# Т. И. Вакульская, В. А. Шагун, Л. И. Ларина, В. А. Лопырев

# ЭПР И ПОЛЯРОГРАФИЯ НИТРОАЗОЛОВ

#### 7\*. АНИОН-РАДИКАЛЫ ИЗОМЕРОВ N-МЕТИЛ-С-НИТРО-1,2,4-ТРИАЗОЛА

Методами полярографии, ЭПР и квантовой химии изучены анион-радикалы N-метилзамещенных 3-нитро-1,2,4-триазола. Проанализировано различие электрохимического поведения N-метильных изомеров 3-нитро-1,2,4-триазола. Квантово-химическими методами исследованы спиновые распределения в их анион-радикалах. Полученные теоретические данные находятся в плохом согласии с экспериментом. С помощью вариации структурных характеристик анион-радикалов выделены внутренние геометрические параметры, оказывающие наибольшее влияние на спиновые распределения. Минимизацией функционала, описывающего рассогласованность теоретического и экспериментального спиновых распределений на магнитных ядрах, установлены геометрические структуры исследованных изомеров. Рассчитанные константы СТС магнитоактивных ядер в полученных структурах хорошо согласуются с экспериментом. Исследовано влияние эффектов сольватации на параметры электронной структуры анион-радикалов нитротриазола. Наиболее стабильными оказались гидратные комплексы с четырьмя молекулами воды. Структурная деформация сольватированных анион-радикалов происходит в том же направлении, что и при минимизации функционала.

Ключевые слова: N-метил-С-нитро-1,2,4-триазолы, анион-радикалы, квантово-химические расчеты, ЭПР.

Замена водорода у атома азота в нитроазолах на метильную группу приводит к сдвигу потенциалов восстановления в область отрицательных значений. В результате такой замены перенос первого электрона становится обратимым процессом, что позволяет наблюдать первичные анион-радикалы N-метилированных нитроазолов [1—3]. В данной работе исследована стереоселективность влияния метильной группы на электрохимическое восстановление важных с точки зрения синтетической химии [4] изомеров N-метилпроизводных С-нитро-1,2,4-триазола: 1-метил-3-нитро- (1), 1-метил-5-нитро- (2) и 3-нитро-4-метил- (3) 1,2,4-триазола. Рассмотрены основные квантово-химические модели влияния внутримолекулярных конформационных деформаций на основные магниторезонансные параметры ЭПР в анион-радикалах соединений 1—3<sup>\*2</sup>.



 <sup>\*</sup> Сообщение 6 см. [1].

\*2 Принятая в расчетах нумерация атомов в молекулах приведена на структурной формуле 1.

Все три изомера восстанавливаются в ацетонитриле на ртутном капающем электроде при более отрицательных потенциалах, чем сам 3(5)-нитро-1,2,4-триазол [1]; при этом прослеживается явная зависимость электрохимического поведения соединений 1—3 от положения метильной группы в триазольном цикле (рис. 1). Сдвиги потенциалов первой и второй волн для всех изомеров различны, причем протяженность плато между ними увеличивается в следующем порядке: 3 < 2 < 1 (табл. 1).



Рис. 1. Полярограммы соединений 1—3 в ацетонитриле на фоне ТБАП

В этой же последовательности наблюдается и возрастание степени затруднения переноса как первого, так и второго электрона по сравнению с 3(5)-нитро-1,2,4-триазолом [1], т. е. существует заметное влияние метильной группы на величину щели между энергетическими уровнями нижних вакантных МО. Восстановление 1 в ацетонитриле происходит в две стадии. Первая волна обратимая одноэлектронная, вторая 3-электронная (полярограмма 1 на рис. 1). Изомер 2 восстанавливается в две одноэлектронные стадии, причем первая волна также соответствует обратимому переносу электрона (полярограмма 2 на рис. 1). В отличие от производных 1 и 2 соединение 3 дает на полярограмме три волны. Суммарная высота двух первых волн едва достигает одноэлектронного уровня (волны пологие, необратимые). Восстанавливается изомер 3 значительно легче остальных (полярограмма 3 на рис. 1; табл. 1). При повышении концентрации деполяризатора на порядок до 5 · 10<sup>-3</sup> моль/л первая волна приобретает раздвоенный характер, но соотношение высот волн не изменяется. Это свидетельствует о повышенной адсорбции вещества на электроде.

