

Химия гетероциклических соединений 2019, 55(2), 189–192

КРАТКОЕ СООБЩЕНИЕ

Синтез 4-полифторалкил-1,3-дитиоланов реакцией [3+2]-циклоприсоединения тиокарбонилилида к амидам полифторалкантиокарбоновых кислот

Сергей С. Михайличенко¹*, Юрий Н. Маркитанов¹, Тимофей В. Руденко², Эдуард Б. Русанов¹, Юрий Г. Шермолович¹

¹ Институт органической химии НАН Украины,

ул. Мурманская, 5, Киев 02660, Украина; e-mail: smykh@ioch.kiev.ua

² НПО "Енамин",

ул. Красноткацкая, 78, Киев 02094, Украина; e-mail: trudenko@mail.enamine.net

Поступило 29.12.2018 Принято 24.01.2019

Новые 4-полифторалкил-1,3-дитиоланы были синтезированы реакцией амидов полифторалкантиокарбоновых кислот с тиокарбонилилидом, генерированными *in situ* путем десилилирования (триметилсилилметил)(хлорметил)сульфида при действии фторида тетраметиламмония.

Ключевые слова: 1,3-дитиолан, полифторалкантиокарбоновые кислоты, тиоамид, тиокарбонилилид, [3+2]-циклоприсоединение.

Синтез фторсодержащих гетероциклов является одной из наиболее интенсивно развивающихся областей химии биологически активных соединений.¹ Введение атомов фтора или полифторалкильных групп в гетероциклические соединения оказывает существенное влияние на их физические, химические и биологические свойства.² Синтез фторированных гетероциклов в настоящее время стал самостоятельным разделом химии гетероциклических соединений.³

Один из наиболее интенсивно изучающихся подходов к синтезу фторсодержащих гетероциклов заключается в использовании простых реакционноспособных фторированных соединений (строительных блоков).^{1,3,4} Ранее мы показали, что в качестве таких строительных блоков могут использоваться производные полифторалкантиокарбоновых кислот (хлорангидриды, *О*-эфиры, тиоэфиры, амиды), которые реагируют как с диенами по схеме [4+2]-циклоприсоединения,⁵ так и с 1,3-диполями, образуя продукты [3+2]-циклоприсоединения.^{6–8}

В предыдущих работах мы показали высокую активность фторсодержащих тиоамидов в реакциях [3+2]-циклоприсоединения с такими 1,3-диполями, как азометинилиды⁷ и нитрилимины.⁸ В настоящей работе мы исследовали реакции амидов полифторалкантио-карбоновых кислот **1** с тиокарбонилилидом **3**, генери-

рованным *in situ* из (триметилсилилметил)(хлорметил)сульфида **2** под действием фторида тетраметиламмония. Метод генерирования тиокарбонилилида **3**, который основан на десилилировании сульфида **2** обработкой фторидом цезия в ацетонитриле, был впервые предложен в 1986 г.⁹

Мы нашли, что N,N-дизамещенные тиоамиды **1а**-е, содержащие различные полифторалкильные заместители (CF₃, CF₂CHF₂, C₂F₅, C₃F₇, (CF₂)₄H), реагируют с тиокарбонилилидом **3** при кипячении в ацетонитриле с образованием новых 4-полифторалкил-1,3-дитиоланов **4а**-е (схема 1). Отметим, что в литературе известно только два примера синтеза 1,3-дитиоланов, содержащих фторалкильные группы в положении 4.^{10,11}

Рисунок 1. Молекулярная структура соединения **4**е в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью.

Выбор фторида тетраметиламмония как источника фторид-аниона обусловлен тем, что в его присутствии данные реакции протекают более селективно (как показали наши предварительные эксперименты), и в аналогичных условиях циклоаддукты образуются с более высокими выходами по сравнению с реакциями, в которых использовали фторид цезия. Кроме того, фторид тетраметиламмония обладает большей растворимостью в ацетонитриле. Реакции трифтортиоацетамида и *N*-пропилтрифтортиоацетамида с тиокарбонилилидом **3** приводили к образованию сложной смеси продуктов.

