В. В. Липсон, С. М. Десенко^а, В. Д. Орлов^а, О. В. Шишкин⁶, М. Г. Широбокова, В. Н. Черненко, Л. И. Зиновьева^а

ЦИКЛОКОНДЕНСАЦИЯ З-АМИНО-1,2,4-ТРИАЗОЛОВ С ЭФИРАМИ ЗАМЕЩЕННЫХ КОРИЧНЫХ КИСЛОТ И АРОМАТИЧЕСКИМИ НЕПРЕДЕЛЬНЫМИ КЕТОНАМИ

Изучены реакции 3-амино-, 3,5-диамино- и 3-амино-5-трифторметил-1,2,4-триазола с эфирами замещенных коричных кислот и ароматическими непредельными кетонами; установлена направленность формирования тетрагидрооксопиримидинового цикла. Осуществлены гидролиз и гидразинолиз 7-фенил-4,5,6,7-тетрагидро-1,2,4-триазоло[1,5-*a*]пиримидин-5-она. Проведено рентгеноструктурное исследование изопропилиденгидразида 3-(5-амино-1,2,4-триазол-1-ил)-3-фенилпропионовой кислоты.

Ключевые слова: 3-амино-1,2,4-триазолы, арилиденметилкетоны, 7-фенил-4,5,6,7-тетрагидро-1,2,4-триазоло[1,5-*а*]пиримидин-5-он, эфиры коричных кислот, рентгеноструктурное исследование.

Циклоконденсация гетероциклических аминов с биэлектрофильными карбонильными соединениями является удобным методом формирования азолопиримидиновых систем [1, 2]. В настоящей работе исследовано взаимодействие 3-амино- (1), 3,5-диамино- (2) и 3-амино-5-трифторметил-1,2,4-триазола (3) с эфирами замещенных коричных кислот 4a-g, α -хлор-коричной кислотой (5) и ее метиловым эфиром (6). Для выяснения строения полученных продуктов (7–10) в качестве объектов сравнения из аминов 2 и 3 и непредельных кетонов 11a-c были синтезированы дигидроазолопиримидины 12a-c и 13a-c. Во всех случаях реакция осуществлялась кипячением эквимолярных количеств реагентов в диметилформамиде (2–5 ч). Сопоставление продолжительности процесса, определенной с помощью ТСХ для различных аминов, позволяет расположить последние по возрастанию активности в следующий ряд: 3<1<2.

При взаимодействии амина 1 с α-хлоркоричной кислотой 5 либо ее метиловым эфиром 6 имело место отщепление HCl и образование соединения 10. С коричной кислотой в этих условиях аминоазолы 1---3 во взаимодействие не вступали.

Частично гидрированные азолопиримидины под действием кислот способны претерпевать деструкцию до исходного аминоазола и непредельного карбонильного соединения [3], однако соединения **7**, **13с** при кипячении их спиртовых растворов с эквимолярным количеством HCl оставались неизменными. Нагревание или выдерживание при комнатной температуре дигидроазолопиримидина **13с** в спиртовых или водно-спиртовых растворах NaOH на воздухе приводило к образованию гетероароматического производного **14**. Соединение **7** в аналогичных условиях легко гидролизуется с образованием амина **1** и соли коричной кислоты, а его гидразинолиз приводит к соединению **15**, которое в условиях реакции подвергается дальнейшей деструкции.

1, 7 R = H; **2,** 8, **12** R = NH₂; **3,** 9, **13** R = CF₃. **4,** 7–9 **a** Ar = Ph, **b**–f Ar = C₆H₄R **b** R¹= Me-4, **c** R¹= OMe-4, **d** R¹= F-4, **e** R¹= Cl-4, **f** R¹= NO₂-3, **g** Ar = C₆H₃(OMe)₂-2,4; **5** X = H, **6** X = Me; **11–13 a** Ar = Ph, R² = Me, **b** Ar = C₆H₄OMe-4, R² = Me, **c** Ar = R² = Ph

Строение полученных соединений подтверждено результатами элементного анализа, данными спектров ИК и ЯМР ¹Н (табл. 1, 2). Соединения 7, 12с описаны ранее [4, 5]. Строение соединения 15 подтверждено также с помощью рентгеноструктурного анализа (РСА) полученного из него гидразона 16.

