph (S,R)); 4.44 (0.75H, д, J = 11.7, CH₂Ph (S,R)); 4.54 (0.25H, д, J = 11.7, CH₂Ph (*S*,*S*)); 4.58 (0.25H, д, *J* = 11.7, CH₂Ph (*S*,*S*)); 4.63 (0.75H, к, J = 6.4, <u>CHOCH</u>₃ (*S*,*R*), перекрывается с сигналом CHOCH₃ (S,S); 4.66 (0.25H, κ , J = 6.5, CHOCH₃ (S,S)); 4.69 (0.75H, к. д. д, *J* = 6.7, *J* = 2.5, *J* = 1.7, С<u>Н</u>СН₃ (*S*,*R*), перекрывается с сигналом CHCH₃ (S,S); 4.74 (0.25H, к. д. д, J = 6.7, J = 2.7, J = 1.7, CHCH₃ (S,S)); 6.81–6.87 (2Н, м, Н-6,8); 7.01-7.05 (1Н, м, Н-7); 7.23-7.35 (5Н, м, H Ph); 7.63 (0.25H, μ , J = 8.4, H-5 (S,S)); 7.67 (0.75H, μ , J = 8.1, H-5 (S,R)). Найдено, %: С 73.44; Н 7.08; N 4.31. С₁₉Н₂₁NO₃. Вычислено, %: С 73.29; Н 6.80; N 4.50.

2-Бензилокси-1-(3-метил-7,8-дифтор-2,3-дигидро-4Н-1,4-бензоксазин-4-ил)пропан-1-он (4е) (смесь диастереомеров). Выход 135 мг (78%), желтый аморфный порошок. ГЖХ: т_{(35,2'R)-4e} 28.1 мин, т_{(35,2'S)-4e} 28.5 мин; (3S,2'R)/(3S,2'S) = 58.3:41.7. Спектр ЯМР ¹Н (500 МГц, ДМСО- d_6), δ , м. д. (J, Гц): 1.10 (1.56H, д. J = 6.8, CHCH₃ (S,R); 1.12 (1.44H, π , J = 6.8, CHCH₃ (S,S); 1.37 $(1.44H, \mu, J = 6.5, CHOCH_3(S,S)); 1.40(1.56H, \mu, J = 6.4)$ CHOCH₃ (S,R); 4.12 (0.48H, д. д, $J = 11.0, J = 2.9, CH_2$ (S,S); 4.16 (0.52H, д. д, $J = 11.0, J = 2.9, CH_2(S,R)$); 4.327 (0.52H, д. д. J = 11.0, J = 1.6, CH₂ (S,R), перекрывается с сигналом CH₂ (S,S)); 4.330 (0.48H, д. д. $J = 11.0, J = 2.0, CH_2(S,S)$; 4.44 (1H, $\pi, J = 11.8, CH_2Ph$ *(S,R)* и *(S,S)*); 4.47 (1H, д, *J* = 11.8, CH₂Ph *(S,R)* и *(S,S)*); 4.62 (1H, κ , J = 6.4, C<u>H</u>OCH₃ (S,R) и (S,S)); 4.73 (0.52H, к. д. д. J = 6.8, J = 2.8, J = 1.5, CHCH₃ (S,R)); 4.79 (0.48H, к. д. д. J = 6.8, J = 2.8, J = 1.5, CHCH₃ (S,S));6.81-6.87 (1Н, м, Н-6); 7.23-7.35 (5Н, м, Н Рh); 7.53 (0.48Н, д. д. д. J = 9.3, J = 5.4, J = 2.5, Н-5 (S,S)); 7.56 (0.52H, д. д. д. J = 9.0, J = 5.3, J = 2.6, H-5 (S,R)). Спектр ЯМР ¹⁹F (470 МГц, ДМСО-*d*₆), б, м. д. (*J*, Гц): 1.9 (0.52F, д. д. д. J = 21.0, J = 8.3, J = 2.3, F-8 (S,R)); 2.0 (0.48F, A. A. A. J = 21.7, J = 8.6, J = 1.7, F-8 (S,S)); 20.7

(0.52F, д. д. д, J = 20.8, J = 10.1, J = 5.4, F-7 (*S*,*R*)); 20.8 (0.48F, д. д. д, J = 20.6, J = 10.0, J = 5.5, F-7 (*S*,*S*)). Найдено, %: С 65.74; H 5.64; F 10.98; N 4.06. С₁₉H₁₉F₂NO₃. Вычислено, %: С 65.70; H 5.51; F 10.94; N 4.03.