Строение соединения **4e** подтверждено методом PCA (рис. 1), а строение соединений **4a–d** – данными спектроскопии ЯМР ¹H, ¹³C и ¹⁹F. В спектрах ЯМР ¹³C 1,3-дитиоланов **4a–e** сигналы ядер четвертичного углерода C-4 дитиоланового цикла наблюдаются при 91.8–96.7 м. д. В спектрах ЯМР ¹⁹F сигналы ядер фтора групп CF₂ в соединениях **4b–e** проявляются в виде AB-систем, что обусловлено наличием асимметрического атома углерода в молекулах 1,3-дитиоланов.

Следует отметить, что, в отличие от полифторалкантиоамидов **1а**-е, бензотиоамид **5** не реагировал с тиокарбонилилидом **3** в аналогичных условиях (схема 2), что подтверждено анализом реакционной смеси с помощью хромато-масс-спектрометрии. Следовательно, полифторалкильный заместитель существенно повышает реакционноспособность тиокарбонильной группы тиоамидов, вероятно, вследствие изменения ее поляризуемости.

Схема 2

Важно отметить, что в литературе описаны реакции [3+2]-циклоприсоединения тиокарбонилилидов к различным типам тиокарбонильных соединений (ароматическим и алифатическим тиокетонам, дитиоэфирам, тритиокарбонату, 1,3-тиазол-5(4*H*)-тионам).¹² В свою очередь, нами была показана возможность использования фторсодержащих тиоамидов как диполярофилов в реакции с тиокарбонилилидом, что является новым методом синтеза 4-полифторалкил-1,3-дитиоланов, которые содержат диалкиламиногруппу в положении 4.

Экспериментальная часть

Спектры ЯМР ¹Н зарегистрированы на спектрометре Bruker Avance-400 (400 МГц) в CDCl₃, внутренний стандарт – ТМС. Спектры ЯМР ¹³С записаны на спектрометре Bruker Avance-500 (125 МГц), химические сдвиги приведены относительно сигналов растворителя CDCl₃ (δ_C 77.2 м. д.). Сигналы ядер углерода отнесены с помощью метода АРТ. Спектры ЯМР ¹⁹F зарегистрированы на спектрометре Bruker Avance-400 (376 МГц) в CDCl₃, внутренний стандарт – C₆F₆ (δ_F –162.9 м. д.). Хромато-масс-спектры записаны на приборе Agilent 1100, оснащенном диодно-матричным и масс-селективным детектором Agilent LC/MSD SL, ионизация электрораспылением при атмосферном давлении (70 эВ). Элементный анализ проведен в аналитической лаборатории Института органической химии НАН Украины методом экспресс-гравиметрии (С, Н), методом сожжения по Шенигеру (S) и методом Дюма-Прегля (N). Температуры плавления определены на приборе Boetius. Для колоночной хроматографии (диаметр колонки 2 см, длина колонки 30 см) использован силикагель марки Merck 60 (70-230 мкм). Для тонкослойной хроматографии использованы пластины марки Macherey–Nagel, Polygram[®] Sil G/UV254.

Все растворители предварительно высушены и перегнаны согласно стандартным методикам. Фторид тетраметиламмония предварительно высушен в вакууме (0.1 мм Hg) при нагревании (70 °C) в течение 3 сут. Тиоамиды $1a,c,^7$ $1b,d^{13}$ описаны в литературе. (Триметилсилилметил)(хлорметил)сульфид 2 получен по опубликованному методу.¹⁴

1-(Морфолин-4-ил)-2,2,3,3,4,4,5,5-октафторпентан-1-тион (1е).¹⁵ Выход 83%, темно-красная маслянистая жидкость, т. кип. 135–138 °С (12 мм Hg). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 3.68–4.06 (6H, м) и 4.27–4.45 (2H, м, 4CH₂); 6.23 (1H, т. т. ²*J*_{HF} = 52.1, ³*J*_{HF} = 5.7, HCF₂). Спектр ЯМР ¹⁹F, δ , м. д. (*J*, Гц): -98.0 ÷ -98.2 (2F, м, CF₂); -122.4 ÷ -122.6 (2F, м, CF₂); -130.3 ÷ -130.5 (2F, м, CF₂); -138.3 (2F, д. м, ²*J*_{FH} = 52.1, HCF₂). Найдено, %: С 32.60; H 2.83; N 4.29; S 9.60. С₉H₉F₈NOS. Вычислено, %: С 32.64; H 2.74; N 4.23; S 9.68.