Таблица 1

| Изомер | E'1/2          | E″1/2          | a <sub>N</sub> NO2 | a <sub>N1</sub> | a <sub>N2</sub> | a <sub>N4</sub> | α <sub>H</sub> | a <sub>H</sub> CH3 |
|--------|----------------|----------------|--------------------|-----------------|-----------------|-----------------|----------------|--------------------|
| 1 2    | -1.17<br>-1.06 | -2.68<br>-2.43 | 1.150<br>1.180     | 0.050<br>0.140  | 0.150<br>0.110  | 0.120<br>0.400  | 0.460<br>0.280 | 0.050<br>0.025     |
| 3      | -0.85          | -1.80<br>-2.54 | 1.105              | 0.130           | 0.240           | 0.130           | 0.120          | 0.020              |

Потенциалы восстановления (В) изомерных N-метил-C-нитро-1,2,4-триазолов и константы СТС (мТл) их анион-радикалов

194

Несмотря на различия в механизмах восстановления изомеров 1—3, в спектрах ЭПР при потенциалах, соответствующих первым волнам восстановления, для соединений 1 и 2 наблюдаются хорошо разрешенные сигналы первичных анион-радикалов (табл. 1, рис. 2 *а*, *б*). Для соединения 3 также регистрируется хорошо разрешенный сигнал ЭПР (рис. 2 *в*), который



Рис. 2. Спектры ЭПР, полученные при электрохимическом восстановлении соединений: *a* — 1; *b* — 2; *в* — 3

по характеру сверхтонкой структуры (СТС) также следует отнести к первичному анион-радикалу, но возникающему при потенциалах свыше 2 В, т. е. фактически при потенциалах второй волны. По-видимому, только при этих потенциалах происходит разрушение адсорбционного слоя и становится возможным восстановление нейтральных молекул до первичных анион-радикалов; СТС сигналов ЭПР обусловлена всеми магнитными ядрами молекул, причем на нитрогруппе во всех анион-радикалах сосредоточена примерно половина спиновой плотности (табл. 1).

Изменение положения метильной группы вызывает существенное перераспределение спиновой плотности между атомами азота триазольного цикла и особенно сильно сказывается на протонной константе. Значения константы  $a_N^{NO2}$  варьируют в пределах 5—7%. Анализ спиновых плотностей на магнитных ядрах триазольного цикла показывает, что в анион-радикале соединения 1 практически эквивалентны «пиридиновые» атомы азота, в то время как в анион-радикалах изомеров 2 и 3 эквивалентны один из «пиридиновых» и «пиррольный» атомы азота (табл. 1). Такой характер спиновых распределений, связанный с расположением метильной группы в триазольном цикле, находит отражение в структурах низших свободных молекулярных орбиталей (LUMO) наиболее стабильных стационарных

Таблица 2

Вклады (ρ<sup>s</sup>) АО магнитно-активных атомов триазольного цикла в LUMO, относительные устойчивости (Δ*E*, ккал/моль) и барьеры внутреннего вращения нитрогруппы (*E*<sub>BP</sub>, ккал/моль) нейтральных изолированных изомеров 1—3 (данные метода MNDO)

| Соеди- |                | $(\rho^{s})^{2} \cdot 10^{3}$ |      | Λ <i>π</i> * | Enn |
|--------|----------------|-------------------------------|------|--------------|-----|
| нение  | N <sub>1</sub> | N <sub>2</sub>                | N4   | $\Delta E^*$ | TBP |
| 1      | 0.10           | 0.36                          | 0.32 | 0.0          | 2.3 |
| 2      | 0.33           | 0.31                          | 1.41 | 5.0          | 1.6 |
| 3      | 0.38           | 0.97                          | 0.41 | 1.8          | 1.3 |

\*  $\Delta H f(I) = 58,4$  ккал/моль.

195

состояний изолированных нейтральных молекул 1—3. Сравнительный анализ состава LUMO позволяет отметить явно прослеживающуюся качественную связь между соответствующими спиновыми заселенностями и величинами констант СТС (табл. 1 и 2). Этот факт дает основание надеяться на удовлетворительную передачу квантово-химическими методами спинового распределения и, как следствие, экспериментальных констант СТС.