В ИК спектрах триазолопиримидинонов 7–10 присутствуют интенсивные полосы в области 1684–1720 и 1520–1596, а также широкая полоса в области 3450–3100 см⁻¹, характерные для циклических амидов; в спектрах дигидроазолопиримидинов 12, 13 имеется полоса $v_{C=C}$ в достаточно типичной для таких систем [4] области 1672–1695 см⁻¹ (табл. 1).

В соответствии с результатами предыдущих исследований реакций аминоазолов с эфирами непредельных кислот алифатического ряда [1] в изученной нами конденсации можно было ожидать образования из производных коричной кислоты как 5-, так и 7-оксопроизводных тетрагидротриазолопиримидинов, т. е. протекания реакции по пути A и B.

Таблица 1

					Про-	
Соеди- нение	Брутто- формула	<u>Найдено N, %</u> Вычислено N, %	Т. пл., °С*	ИК спектр (KBr), v, см ⁻¹	должи- тель- ность реак- ции, ч	Вы- ход, %
8a	$C_{11}H_{11}N_5O$	<u>29.8</u> 30.6	252–254	1700, 1580	2.0	63
8b	$C_{12}H_{13}N_5O$	<u>28.2</u> 28.8	235–237	1700, 1596	2.0	50
8c	$C_{12}H_{13}N_5O_2$	<u>26.5</u> 27.0	220-222	1700, 1590	1.5	67
8d	$C_{13}H_{15}N_5O_3$	<u>23.9</u> 24.2	219–221	1700, 1596	1.5	47
8e	$C_{11}H_{10}N_5FO$	<u>27.5</u> 28.3	259–261	1704, 1584	1.0	69
8f	C11H10N5ClO	<u>26.1</u> 26.6	258-260	1704, 1588	1.0	57
8g	$C_{11}H_{10}N_6O_3$	<u>29.9</u> 30.7	255–257	1708, 1560	1.5	45
9a	$C_{12}H_9N_4F_3O$	<u>19.2</u> 19.9	212–213	1720, 1544	3.5	48
9b	$C_{13}H_{11}N_4F_3O$	<u>18.3</u> 18.9	207–209	1720, 1544	4.0	42
9c	$C_{12}H_8N_4F_4O$	<u>18.1</u> 18.8	216–217	1720, 1544	4.5	54
10	$C_{11}H_8N_4O$	<u>25.9</u> 26.4	233–235	1700, 1636	2.0	62
12a	$C_{12}H_{13}N_5$	<u>30.7</u> 30.8	305-307	1683	0.2	80
12b	$C_{13}H_{15}N_5O$	<u>27.0</u> 27.2	292–294	1661	0.2	50
13a	$C_{13}H_{11}N_4F_3$	$\frac{20.3}{20.0}$	171–173	3222, 1690	1.0	60
13b	$C_{14}H_{13}N_4F_3O$	<u>18.0</u> 18.1	180-182	3225, 1695	1.0	55
13c	$C_{18}H_{13}N_4F_3$	<u>16.2</u> 16.4	188–189	3250, 1672	1.0	51
14	$C_{18}H_{11}N_4F_3$	<u>16.6</u> 16.5	147–149			76
15	$C_{11}H_{14}N_6O$	<u>33.9</u> 34.2	162–164	1672, 1664, 1568		77
16	$C_{14}H_{18}N_6O$	<u>29.8</u> 29.4	205–206	1684, 1652, 1524		85

Физико-химические характеристики синтезированных соединений

Коединения 8а–g, 9а–c, 10 кристаллизовали из смеси *i*-PrOH—ДМФА, 2 : 1; 12а,b, 13а–с — из смеси PhH—ДМФА, 1 : 1; 14 — из EtOH; 15 — из CCl₄. Однозначный ответ на вопрос о направленности взаимодействия дает сопоставление спектров ЯМР ¹Н соединений **8**, **9** и **12**, **13**. В этих спектрах содержатся сигналы ароматических протонов, протонов группы NH и заместителей \mathbb{R}^1 , \mathbb{R}^2 , а также протонов в положениях 6 и 7 пиримидинового ядра, характеризующие ABX- (**8**, **9**) либо AX- (**10**) системы (в спектрах веществ **10**, **14** протон 6-Н проявляется в виде синглета). Слабопольное смещение (на 2.2–3.0 м. д., табл. 2) сигнала иминного протона в спектрах соединений **8**, **9**, по сравнению со спектрами соединений **12**, **13**, является следствием его амидного характера, что позволяет отвергнуть для этих веществ альтернативные 7-оксоструктуры, а следовательно, и путь В циклоконденсации. Косвенным образом реализацию пути A реакции подтверждает и установленное с помощью РСА строение гидразона **16** — производного тетрагидротриазолопиримидинона **7**.