Получение производных 1,3-дитиоланов 4а-е (общая методика). К раствору 1.0 ммоль тиоамида 1а-е в 9 мл безводного ацетонитрила при перемешивании добавляют 0.25 г (1.5 ммоль) сульфида 2 и 0.19 г (2.0 ммоль) фторида тетраметиламмония в атмосфере аргона. Реакционную смесь кипятят в колбе с обратным холодиль-

ником в течение 7 ч, затем добавляют 0.25 г (1.5 ммоль) сульфида **2** и 0.19 г (2.0 ммоль) фторида тетраметиламмония и кипятят еще 7 ч. После охлаждения реакционной смеси до комнатной температуры, осадок отфильтровывают, фильтрат упаривают при пониженном давлении. Остаток хроматографируют на силикагеле (элюент для очистки соединения **4b** – гексан–дихлорметан, 9:1, для очистки остальных соединений – гексан–этилацетат, 19:1).

4-[4-(Трифторметил)-1,3-дитиолан-4-ил]морфолин (**4a**). Выход 0.15 г (58%), бесцветные кристаллы, т. пл. 60–61 °С. $R_{\rm f}$ 0.37 (гексан–этилацетат, 9:1). Спектр ЯМР ¹H, δ , м. д. (J, Гц): 2.80–2.93 (4H, м, CH₂NCH₂); 3.35 (1H, AB-система, $J_{\rm AB}$ = 13.5) и 3.43 (1H, AB-система, $J_{\rm AB}$ = 13.5, CH₂); 3.63–3.78 (4H, м, CH₂OCH₂); 4.01 (1H, AB-система, $J_{\rm AB}$ = 10.0) и 4.06 (1H, AB-система, $J_{\rm AB}$ = 10.0, CH₂). Спектр ЯМР ¹³С, δ , м. д. (J, Гц): 36.1 (CH₂); 41.0 (CH₂); 48.9 (CH₂NCH₂); 67.2 (CH₂OCH₂); 91.8 (к, ² $J_{\rm CF}$ = 24.8, <u>C</u>CF₃); 126.1 (к, ¹ $J_{\rm CF}$ = 288.4, CF₃). Спектр ЯМР ¹⁹F, δ , м. д.: –67.9 (3F, с, CF₃). Масс-спектр, m/z ($I_{\rm OTH}$, %): 260 [M+H]⁺ (100). Найдено, %: С 37.00; H 4.76; N 5.45; S 24.77. C₈H₁₂F₃NOS₂. Вычислено, %: C 37.05; H 4.66; N 5.40; S 24.73.