Однако пробные расчеты, выполненные в формализме UMP2/6-31G\*, привели к значениям констант СТВ, даже качественно не согласующимся с экспериментальными (табл. 1 и 3). Рассматривались два состояния анион-радикалов соединений 1—3 (исключая псевдовырожденные). Первое, наиболее стабильное, — с почти плоским расположением нитрогруппы относительно пятичленного цикла (*a*), второе — с ее близкой к ортогональной ориентацией (*b*). Различие основных геометрических параметров этих ротамеров невелико, за исключением двугранного угла *а* (табл. 4).

Таблица З

| Радикал | Состояние | <i>a</i> 1 | a2   | <i>a</i> 4 | <i>a</i> 6 |
|---------|-----------|------------|------|------------|------------|
| · 1     | а         | 0.12       | 1.10 | 0.56       | 1.54       |
|         | b         | 0.41       | 0.87 | 0.06       | 2.69       |
| 2       | а         | 0.55       | 0.58 | 0.52       | 1.57       |
|         | b         | 0.21       | 0.01 | 0.32       | 3.11       |
| 3       | а         | 0.42       | 0.81 | 0.35       | 1.75       |
|         | b         | 0.39       | 0.16 | 0.47       | 2.43       |

Рассчитанные изотропные константы СТС (мТл) анион-радикалов соединений 1—3

Применение узконаправленных методов с целью улучшения согласия с экспериментом привело в некоторых вариантах лишь к незначительным положительным результатам. Геометрические характеристики анион-радикалов соединений 1-3, в дальнейшем использовавшиеся в полуэмпирических расчетах, были оптимизированы в приближении UHF/MNDO. Применялись также геометрические наборы (табл. 4), не приведшие в целом к улучшению. Полученные методами INDO и UHF/MNDO спиновые заселенности различаются довольно существенно, причем в обоих вариантах константы CTC, вычисленные по соотношению [5]:  $a = K\rho^{s}$ , где  $\rho^{s}$  спиновая заселенность s-орбитали атома, k — константа, равная 379,34 Э для ядра атома N, плохо согласуются с экспериментом (табл. 5). Попытка использовать в расчетах величин  $a_N^{NO2}$  полуэмпирические уравнения, полуэмпирические уравнения, полученные для нитросоединений в ацетонитриле [6] и для ароматических нитроксильных радикалов [7], не дала сколь-нибудь заметного улучшения результатов. Обращение к полуэмпирическим методам (MNDO-UHF-QA, MINDO/3-RHF-Cl, MNDO-RHF-Cl), анализ применимости которых для оценок констант СТС большого ряда *л*-радикалов [8] продемонстрировал достаточную эффективность двух последних приближений, также не привело к существенному улучшению согласия с экспериментом (табл. 5).

Полученные результаты указывают на то, что реальные (сольватированные) структуры радикалов соединений 1—3 несколько отличаются от использованных в расчетах. С другой стороны, проведенный анализ электронного строения ротационных конформеров показывает, что от стереохимии радикалов сильно зависит распределение спиновой плотности. Поэтому была предпринята попытка с помощью независимого геометрического варьирования выделить основные количественно значимые структурные параметры, оказывающие наиболее сильное влияние на спиновые заселенности. Оценка «отклика» распределения спиновой плотности на

Таблица 4

|         |           | и бар | ьеры внутр | еннего вра          | щения нитр | огруппы (Л | Евр, ккал/м             | юль) анион      | -радикалов | соединени | й 1—3            |     |     |
|---------|-----------|-------|------------|---------------------|------------|------------|-------------------------|-----------------|------------|-----------|------------------|-----|-----|
| Рацикац | Состоящие |       |            | l <sub>ij</sub> , Å |            |            |                         | $arphi_{ijk}$ , | град.      |           | C** <sup>2</sup> |     | Epp |
|         |           | 1-2   | 2-3        | 3-4                 | 4-5        | 3-6        | 1-2-3 2-3-4 3-4-5 2-3-6 |                 | ~DF        |           |                  |     |     |
| 1       | а         | 1.351 | 1.326      | 1.371               | 1.288      | 1.366      | 102.6                   | 113.7           | 102.9      | 123.1     | 0.0              | 0.0 | 2.0 |
|         | b         | 1.347 | 1.319      | 1.362               | 1.294      | 1.381      | 101.6                   | 114.1           | 101.2      | 122.9     | 67.8             | 1.7 | 2.0 |
| 2       | а         | 1.352 | 1.351      | 1.318               | 1.338      | 1.369      | 108.8                   | 109.9           | 102.6      | 123.6     | 0.0              | 0.0 | 3.8 |
|         | b         | 1.346 | 1.348      | 1.304               | 1.349      | 1.460      | 107.2                   | 113.2           | 101.3      | 121.9     | 88.2             | 3.1 | 3.8 |
| 3       | а         | 1.364 | 1.302      | 1.347               | 1.355      | 1.370      | 107.4                   | 110.1           | 103.1      | 127.0     | 0.0              | 0.0 | 3.6 |
|         | b         | 1.355 | 1.294      | 1 365               | 1 348      | 1.385      | 107.0                   | 112.3           | 102.9      | 125.8     | 84.6             | 2.9 | 3.6 |