Дериватизация рацемических кислот 5а,b (общая методика). К раствору 1 ммоль рацемической 2-метоксикислоты 5а или 5b в 3 мл ДМФА при перемешивании добавляют 0.17 мл (1.5 ммоль) NMM, 0.13 мл (1 ммоль) (R)-1-фенилэтиламина, 200 мг (1.5 ммоль) HOBt и 290 мг (1.5 ммоль) EDC·HCl. Реакционную смесь перемешивают до растворения реагентов и выдерживают при комнатной температуре в течение 48 ч. К реакционной смеси добавляют 20 мл EtOAc, промывают 1 н. HCl (3×15 мл), насыщенным раствором NaCl (3×20 мл), 1 н. NaOH (2×15 мл), насыщенным раствором NaCl (3×20 мл), сушат над Na₂SO₄, упаривают. Диастереомерный состав синтезированных амидов определяют методом ВЭЖХ на силикагеле. Диастереомерные амиды выделяют с помощью колоночной флеш-хроматографии.

(2S)-2-Метокси-*N*-((1*R*)-1-фенилэтил)пропанамид (6a) (смесь диастереомеров).²¹ Выход 153 мг (74%) после флеш-хроматографии (элюент гексан–EtOAc, градиент от 4:1 до 3:2), белый аморфный порошок. ВЭЖХ (ReproSil 100 Si; гексан–*i*-PrOH, 40:1): $\tau_{(1R,2'S)-6a}$ 8.8 мин, $\tau_{(1R,2'R)-6a}$ 7.5 мин; (1R,2'S)/(1R,2'R) = 46.7:53.3.

(2*R*)-3-Метил-2-метокси-*N*-((1*R*)-1-фенилэтил)бутанамид ((1*R*,2'*R*)-6b). Выход 61 мг (26%) после флешхроматографии (элюент гексан–ЕtOAc, 98:2), бесцветный кристаллический порошок, т. пл. 73–76 °С. ВЭЖХ (ReproSil 100 Si; гексан–*i*-PrOH, 40:1): $\tau_{(1R,2'S)-6b}$ 4.2 мин, $\tau_{(1R,2'R)-6b}$ 4.7 мин; (1*R*,2'*S*)/(1*R*,2'*R*) = 1.4:98.6. $[\alpha]_D^{20}$ +125 (*c* 0.9, CHCl₃). Спектр ЯМР ¹H (500 МГц, ДМСО-*d*₆), δ , м. д. (*J*, Гц): 0.92 (3H, д, *J* = 6.9, CH(C<u>H</u>₃)₂); 1.01 (3H, д, *J* = 6.9, CH(C<u>H</u>₃)₂); 1.51 (3H, д, *J* = 6.9, NHCHC<u>H</u>₃); 2.07–2.16 (1H, м, С<u>H</u>(CH₃)₂); 3.34 (3H, с, OCH₃); 3.41 (1H, д, *J* = 4.0, C<u>H</u>OCH₃); 5.18 (1H, д. к, *J* = 7.1, *J* = 6.9, NHC<u>H</u>CH₃); 6.73 (1H, д, *J* = 7.1, N<u>H</u>CHCH₃); 7.26–7.29 (1H, м, H Ph); 7.32–7.37 (4H, м, H Ph). Найдено, %: С 71.20; H 9.14; N 5.82. C₁₄H₂₁NO₂. Вычислено, %: C 71.46; H 8.99; N 5.95.