По данным РСА (рис., табл. 3), в молекуле **16** аминотриазольный фрагмент расположен в одной плоскости с атомом водорода $H_{(4)}$ (торсионный угол $C_{(5)}$ – $N_{(3)}$ – $C_{(4)}$ – $H_{(4)}$ 4(1)°), причем аминогруппа находится по одну сторону с атомом $H_{(4)}$, несмотря на укороченные внутримолекулярные контакты $C_{(4)}$... $H_{(6NB)}$ 2.77 Å, $H_{(4)}$... $N_{(6)}$ 2.62 Å, $H_{(4)}$... $H_{(6NB)}$ 2.16 Å (сумма ван-дер-ваальсовых радиусов 2.87 Å [6]). Атом азота $N_{(6)}$, как и в случае 3-амино-2H-1,2,4-триазола [7], имеет тригонально-пирамидальную конфигурацию (сумма валентных углов 351.1(3)°). Фенильное кольцо $C_{(7)}$... $C_{(12)}$ развернуто относительно связи $C_{(4)}$ – $H_{(4)}$ на 53.3(2)° и лежит практически в одной плоскости с атомом $C_{(3)}$ (торсионный угол $C_{(3)}$ – $C_{(4)}$ – $C_{(7)}$ – $C_{(12)}$ 7.4(4)°), несмотря на укороченные контакты $C_{(3)}$... $H_{(12)}$ 2.64 Å, $H_{(3B)}$... $C_{(12)}$ 2.84 Å.

Строение молекулы 16 и длины связей (Å)

Таблица 2

Соеди- нение	NH (1H, уш. с)	NH ₂ (2H, c)	Н _{Аг} , м	Протоны гетероциклического фрагмента	CH ₃ (3H, c)
1	2	3	4	5	6
8c	11.4	5.27	6.8–7.2 (4H)	5.30 (1H, τ , 7-H _X); 3.26 (1H, π . π , 6-H _B); 2.77 (1H, π . π , 6-H _A) $J_{AX} = 5.0, J_{BX} = 7.0, J_{AB} = -16.3$	3.72 (OCH ₃)
8e	12.0	5.43	7.3–7.5 (4H)	5.55 (1H, μ , μ , η , 7-H _X); 3.50 (1H, μ , μ , 6-H _B); 3.01 (1H, μ , μ , 6-H _A) $J_{AX} = 7.5$, $J_{BX} = 7.5$, $J_{AB} = -16.0$	
8f	11.4	5.33	7.1–7.4 (4H)	5.40 (1H, T, 7-H _X); 3.33 (1H, M, 6-H _B); 2.84 (1H, π . π , 6-H _A) $J_{AX} = 7.5$, $J_{BX} = 7.5$, $J_{AB} = -17.5$	
9a	12.0	_	7.1–7.4 (5H)	5.82 (1H, π , 7-H _X); 3.39 (1H, π . π , 6-H _B); 3.06 (1H, π . π , 6-H _A) $J_{AX} = 7.0, J_{BX} = 7.0, J_{AB} = -17.0$	
9b	12.0	_	7.1–7.3 (4H)	5.76 (1H, T, 7-H _X); 3.00 (1H, π . π , 6-H _B); 3.39 (1H, π . π , 6-H _A) $J_{AX} = 7.0, J_{BX} = 7.0,$ $J_{AB} = -16.8$	2.30
9c	11.9	_	7.1–7.5 (4H)	5.96 (1H, τ , 7-H _X); 3.65 (1H, π . π , 6-H _B); 3.40 (1H, π . π , 6-H _A) $J_{AX} = 6.6, J_{BX} = 6.6, J_{AB} = -16.2$	
10	13.0		7.7–8.1 (5H)	8.26 (1H, c, 2-H); 6.47 (1H, c, 6-H)	
12a	9.2	4.99	7.1–7.4 (5H)	5.66 (1Н, уш. с, 7-Н); 4.46 (1Н, уш. с, 6-Н)	1.82
12c	9.3	5.03	6.8–7.4 (4H)	5.61 (1Н, ш. с, 7-Н); 4,48 (1Н, уш. с, 6-Н)	1.84; 3.84 (OCH ₃)
13a	9.2		7.0–7.4 (5H)	5.97 (1Н, уш. с, 7-Н); 4.62 (1Н, уш. с, 6-Н)	1.97
13b	9.0	—	6.8–7.3 (4H)	5.95 (1Н, уш. с, 7-Н); 4.62 (1Н, уш. с, 6-Н)	2.00; 3.79 (OCH ₃)
13c	7.8	—	7.3–7.5 (10H)	6.14 (1Н, д, 7-Н); 5.15 (1Н, д, 6-Н), <i>J</i> = 3.6	
14	-	—	7.2–8.3 (10H)	7.78 (1H, c, 6-H)	