Геометрические параметры, относительные устойчивости ( $\Delta E$ , ккал/моль)\*

Полные энергии конформеров 1а, 2а и 3а составляют 483,4201, 483,4410 и 483,4250 а. е. соответственно. \* **"**2

В целях сохранения однозначности с учетом зависимости пирамидальности атома N(6) от угла вращения принято, что  $\alpha$  — угол, образованный плоскостями N<sub>2</sub>C<sub>3</sub>N<sub>4</sub> и C<sub>3</sub>O7O8.

Таблица б

Геометрические параметры минимизированных по функционалу F анион-радикальных структур соединений 1--3

| Раликал |       | l <sub>ij</sub> , Å |       |       |       |       | $arphi_{ m ijk}$ , град. |       |       |        | da* <sup>2</sup> Å | 0 TDali  |
|---------|-------|---------------------|-------|-------|-------|-------|--------------------------|-------|-------|--------|--------------------|----------|
|         | 1-2   | 2-3                 | 3-4   | 4-5   | 3-6   | 1-2-3 | 2-3-4                    | 3-4-5 | 2-3-6 | •1, x  | 42,11              | с, град. |
|         |       |                     |       |       |       |       |                          |       |       |        | ,                  |          |
| 1       | 1.393 | 1.283               | 1.532 | 1.382 | 1.380 | 108.4 | 112.1                    | 101.1 | 123,7 | 0.170  | -0.081             | 10.9     |
| 2       | 1.403 | 1.422               | 1.362 | 1.420 | 1.420 | 104.7 | 109.8                    | 103.0 | 126,3 | 0.058  | 0.102              | 3.3      |
| 3       | 1.312 | 1.309               | 1.419 | 1.417 | 1.428 | 109.1 | 108.0                    | 104.6 | 130,2 | -0.017 | -0.120             | 1.9      |

\*2

Знак минус означает выход атома азота нитрогруппы из плоскости С30708 в полупространство связи N(4)---С(5). Знак минус означает отклонение атома азота от плоскости валентно-связанных с ним атомов, увеличивающее межатомное расстояние с ближайшим к нему атомом кислорода.

| Радикал | Центр | UHF QA<br>MNDO | UHF<br>MNDO | RHF CI<br>MNDO | INDO | RHF Cl<br>MINDO/3 |
|---------|-------|----------------|-------------|----------------|------|-------------------|
| 1       | 1     | 0.02           | 0.05        | 0.03           | 0.18 | 0.04              |
|         | 2     | 0.03           | 0.10        | 0.08           | 0.44 | 0.08              |
|         | 4     | 0.00           | 0.00        | -0.01          | 0.34 | -0.05             |
|         | 6     | 1.07           | 3.26        | 2.01           | 1.25 | 2.43              |
| 2       | 1     | 0.02           | 0.10        | 0.05           | 0.06 | -0.01             |
|         | 2     | 0.01           | 0.02        | 0.01           | 0.17 | 0.02              |
|         | 4     | 0.06           | 0.15        | 0.10           | 0.34 | 0.11              |
|         | 6 ·   | 0.99           | 3.31        | 1.91           | 1.61 | 1.35              |
| 3       | 1     | 0.00           | 0.00        | -0.02          | 0.06 | -0.02             |
|         | 2     | 0.05           | 0.15        | 0.09           | 0.35 | 0.10              |
|         | 4     | 0.07           | 0.21        | 0.10           | 0.12 | 0.15              |
|         | 6     | 0.91           | 2.91        | 1.63           | 1.35 | 1.87              |

| Константы СТС (МТЛ) анион-радикалов соединении 1—3 | онстанты | пений 1—3 | анион-радикалов | (мТл) | онстанты | ĸ |
|----------------------------------------------------|----------|-----------|-----------------|-------|----------|---|
|----------------------------------------------------|----------|-----------|-----------------|-------|----------|---|