((2S)-3-Метил-2-метокси-*N*-((1*R*)-1-фенилэтил)бутанамид ((1*R*,2'S)-6b). Выход 73 мг (31%) после флешхроматографии (элюент гексан–ЕtOAc, 98:2), бесцветный кристаллический порошок, т. пл. 90–91 °С. ВЭЖХ (ReproSil 100 Si; гексан–*i*-PrOH, 40:1): $\tau_{(1R,2'S)-6b}$ 4.2 мин, $\tau_{(1R,2'R)-6b}$ 4.7 мин; (1*R*,2'S)/(1*R*,2'*R*) = 99.7:0.3. [α]_D²⁰ +18.2 (*c* 1.3, CHCl₃). Спектр ЯМР ¹H (500 МГц, ДМСО-*d*₆), δ , м. д. (*J*, Гц): 0.81 (3H, д, *J* = 6.9, CH(C<u>H₃)₂</u>); 0.95 (3H, д, *J* = 6.9, CH(C<u>H₃)₂</u>); 1.52 (3H, д, *J* = 6.9, NHCHC<u>H₃</u>); 2.01–2.10 (1H, м. С<u>H</u>(CH₃)₂); 3.41–3.43 (4H, м, OCH₃ и C<u>H</u>OCH₃); 5.14–5.20 (1H, м, NHC<u>H</u>CH₃); 6.72 (1H, д, *J* = 6.6, N<u>H</u>CHCH₃); 7.24–7.27 (1H, м, H Ph); 7.30– 7.35 (4H, м, H Ph). Найдено, %: C 71.44; H 8.92; N 5.91. C₁₄H₂₁NO₂. Вычислено, %: C 71.46; H 8.99; N 5.95.

Кинетическое разделение хлорангидридов 2а-е (S)-аминами 1a,b (общая методика). К раствору 0.3 ммоль амина 1a или 1b и 44.8 мг (0.3 ммоль) PhNEt₂ в 4 мл PhMe при 20 °C добавляют раствор 0.6 ммоль соответствующего хлорангидрида в 2 мл PhMe. Реак-

ционную смесь термостатируют при 20 °С в течение 24 ч. В случае КР хлорангидридов **2а,b** к реакционной смеси добавляют насыщенный раствор Na₂CO₃ и интенсивно перемешивают в течение 1 ч. В остальных случаях реакционную смесь упаривают, остаток растворяют в 10 мл MeCN и добавляют к раствору 10 мл насыщенного раствора Na₂CO₃. Смесь интенсивно перемешивают в течение 1 ч, затем концентрируют при пониженном давлении, экстрагируют CHCl₃ (2 × 5 мл). Органический слой промывают 4 н. раствором HCl (2 × 4 мл), насыщенным раствором NaCl (4 × 5 мл), H₂O (2 × 5 мл), сушат над Na₂SO₄ и упаривают. Соотношение диастереомерных амидов определяют с помощью ГЖХ.

Щелочные водные растворы подкисляют 4 н. HCl до pH 1–2 и экстрагируют CHCl₃ (2 × 5 мл). Органический слой промывают насыщенным раствором NaCl (2 × 5 мл), сушат над Na₂SO₄, упаривают. Полученные кислоты **5а**-е очищают флеш-хроматографией и анализируют методом ВЭЖХ. Кислоты **5а**, в предварительно дериватизируют (R)-1-фенилэтиламином, полученные диастереомерные амиды анализируют методом ВЭЖХ на силикагеле.

(2S)-2-Метоксипропионовая кислота ((S)-5a). Выход 15 мг (49%), желтоватое масло. Полученную кислоту дериватизируют (R)-1-фенилэтиламином по общей методике для кислот 5a,b. Пики диастереомерных амидов 6a относят на основании литературных данных.²¹ de (1R,2'S)-амида 6a 63%, ВЭЖХ (ReproSil 100 Si; гексан– *i*-PrOH, 40:1): $\tau_{(1R,2'S)-6a}$ 8.8 мин, $\tau_{(1R,2'R)-6a}$ 7.5 мин.