1-[4-(1,1,2,2-Тетрафторэтил)-1,3-дитиолан-4-ил]пиперидин (4b). Выход 0.15 г (52%), бесцветные кристаллы, т. пл. 70-71 °С. R_f 0.26 (гексан-дихлорметан, 9:1). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.38–1.65 (6Н, м, (СН₂)₃); 2.62–2.82 (4Н, м, СН₂NCH₂); 3.26 (1Н, АВ-система, $J_{AB} = 13.8$) и 3.40 (1Н, АВ-система, $J_{AB} = 13.8$, CH₂); 3.88 (1H, AB-система, $J_{AB} = 10.2$) и 4.05 (1H, AB-система, $J_{AB} = 10.2$, CH₂); 6.16 (1H, т. м, ²*J*_{HF} = 53.1, HCF₂). Спектр ЯМР ¹³С, б, м. д. (*J*, Гц): 24.4, 26.5 ((СН₂)₃); 35.8 (СН₂); 41.2–41.4 (м, СН₂); 49.5 (CH₂NCH₂); 94.8 (π . π , ² J_{CF} = 23.4, ² J_{CF} = 23.1, <u>C</u>CF_AF_B); 109.9 (π . π . π . π , ¹ J_{CF} = 249.3, ¹ J_{CF} = 249.0, ² J_{CF} = 26.1, ${}^{2}J_{\rm CF}$ = 25.7, HCF_AF_B); 117.3 (д. д. д. д. ${}^{1}J_{\rm CF}$ = 255.3, ${}^{1}J_{\rm CF} = 255.0, {}^{2}J_{\rm CF} = 27.2, {}^{2}J_{\rm CF} = 27.0, {\rm CF}_{\rm A}F_{\rm B}$). Спектр ЯМР ¹⁹F, δ, м. д. (*J*, Гц): –98.5 (1F, д. м, ²*J*_{FF} = 269.0) и -120.2 (1F, д. м, ²*J*_{FF} = 269.0, CF₂); -134.6 (1F, д. д. м, $^{2}J_{\text{FF}} = 296.5, \,^{2}J_{\text{FH}} = 53.1$) и –141.1 (1F, д. д. м, $^{2}J_{\text{FF}} = 296.5,$ ${}^{2}J_{\text{FH}} = 53.1, \text{HCF}_{2}$). Macc-cnektp, $m/z (I_{\text{OTH}}, \%)$: 290 [M+H]⁺ (100). Найдено, %: С 41.47; Н 5.30; N 4.80; S 22.21. С₁₀Н₁₅F₄NS₂. Вычислено, %: С 41.51; Н 5.23; N 4.84; S 22.16.

4-[4-(Пентафторэтил)-1,3-дитиолан-4-ил]морфолин (**4c**). Выход 0.20 г (65%), бесцветные кристаллы, т. пл. 120–121 °С. $R_{\rm f}$ 0.38 (гексан–этилацетат, 9:1). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 2.63–2.91 (4H, м, CH₂NCH₂); 3.31 (1H, AB-система, J_{AB} = 13.6) и 3.41 (1H, AB-система, J_{AB} = 13.6, CH₂); 3.60–3.79 (4H, м, CH₂OCH₂); 3.94 (1H, AB-система, J_{AB} = 10.5) и 4.08 (1H, AB-система, J_{AB} = 10.5, CH₂). Спектр ЯМР ¹³С, δ, м. д. (*J*, Гц): 36.2 (CH₂); 41.1–41.3 (м, CH₂); 49.0 (2C, CH₂NCH₂); 66.7 (2C, CH₂OCH₂); 94.9 (д. д. ² J_{CF} = 24.6, ² J_{CF} = 24.3, <u>C</u>CF_AF_B); 115.6 (д. д. к, ¹ J_{CF} = 262.9, ¹ J_{CF} = 262.6, ² J_{CF} = 34.9, CF₃<u>C</u>F_AF_B); 119.4 (к. д. д. ¹ J_{CF} = 288.5, ² J_{CF} = 36.5, ² J_{CF} = 36.4, <u>C</u>F₃CF_AF_B). Спектр ЯМР ¹⁹F, δ, м. д. (*J*, Гц): -79.8 (3F, с, CF₃); -99.4 (1F, д, ² J_{FF} = 279.0) и -108.3 (1F, д, ² J_{FF} = 279.0, CF₂). Maccспектр, *m/z* (*I*_{отн}, %): 310 [М+Н]⁺ (100). Найдено, %: С 34.98; Н 3.97; N 4.55; S 20.70. С₉Н₁₂F₅NOS₂. Вычислено, %: С 34.95; Н 3.91; N 4.53; S 20.73.