геометрическую деформацию осуществлялась вблизи стационарных состояний радикалов соединений 1—3 путем попеременного варьирования внутренних координат, а также их некоторых комбинаций с оптимизацией всех остальных параметров. Подобный подход позволил, не слишком удаляясь от стартового стационарного состояния на потенциальной поверхности внутримолекулярных деформаций, оценить степень и направление изменений спиновых заселенностей различных атомов. Учитывая большой объем вычислений и опираясь на первоначально полученные оценки констант (табл. 3 и 5), сканирование геометрических параметров проводилось в рамках UHF/MNDO-приближения.

В результате реализации этого подхода выделены три параметра, вариации которых, не приводя к резкому понижению относительной устойчивости соответствующего радикала, кардинально влияют на спиновые заселенности. К таким параметрам относятся показатели пирамидальности атомов азота нитрогруппы ( $d_1$ ) и «пиррольного» ( $d_2$ ), а также двугранный угол ( $\alpha$ ) между плоскостями триазольного цикла и нитрогруппы. Нетрудно заметить, что все три параметра в первую очередь определяют ориентацию неподеленных пар электронов и их взаимное влияние. Варьирование двугранного угла (на примере анион-радикала соединения 1, рис. 3) в приближении «жесткого ротатора» вблизи стационарного состояния в интервале 0—90 °С дает широкую область изменений  $a_i$ . Эта область, по



*Рис. 3.* Зависимости констант СТС анион-радикала соединения 1 от угла вращения α (тонкая линия — в приближении «жесткого ротатора», жирная линия для свободного вращения)

крайней мере, включает экспериментальные значения спиновых заселенностей атомов азота «пиррольного» типа и нитрогруппы. Свободное варьирование двугранного угла, что по сути означает отказ от приближения «жесткого ротатора» и вовлечение в процесс вариации параметра пирамидальности, приводит к существенному изменению поведения величин  $a_i$  (рис. 3). Это свидетельствует о значительном влиянии пирамидальности на характер спинового распределения. Независимое варьирование параметра пирамидальности «пиррольного» атома азота (рис. 4) в пределах 0.0—0.3 Å также значительно изменяет его константу. При этом экспериментальное значение лежит в области допустимых величин.





На рис. 5 приведено сечение поверхности потенциальной энергии в координатах  $\alpha$  и  $d_1$ . Независимое варьирование параметров  $\alpha$ ,  $d_1$  и  $d_2$  проводилось вблизи стационарного состояния с допустимой вариацией полной энергии, не превышающей 20 ккал/моль, и осуществлялось таким образом, чтобы минимизировать функционал:

$$F(a_1(x_i), a_2(x_i), a_N(x_i)) = \sum_{i=1}^N |a_i \text{ теор.} - a_i$$
эксп. |

где  $x_i$  — внутренние координаты анион-радикала. Тем самым негласно принято, что на геометрическую реорганизацию анион-радикалов изомеров 1—3 в MNDO приближении при переходе от изолированного состояния к сольватированному требуются энергии не более 20 ккал/моль, что показано ниже. Данный подход позволил установить структуры радикалов соединений 1—3 (табл. 6) с распределениями спиновой плотности и соответственно константами СТС, практически количественно согласующимися с экспериментом (табл. 1 и 7).