(2S)-3-Метил-2-метоксибутановая кислота ((S)-5b). Выход 7 мг (17%), желтоватое масло. Полученную кислоту дериватизируют (R)-1-фенилэтиламином по общей методике для кислот **5a,b**. *de* (1R,2'S)-амида **6b** 74%, ВЭЖХ (ReproSil 100 Si; гексан–*i*-PrOH, 40:1): $\tau_{(1R,2'S)-6b}$ 4.2 мин, $\tau_{(1R,2'R)-6b}$ 4.7 мин.

(2*S*)-2-Метокси-2-фенилуксусная кислота ((*S*)-5с). Выход 44 мг (89%), желтый аморфный порошок. *ее* 65%, ВЭЖХ (гексан–*i*-PrOH–CF₃COOH, 40:1:0.02): $\tau_{(S)-5c}$ 20.8 мин, $\tau_{(R)-5c}$ 18.8 мин. $[\alpha]_D^{20}$ +104 (*c* 1.0, EtOH) ($[\alpha]_D^{20}$ +146.0 (*c* 1.04, EtOH)²²). Спектр ЯМР ¹Н идентичен опубликованному ранее.³³ Найдено, *m/z*: 165.0555 [М–Н]⁻. С₉Н₉O₃. Вычислено, *m/z*: 165.0557.

(2S)-2-Метокси-3-фенилпропионовая кислота ((S)-5d). Выход 36 мг (67%), бесцветное масло. *ее* 67%, ВЭЖХ (гексан-*i*-PrOH-CF₃COOH, 40:1:0.02): $\tau_{(S)-5d}$ 20.4 мин, $\tau_{(R)-5d}$ 14.0 мин. [α]_D²⁰ -21.4 (*c* 0.5, Me₂CO) ([α]_D²⁰ -36.7 (*c* 0.6, Me₂CO) (*ee* 99.3%)³¹). Спектр ЯМР ¹Н идентичен опубликованному ранее.³¹ Найдено, *m/z*: 179.0715 [M–H]⁻. C₁₀H₁₁O₃. Вычислено, *m/z*: 179.0714.

(25)-(2-Бензилокси)пропионовая кислота ((5)-5е). Выход 20 мг (37%) после флеш-хроматографии (элюент PhH–EtOAc, 9:1), желтое масло, *ee* 63%, ВЭЖХ (гексан–*i*-PrOH–CF₃COOH, 20:1:0.02): $\tau_{(5)-5c}$ 7.1 мин, $\tau_{(R)-5c}$ 7.8 мин. [α]_D²⁰ –42.9 (*c* 2.4, PhH) ([α]_D²⁰ –74.2 (*c* 4.6, PhH)²⁴). Спектр ЯМР ¹Н идентичен опубликованному ранее.²⁴ Найдено, *m*/*z*: 179.0713 [М–Н]⁻. C₁₀H₁₁O₃. Вычислено, *m*/*z*: 179.0714.

Рентгеноструктурное исследование (*R*,*S***)-амида 6b** проведено на рентгеновском дифрактометре Xcalibur-3

(Oxford Diffraction) с CCD-детектором по стандартной процедуре (λ (MoKa) = 0.07107 нм, графитовый монохроматор, ω-сканирование). Для анализа использованы кристаллы, полученные испарением раствора амида в МеОН при комнатной температуре. Сбор и обработка данных осуществлены с использованием пакета программ CrysAlis.³⁴ Структуры соединений расшифрованы прямым методом по программе SHELXS-97 и уточнены с помощью программы SHELXL-97³⁵ в анизотропном (изотропном для атомов водорода) приближении. Положения атомов водорода частично рассчитаны и уточнены независимо, частично включены в уточнение по модели "наездник" с зависимыми тепловыми параметрами. Кристаллографические данные: размер кристалла 0.25 × 0.12 × 0.03 мм; бесцветные иглы; моноклинная сингония; пространственная группа P2₁; a 9.325(3), b 5.2567(7), c 14.973(4) Å; α 90, β 104.20(3), γ 90°; V 711.5(3) Å³; Z 2; d_{выч} 1.0983 г/см³; μ 0.073 мм⁻ $2.2770 < \theta < 20.5630$. Комплектность для $\theta \le 28.22^{\circ}$ 99.9%. Всего собрано 3867 отражений (2741 независимое, R_{int} 0.0616), 899 отражений с $I \ge 2\sigma(I)$. S по F^2 0.958786. Окончательные факторы расходимости $R_1(I > 2\sigma(I))$ 0.053388. R_1 0.213027 (все данные), wR_2 0.150363 (все данные). Данные РСА депонированы в Кембриджском банке структурных данных (депонент CCDC 1434293).