4-[4-(Гептафторпропил)-1,3-дитиолан-4-ил]морфолин (**4d**). Выход 0.28 г (78%), бесцветные кристаллы, т. пл. 121–122 °С. $R_{\rm f}$ 0.38 (гексан–этилацетат, 9:1). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 2.64–2.92 (4H, м, CH₂NCH₂); 3.31–3.44 (2H, м, CH₂); 3.61–3.80 (4H, м, CH₂OCH₂); 3.92 (1H, AB-система, $J_{\rm AB}$ = 10.4) и 4.05 (1H, AB-система, $J_{\rm AB}$ = 10.4, CH₂). Спектр ЯМР ¹³С, δ, м. д. (*J*, Гц): 35.9 (CH₂); 40.9–41.2 (м, CH₂); 49.1 (CH₂NCH₂); 66.7 (CH₂OCH₂); 95.9–96.5 (м, <u>C</u>CF₂); 107.2–119.9 (м, CF₃CF₂CF₂). Спектр ЯМР ¹⁹F, δ, м. д. (*J*, Гц): –82.1 (3F, д. д, ³ $J_{\rm FF}$ = 15.0, ³ $J_{\rm FF}$ = 14.8, CF₃); –94.7 (1F, д. м, ² $J_{\rm FF}$ = 285.2) и –106.9 (1F, д. м, ² $J_{\rm FF}$ = 285.2, CF₂); –121.7 (1F, д. д. д, ² $J_{\rm FF}$ = 291.3, ³ $J_{\rm FF}$ = 16.3, ³ $J_{\rm FF}$ = 16.8, CCF₂). Macc-спектр, *m*/*z* ($I_{\rm OTH}$, %): 360 [M+H]⁺ (100). Найдено, %: C 33.39; H 3.46; N 3.86; S 17.91. C₁₀H₁₂F₇NOS₂. Bычислено, %: C 33.43; H 3.37; N 3.90; S 17.85.

4-[4-(1,1,2,2,3,3,4,4-Октафторбутил)-1,3-дитиолан-4-ил морфолин (4е). Выход 0.27 г (69%), бесцветные кристаллы, т. пл. 124-125 °С. Rf 0.38 (гексан-этилацетат, 9:1). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 2.63–2.93 (4H, м, CH₂NCH₂); 3.30–3.46 (2H, м, CH₂); 3.60–3.81 (4H, м, CH₂OCH₂); 3.92 (1H, AB-система, J_{AB} = 10.7) и 4.05 (1H, AB-система, $J_{AB} = 10.7$, CH₂); 6.05 (1H, т. м, ²*J*_{HF} = 52.4, HCF₂). Спектр ЯМР ¹³С, б, м. д. (*J*, Гц): 35.9 (СН₂); 40.9–41.2 (м, СН₂); 49.1 (СН₂NCH₂); 66.7 (CH₂OCH₂); 96.3–96.7 (м, <u>С</u>СF₂); 108.0 (т. т, ${}^{1}J_{\rm CF}$ = 254.9, ${}^{2}J_{\rm CF}$ = 30.6, HCF₂); 108.2–120.0 (M, СF₂CF₂CF₂). Спектр ЯМР ¹⁹F, б, м. д. (*J*, Гц): -93.4 (1F, д. м, ${}^{2}J_{\text{FF}} = 285.2$) и –106.4 (1F, д. м, ${}^{2}J_{\text{FF}} = 285.2$, CF₂); -119.5 (1F, д. м, ${}^{2}J_{\rm FF}$ = 298.6) и -124.5 (1F, д. м, ²*J*_{FF} = 298.6, CF₂); -130.5 (1F, д. м, ²*J*_{FF} = 289.8) и -131.6 (1F, д. м, ${}^{2}J_{FF}$ = 289.8, CF₂); -136.8 (1F, д. д. м, ${}^{2}J_{\text{FF}} = 308.3, {}^{2}J_{\text{FH}} = 52.4$) и –139.3 (1F, д. д. м, ${}^{2}J_{\text{FF}} = 308.3$, ${}^{2}J_{\text{FH}} = 52.4, \text{HCF}_{2}$). Macc-спектр, m/z ($I_{\text{отн}}, \%$): 392 [M+H]⁺ (100). Найдено, %: С 33.79; Н 3.41; N 3.61; S 16.34. С₁₁Н₁₃F₈NOS₂. Вычислено, %: С 33.76; Н 3.35; N 3.58; S 16.39.