Спектры ЯМР ¹Н соединений 8–10, 12–16*, **б**, м. д., КССВ (*J*), Гц

Окончание таблицы 2

1	2	3	4	5	6
15	9.1	6.25 (2H, 3-NH ₂) 4.15 (2H, NHNH ₂)	7.2–7.4 (5H)	* ² 5.78 (1H, T, CH _X); 3.07 (1H, \exists , \exists , H _B B CH ₂); 2.85 (1H, \exists , \exists , H _A B CH ₂); $J_{AX} = 8.0; J_{BX} = 10.0;$ $J_{AB} = -18.0$	
16	11.5	7.46	8.5–8.6 (5H)	* ² 7.06 (1H, μ . μ , CH _X); 4.95 (1H, μ . μ , H _B B CH ₂); 4.25 (1H, μ . μ , H _A B CH ₂), $J_{AX} = 7.0; J_{BX} = 7.0;$ $J_{AB} = -15.0$	3.02 3.06

* Спектры соединений зарегистрированы:

9с — в Ру-d₅; **8с,е,f, 9а,b, 12а,b, 13а–с** — **16** – в ДМСО-d₆; **10** — в ДМФА-d₇. *² Для соединений **15** и **16** указаны сигналы протонов фрагмента –СНСН₂СО.

Таблица З

	(A ⁻ ×10 ⁻) неводород	цных атомов в мо	лекуле соединения	16
Атом	x	У	Z	U_{eq}
O ₍₁₎	948(3)	7079(2)	1979(2)	29(1)
N ₍₁₎	45(3)	7881(3)	-315(2)	28(1)
C ₍₁₎	-241(4)	7941(3)	-1497(3)	26(1)
N(2)	-1188(3)	6479(2)	-166(2)	24(1)
C(2)	-663(4)	6222(3)	1031(3)	21(1)
N ₍₃₎	-2641(3)	6313(2)	2795(2)	19(1)
C ₍₃₎	-2203(4)	4767(3)	1136(2)	20(1)
N ₍₄₎	-4538(3)	6156(2)	2082(2)	23(1)
C ₍₄₎	-2122(4)	5034(3)	2527(2)	19(1)
N(5)	-2618(3)	8480(2)	3688(2)	23(1)
C ₍₅₎	-1536(4)	7702(3)	3745(2)	21(1)
N ₍₆₎	352(3)	8170(3)	4635(2)	34(1)
C ₍₆₎	-4405(4)	7487(3)	2673(3)	24(1)
C ₍₇₎	-3369(4)	3615(3)	2849(2)	21(1)
C ₍₈₎	-3149(4)	3770(3)	4147(3)	28(1)
C ₍₉₎	-4241(4)	2530(3)	4507(3)	35(1)
C(10)	-5579(4)	1102(3)	3574(3)	35(1)
C ₍₁₁₎	-5826(4)	913(3)	2281(3)	35(1)
C(12)	-4717(4)	2166(3)	1917(3)	28(1)
C ₍₁₃₎	-679(5)	6609(3)	-2723(3)	35(1)
C ₍₁₄₎	983(5)	9470(3)	-1661(3)	42(1)

Координаты (× 10⁴) и эквивалентные изотропные тепловые параметры (Å²×10³) неводородных атомов в молекуле соединения 16