Работа выполнена при финансовой поддержке РНФ (грант 14-13-01077).

Авторы выражают благодарность к. х. н. И. Н. Ганебных за регистрацию масс-спектров высокого разрешения, к. х. н. М. Г. Первовой за проведение анализов ГЖХ и к. х. н. П. А. Слепухину за рентгеноструктурный анализ. В работе использовано оборудование центра коллективного пользования "Спектроскопия и анализ органических соединений" института органического синтеза им. И. Я. Постовского Уро РАН.

Список литературы

- 1. Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1988, 18, 249.
- Maddani, M. R.; Fiaud, J.-C.; Kagan, H. B. In Separation of Enantiomers: Synthetic Methods; Todd, M., Ed.; Wiley-VCH: Weinheim, 2014, p. 13.
- Müller, C. E.; Schreiner, P. R. Angew. Chem., Int. Ed. 2011, 50, 6012.
- Krasnov, V. P.; Gruzdev, D. A.; Levit, G. L. Eur. J. Org. Chem. 2012, 1471.
- Chiral Drugs: Chemistry and Biological Action; Lin, G.-Q.; You, Q.-D.; Cheng, J.-F., Eds.; John Wiley & Sons: Hoboken, New Jersey, 2011.
- Liu, W.; Tang, M. In *Herbicides Mechanisms and Mode of Action*; Hasaneen, M. N. A. E.-G., Ed.; InTech: Croatia, 2011, p. 63.
- Krasnov, V. P.; Levit, G. L.; Andreyeva, I. N.; Grishakov, A. N.; Charushin, V. N.; Chupakhin, O. N. *Mendeleev Commun.* 2002, *12*, 27.
- Chulakov, E. N.; Gruzdev, D. A.; Levit, G. L.; Sadretdinova, L. Sh.; Krasnov, V. P.; Charushin, V. N. *Russ. Chem. Bull., Int. Ed.* 2011, 60, 948. [*U36. AH, Cep. xum.* 2011, 926.]
- Chulakov, E. N.; Gruzdev, D. A.; Levit, G. L.; Kudryavtsev, K. V.; Krasnov, V. P. *Tetrahedron: Asymmetry* 2012, 23, 1683.