Таблица 7

| Радикал | <i>a</i> 1 | <i>a</i> 2 | <i>a</i> 4 | <i>a</i> <sub>6</sub> |
|---------|------------|------------|------------|-----------------------|
|         |            |            |            |                       |
| 1       | 0.13       | 0.25       | 0.14       | 1.12                  |
| 2       | 0.13       | 0.11       | 0.31       | 1.19                  |
| 3       | 0.05       | 0.18       | 0.15       | 1.16                  |

Константы СТС (мТл) анион-радикалов соединений 1-3



*Рис.* 5. Сечение поверхности потенциальной энергии в координатах  $\alpha$  и  $d_1$ 

Естественно, возникает необходимость хотя бы в качественном обосновании результатов проведенной геометрической реорганизации. С этой целью рассмотрена квантово-химическая модель влияния сольватного окружения на структурные параметры и электронное строение анион-радикалов изомеров 1—3. Роль сольватной оболочки играли молекулы воды. Энергия сольватации оценивалась как разность между полными энергиями полигидратного комплекса и изолированных молекул субстрата и воды. Чтобы не нарушать целостности в сравнительном анализе полученных данных, все квантово-химические расчеты проведены полуэмпирическим методом UHF/MNDO.

Для определения оптимального числа частиц в первой гидратной оболочке анион-радикалов соединений 1—3 были рассчитаны энергии комплексов с 3, 4, 6 и 7 молекулами воды. Наиболее предпочтительной представляется форма с четырьмя молекулами воды, «энергия сольватации» для которой в пересчете на одну молекулу воды составляет -22.1, -17.4 и -18.6 ккал/моль для соединений 1, 2 и 3 соответственно. С дальнейшим увеличением числа молекул воды соотносится «дестабилизация» системы. Сольватация сопровождается незначительным электронным переносом с анион-радикала на гидратную оболочку. Избыточный отрицательный заряд на молекулах H<sub>2</sub>O в среднем 0.04—0.06.

Более существенна структурная перестройка субстрата, которая ведет к сближению с соответствующей геометрией, полученной в результате *F*-минимизации. При этом энергия внутримолекулярной геометрической деформации анион-радикалов соединений 1—3 не превышает 20 ккал/моль, т. е. той максимальной величины, которая допускалась при поиске

Таблица 8

Геометрические параметры и константы СТС (мТл) тетрагидратных комплексов анион-радикалов соединений 1—3

| Радикал | <i>a</i> 1 | <i>a</i> 2 | a4   | <i>a</i> 6 | $d_1$ , Å | d2, Å  | lpha, град. |
|---------|------------|------------|------|------------|-----------|--------|-------------|
| 1       | 0.02       | 0.05       | 0.04 | 1.10       | 0.141     | -0.046 | 8.6         |
| 2       | 0.08       | 0.13       | 0.28 | 1.23       | 0.087     | 0.064  | 7.4         |
| 3       | 0.08       | 0.24       | 0.10 | 1.21       | 0.021     | -0.96  | 3.7         |

*F*-стационарных состояний. Хотя для комплексов AP<sup>-</sup>...nH<sub>2</sub>O вычисленные константы CTC все же не становятся количественно сопоставимыми с экспериментальными (табл. 8), однако качественно передаются основные тенденции их изменений.

Рассчитанные расщепления на магнитном ядре атома азота нитрогруппы в анион-радикалах изомеров 1—3 в водной среде близки к экспериментальным. Менее удовлетворительное согласие наблюдается для атомов азота триазольных циклов, что можно объяснить несовершенством модели сольватации, учету которой только для нитрогруппы соответствует следующее строение тетрагидратного комплекса:



Вовлечение дополнительных молекул воды во взаимодействие с триазольным циклом, вероятно, могло бы привести к улучшению результатов.

Одна из возможных проверок большей эффективности подхода *F*-минимизации или сольватной модели по сравнению со стандартным способом оценки расщеплений сводится к расчету констант СТС для атома H(9) в анион-радикалах соединений 1—3. Полученные значения  $a_{\rm H} = k\rho^{\rm S}$ , где k = 539.86 Э и  $\rho^{\rm S}$  — спиновая заселенность S-орбитали атома, неплохо согласуются с экспериментом в первом упомянутом выше варианте [ $a_{\rm H} = 0.36$  (1), 0.21 (2), 0.08 (3) ], удовлетворительно коррелируют во втором [ $a_{\rm H} = 0.53$  (1), 0.24 (2), 0.23 (3) ] и отчасти в третьем [ $a_{\rm H} = 0.64$  (1), 0.19 (2), 0.21 (3) ]. Таким образом, использование процедуры *F*-минимизации при варьировании «количественно значимых» внутренних геометрических параметров может помочь опосредованно оценить электронные и структурные преобразования, связанные с внешним влиянием.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Нитротриазолы 1—3 получали по методикам работ [9, 10] и очищали вакуумной сублимацией непосредственно перед использованием. Полярограммы записывали на полярографах OH-102 и OH-105 (Венгрия) относительно насыщенного каломельного электрода на фоне *тетра-н*бутиламмонийперхлората (ТБАП) с использованием ртутного капающего электрода с принудительным отрывом капли ( $m^{2/3} t^{-1/6} = 1.5 \text{ мr}^{2/3} \text{ c}^{-1/2}$ ). В качестве стандартного вещества применяли свежеочищенный нитробензол. Рабочая концентрация деполяризатора 5 • 10<sup>-4</sup> моль/л.