Карбонильная группа развернута относительно связи $C_{(3)}-C_{(4)}$ на 33.2(3)° (торсионный угол $O_{(1)}-C_{(2)}-C_{(3)}-C_{(4)}$). Фрагмент O=C-NH-N=C имеет *s-цис-s-транс*-конфигурацию относительно связей $C_{(2)}-N_{(2)}$ и $N_{(1)}-N_{(2)}$ (торсионные углы $O_{(1)}-C_{(2)}-N_{(2)}-N_{(1)}$ 7.6(3)°, $C_{(1)}-N_{(1)}-N_{(2)}-C_{(2)}$ 165.0(2)°). Сопряженная система $C_{(1)}-N_{(1)}-N_{(2)}-C_{(2)}-O_{(1)}$ неплоская. Валентный угол $C_{(13)}-C_{(1)}-N_{(1)}$ 125.5(2)° увеличен по сравнению с углом $C_{(14)}-C_{(1)}-N_{(1)}$ 117.0(2)°. Это, вероятно, обусловлено внутримолекулярными укороченными контактами $H_{(2N)}...C_{(13)}$ 2.47 Å, $H_{(2N)}...H_{(13C)}$ 2.16 Å (2.32 Å), $N_{(2)}...H_{(13C)}$ 2.57 Å (2.66 Å), $H_{(2N)}...H_{(3A)}$ 2.28 Å.

Молекулы в кристалле образуют трехмерные сетки за счет водородных связей H_(2N)...N_(4') (-1-*x*, 1-*y*, -*z*) (H...N 2.29 Å, N–H...N 162°), H_(6NA)...N_(5') (-*x*, 2-*y*, 1-*z*) (H...N 2.28 Å, NH...H 162°).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рентгеноструктурное исследование соединения 16. Кристаллы изопропилиденгидразида 3-(5-амино-1,2,4-триазол-1-ил)-3-фенилпропионовой кислоты 16 триклинные. При 20 °С a = 7.965(2), b = 9.629(3), c = 11.205(3) Å, $\alpha = 67.44(5)^\circ$, $\beta = 109.82(2)^\circ$, $\gamma = 112.64(2)^\circ$, V = 715.2(3) Å³, $d_{выч} = 1.330$ г/см³, Z = 2, пространственная группа *P*1. Параметры ячейки и интенсивности 2736 независимых отражений измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC (α MoK_{α}, графитовый монохроматор, $\theta/2\theta$ -сканирование, $2\theta_{max} = 50^\circ$).

Структура расшифрована прямым методом с использованием комплекса программ SHELXTL PLUS [8]. Положения атомов водорода рассчитаны геометрически и уточнены по модели "наездник" с фиксированными U_{iso} . Уточнение по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов по 2535 отражениям проведено до $wR_2 = 0.119$ ($R_1 = 0.053$ по 1539 отражениям с $F > 4\sigma(F)$, S = 0.89). Координаты атомов приведены в табл. 3.

ИК спектры измерены на приборе Specord M-82 в таблетках КВг. Спектры ЯМР ¹Н зарегистрированы на спектрометрах Bruker 300 в ДМСО- d_6 (соединения 7–10, 12, 13c, 15, 16) и Bruker AM-400 (соединения 13а,b, 14), внутренний эталон ТМС. Контроль за ходом реакций и чистотой образующихся веществ осуществляли с помощью TCX на пластинках Silufol UV-254 в системе CHCl₃—MeOH, 1 : 1.

2-Амино-5-оксо-7-фенил-4,5,6,7-тетрагидро-1,2,4-триазоло[1,5-а]пиримид-5-он (8). Раствор 0.32 г (2 ммоль) эфира коричной кислоты **4a** и 0.2 г (2 ммоль) диаминотриазола **2** в 2 мл ДМФА кипятят 2 ч, охлаждают, смешивают с 10 мл пропанола-2 и отфильтровывают 0.29 г соединения **8a**.

Аналогично из эфира 4a и аминотриазола 1 получают соединения 7 с т. пл. 215 °C. Лит. т. пл. 215–217 °C [4]. Из эфиров 4b–g и аминотриазола 2 синтезируют соединения 8b–g, из эфиров 4a,b,e и амино(трифторметил)триазола — соединения 9a–c, из хлоркоричной кислоты 5 или ее эфира 6 и аминотриазола 1 — соединение 10.