- Gruzdev, D. A.; Chulakov, E. N.; Levit, G. L.; Ezhikova, M. A.; Kodess, M. I.; Krasnov, V. P. *Tetrahedron: Asymmetry* 2013, 24, 1240.
- Gruzdev, D. A.; Levit, G. L.; Krasnov, V. P.; Chulakov, E. N.; Sadretdinova, L. Sh.; Grishakov, A. N.; Ezhikova, M. A.; Kodess, M. I.; Charushin, V. N. *Tetrahedron: Asymmetry* 2010, 21, 936.
- Levit, G. L.; Gruzdev, D. A.; Krasnov, V. P.; Chulakov, E. N.; Sadretdinova, L. Sh.; Ezhikova, M. A.; Kodess, M. I.; Charushin, V. N. *Tetrahedron: Asymmetry* **2011**, *22*, 185.
- 13. Gruzdev, D. A.; Levit, G. L.; Kodess, M. I.; Krasnov, V. P. *Chem. Heterocycl. Compd.* **2012**, *48*, 748. [Химия гетероцикл. соединений **2012**, 805.]
- 14. Gruzdev, D. A.; Levit, G. L.; Krasnov, V. P. Tetrahedron: Asymmetry 2012, 23, 1640.
- 15. Gruzdev, D. A.; Vakarov, S. A.; Levit, G. L.; Krasnov, V. P. Chem. Heterocycl. Compd. **2014**, 49, 1795. [Химия гетероцикл. соединений **2013**, 1936.]
- Vakarov, S. A.; Gruzdev, D. A.; Chulakov, E. N.; Sadretdinova, L. Sh.; Ezhikova, M. A.; Kodess, M. I.; Levit, G. L.; Krasnov, V. P. Chem. Heterocycl. Compd. 2014, 50, 838. [Химия гетероцикл. соединений 2014, 908.]
- Gruzdev, D. A.; Chulakov, E. N.; Sadretdinova, L. Sh.; Kodess, M. I.; Levit, G. L.; Krasnov, V. P. *Tetrahedron: Asymmetry* 2015, 26, 186.
- Vakarov, S. A.; Gruzdev, D. A.; Sadretdinova, L. Sh.; Chulakov, E. N.; Pervova, M. G.; Ezhikova, M. A.; Kodess, M. I.; Levit, G. L.; Krasnov, V. P. *Tetrahedron: Asymmetry* 2015, 26, 312.
- Vakarov, S. A.; Gruzdev, D. A.; Chulakov, E. N.; Sadretdinova, L. Sh.; Tumashov, A. A.; Pervova, M. G.; Ezhikova, M. A.; Kodess, M. I.; Levit, G. L.; Krasnov, V. P.; Charushin, V. N. *Tetrahedron: Asymmetry* **2016**, *27*, 1231.
- Brandt, J.; Jochum, C.; Ugi, I.; Jochum, P. *Tetrahedron* 1977, 33, 1353.
- D'Angeli, F.; Marchetti, P.; Bertolasi, V. J. Org. Chem. 1995, 60, 4013.
- Moreno-Dorado, F. J.; Guerra, F. M.; Ortega, M. J.; Zubia, E.; Massanet, G. M. *Tetrahedron: Asymmetry* 2003, 14, 503.
- Li, S.; Zhu, S.-F.; Xie, J.-H.; Song, S.; Zhang, C.-M.; Zhou, Q.-L. J. Am. Chem. Soc. 2010, 132, 1172.
- 24. Zhang, W.; Ma, Zh.-H.; Mei, D.; Li, Ch.-X.; Zhang, X.-L.; Li, Y.-X. *Tetrahedron* **2006**, *62*, 9966.
- Hayakawa, I.; Tanaka Y.; Hiramitsu, T. EU Patent 0047005 (A1); Chem. Abstr. 1982, 97, 55821b.
- Slepukhin, P. A.; Gruzdev, D. A.; Chulakov, E. N.; Levit, G. L.; Krasnov, V. P.; Charushin, V. N. Russ. Chem. Bull., Int. Ed. 2011, 60, 955. [*H36. AH, Cep. xum.* 2011, 932.]
- Arifkhodzhaev, Kh. A.; Sviridov, A. F.; Shashkov, A. S.; Chizhov, O. S.; Kochetkov, N. K. Bull. Acad. Sci. USSR, Div. Chem. Sci 1979, 26, 405. [*U36. AH CCCP, Cep. xum.* 1979, 438.]
- 28. Compere, E. L.; Shockravi, A., Jr. J. Org. Chem. 1978, 43, 2702.
- 29. Reeve, W.; Woods, C. W. J. Am. Chem. Soc. 1960, 82, 4062.
- Yoon, Y.-J.; Chun, M.-H.; Joo, J.-E.; Kim, Y.-H.; Oh, C.-Y.; Lee, K.-Y.; Lee, Y.-S.; Ham, W.-H. Arch. Pharm. Res. 2004, 27, 136.
- 31. Li, X.; Fekner, T.; Chan, M. K. Chem.-Asian J. 2010, 5, 1765.
- 32. Groger, D.; Syring, U.; Johne, S. Pharmazie 1975, 30, 440.
- 33. Aav, R.; Shmatova, E.; Reile, I.; Borissova, M.; Topic, F.; Rissanen, K. Org. Lett. 2013, 15, 3786.
- 34. Clark, R. C.; Reid, J. S. Acta Crystallogr., Sect. A: Found. Crystallogr. 1995, A51, 887.
- 35. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.