ЭХГ анион-радикала осуществляли в специальных электрохимических ячейках, предварительно обескислороженных последовательным замораживанием и размораживанием растворов под вакуумом, а затем заполненных аргоном, очищенным над калий-натриевым сплавом. Спектры ЭПР снимали на спектрометре РЭ-1307 со стабилизацией резонансных условий. Симуляцию спектров ЭПР проводили с учетом лоренцевой формы линии и ширины индивидуальной компоненты в пределах 0.015—0.04 мТл [1].

Расчет геометрических характеристик соединений 1—3 методом UMP2/6-31G<sup>\*</sup> осуществляли с использованием комплекса программ GAMMES-95 [11]. Изотропную (сферически симметричную) составляющую расщепления неэмпирически определяли через спиновую плотность на ядре [12]. Основная часть полуэмпирических расчетов выполнена с использованием компьютерных пакетов MOPAC и AMPAC. Процедура минимизации функционала построена на основе метода поочередного изменения переменных (Гаусса—Зейделя). В качестве независимых координат выбраны структурные параметры  $d_1, d_2$  и  $\alpha$ . При достижении граничных условий ( $\Delta E \geq 20$  ккал/моль) возврат в энергетически разрешенную для вариаций область осуществлялся с использованием метода проектирования вектора-градиента. Варьирование линейных параметров в процессе минимизации осуществлялось с шагом 0.05 Å, а угловых — 3°. Вблизи F-стационарных состояний шаг уменьшался до 0.005 Å и 0.2° соответственно.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Т. И. Вакульская, Т. Н. Рахматулина, М. С. Певзнер, Т. П. Кофман, В. А. Лопырев, *XIC*, № 3, 343 (1987).
- 2. Т. И. Вакульская, Л. И. Ларина, О. Б. Нефедова, В. А. Лопырев, ХГС, № 4, 523 (1982).
- 3. Т. И. Вакульская, Л. И. Ларина, О. Б. Нефедова, Л. П. Петухов, М. Г. Воронков, В. А. Лопырев, *ХГС*, № 10, 1398 (1979).
- 4. В. В. Мельников, М. С. Певзнер, В. В. Столпакова, Л. Ф. Хорькова, ХГС, №3, 409 (1971).
- 5. J. A. Pople, D. L. Beveridge, Approximate MO Theory, McGraw-Hill, N. Y. (1970).
- 6. S. H. Glarum, J. H. Marshall, J. Chem. Phys., 41, 2181 (1964).
- 7. P. B. Ayscovgh, F. P. Sargent, J. Chem. Soc. (B), 907 (1966).
- 8. K. Morihash, H. Takase, O. Kikuchi, Bull. Chem. Soc. Jpn., 63, 2113 (1990).
- 9. Л. И. Багал, М. С. Певзнер, А. Н. Фролов, Н. И. Шелудякова, ХГС, № 2, 259 (1970).
- 10. Л. И. Багал, М. С. Певзнер, Н. И. Шелудякова, В. М. Керусов, ХГС, № 2, 265 (1970).
- M. H. Schmidt, K. K. Baldridge, J. A. Beatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nquyen, S. I. Su, L. Windus, M. Dupuise, J. A. Montgomery, J. Comput. Chem., 14, 1347 (1993).
- 12. W. Weltner, Magnetic Atoms and Molecules, N.Y., Van Nostrand, 422 (1983).

Иркутский институт химии СО РАН, Иркутск 664033, Россия e-mail: vti@irioch.irk.ru

Поступило в редакцию 16.11.98