2-Амино-5-метил-7-фенил-4,7-дигидро-1,2,4-триазоло[1,5-а]пиримидин (12а). Раствор 0.5 г (5 ммоль) диаминотриазола **2** и 0.8 г (5.5 ммоль) бензальацетона **11а** в 1 мл ДМФА кипятят 10 мин, охлаждают, смешивают с 30 мл ацетона и отфильтровывают 0.9 г соединения **12а**.

Аналогично из диамина 2 и кетонов 11b,с получают соединения 12b,с; из амино(трифторметил)триазола 3 и кетонов 11a-с — продукты 13a-с. Соединение 12с имеет т. пл. 306–307 °С. Лит. т. пл. 305–307 °С [5].

5,7-Дифенил-2-трифторметил-1,2,4-триазоло[1,5-а]пиримидин (14). Кипятят 20 мин 0.34 г (1 ммоль) соединения **13с** в 10 мл 3% метанольного раствора КОН, охлаждают, нейтрализуют раствором HCl, 1:1, образовавшийся осадок продукта **14** отделяют

фильтрованием. Выход 0.26 г.

Гидролиз 7-фенил-5-оксо-4,5,6,7-тетрагидро-1,2,4-триазоло[1,5-*а*]пиримидина (7). Кипятят 20 мин 0.2 г (1 ммоль) соединения 7 в 5 мл 3% спиртового раствора КОН, охлаждают, подкисляют раствором HCl, 1:1, до pH ~1, экстрагируют бензолом. Из экстракта выделяют 0.135 г (91%) коричной кислоты, т. пл. 133 °C. Лит. т. пл 133–134 °C [9]. Водный слой нейтрализуют NaHCO₃, упаривают на водяной бане, из сухого остатка при перекристаллизации из смеси хлороформ—эфир, 1:1, выделяют 0.05 г 3-амино-1,2.4триазола 1, т. пл. 159 °C. Лит. т. пл. 159 °C [9].

Гидразид 3-(5-амино-1,2,4-триазол-1-ил)-3-фенилпропионовой кислоты (15). Раствор 0.4 г (2 ммоль) соединения 7 в 13 мл пропанола-2, содержащего 3 мл 20% гидразингидрата, кипятят 20 мин, охлаждают, нейтрализуют разбавленным раствором HCl, экстрагируют CHCl₃. Экстракт сушат над Na₂SO₄, фильтруют, удаляют растворитель, остаток кристаллизуют из CCl₄. Получают 0.38 г продукта 15.

Изопропилиденгидразид 3-(5-амино-1,2,4-триазол-1-ил)-3-фенилпропионовой кислоты (16). К раствору 0.25 г (1 ммоль) соединения 15 в 10 мл метанола добавляют 3 мл ацетона. Реакционную смесь перемешивают при комнатной температуре 30 мин, образовавшийся осадок отделяют фильтрованием. Получают 0.23 г продукта 16.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. Н. Кост, ХГС, 1200 (1980).
- 2. С. М. Десенко, ХГС, 147 (1995).
- 3. С. М. Десенко, В. Д. Орлов, В. В. Липсон, XTC, 1638 (1990).
- В. В. Липсон, В. Д. Орлов, С. М. Десенко, Т. М. Карножицкая, М. Г. Широбокова, XTC, 664 (1999).
- 5. С. М. Десенко, Н. Н. Колос, М. Туэни, В. Д. Орлов, *XГС*, 938 (1990).
- 6. Ю. В. Зефиров, П. М. Зоркий, Успехи химии, 58, 713 (1989).
- Г. Л. Старова, О. В. Франк-Каменецкая, В. В. Макарский, В. А. Лопырев, Кристаллография, 23, 849 (1978).
- G. M. Sheldrick, SHELXTL PLUS. PC Version. A system of computer programs for the determination of crystal structure from X-ray diffraction data. Rev. 5.02.1994.
- 9. CRC Handbook of Chemistry and Physics, Ed. D. R. Lide, CRC Press, London, 1994, 292; 324.

Украинский НИИ фармакотерапии эндокринных заболеваний, Харьков 61002 Поступило в редакцию 06.05.99 После переработки 10.02.2000

^аХарьковский национальный университет им. В. Н. Каразина, Харьков 61077, Украина e-mail: desenko@klsp.Kharkov.ua

⁶НТК "Институт монокристаллов", Харьков 61001, Украина