Рентгеноструктурное исследование монокристалла соединения 4e. Кристаллы соединения 4e (C₁₁H₁₃F₈NOS₂, M 391.34) триклинные, пространственная группа $P\overline{1}$, a 6.0541(8), b 9.4832(11), c 13.7649(19) Å; a 105.657(3); β 93.354(3); γ 104.313(4)°; V 730.66(16) Å³; Z 2; d_{расч} 1.779; µ 0.455 мм⁻¹; *F*(000) 396. Рентгеноструктурное исследование монокристалла соединения 4е с линейными размерами 0.19 × 0.29 × 0.40 мм проведено при температуре 123 К на дифрактометре Bruker Smart Арех II (МоКа-излучение, графитовый монохроматор, $\theta_{\text{макс}}$ 26.0°, сегмент сферы – 7 $\leq h \leq$ 7, –11 $\leq k \leq$ 11, $-16 \le l \le 16$). Всего было собрано 8577 отражений, из которых 2873 являются независимыми (*R*-фактор усреднения 0.0254). Структура расшифрована прямым методом и уточнена МНК в полноматричном анизотропном приближении с использованием комплекса программ Bruker SHELXTL.¹⁶ Положения атомов водорода рассчитаны геометрически и уточнены по

модели "наездник". В уточнении использовано 2584 отражения с $I > 2\sigma(I)$ (208 уточняемых параметра, использована весовая схема $\omega = 1/[\sigma^2(Fo^2) + (0.0343P)^2 + 0.3097P]$, где $P = (Fo^2 + 2Fc^2)/3$. Окончательные значения факторов расходимости $R_1(F)$ 0.0280, $wR_2(F^2)$ 0.0695 по отражениям с $I > 2\sigma(I)$, $R_1(F)$ 0.0324, $wR_2(F^2)$ 0.0724, GOF 1.079 по всем независимым отражениям. Остаточная электронная плотность из разностного ряда Фурее после последнего цикла уточнения 0.35 и -0.35 е/Å³. Полные кристаллографические данные депонированы в Кембриджском банке структурных данных (депонент CCDC 1887722).

Список литературы

- (a) Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications; Petrov, V. A., Ed.; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2009. (b) Gakh, A. A.; Shermolovich, Yu. G. Curr. Top. Med. Chem. 2014, 14, 952.
- (a) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305.
 (b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
 (c) Prakash, G. K. S.; Chacko, S. Curr. Opin. Drug Discovery Dev. 2008, 11, 793.
- (a) Shermolovich, Yu. G.; Pazenok, S. V. Top. Heterocycl. Chem. 2012, 27, 101. (b) Fluorine in Heterocyclic Chemistry; Nenajdenko, V. G., Ed.; Springer: Heidelberg, 2014.
- 4. Davis, F. A.; Kasu, P. V. N. Org. Prep. Proc. Int. 1999, 31, 125.
- (a) Timoshenko, V. M.; Siry, S. A.; Rozhenko, A. B.; Shermolovich, Yu. G. J. Fluorine Chem. 2010, 131, 172.

(b) Siry, S. A.; Timoshenko, V. M. *Tetrahedron Lett.* **2010**, *51*, 6406. (c) Mikhailichenko, S. S.; Bouillon, J.-P.; Besson, T.; Shermolovich, Yu. G. *Tetrahedron Lett.* **2010**, *51*, 990.

- 6. Млостонь, Г.; Романьски, Я.; Русанов, Э. Б.; Чернега, А. Н.; Шермолович, Ю. Г. *Журн. орган. химии* **1995**, *31*, 1027.
- Mykhaylychenko, S. S.; Siryi, S. A.; Pikun, N. V.; Shermolovich, Yu. G. Chem. Heterocycl. Compd. 2015, 51, 861. [Химия гетероцикл. соединений 2015, 51, 861.]
- Mykhaylychenko, S. S.; Pikun, N. V.; Rusanov, E. B.; Rozhenko, A. B.; Shermolovich, Yu. G. Chem. Heterocycl. Compd. 2017, 53, 1268. [Химия гетероцикл. соединений 2017, 53, 1268.]
- 9. Hosomi, A.; Matsuyama, Y.; Sakurai, H. J. Chem. Soc., Chem. Commun. 1986, 1073.
- Middleton, W. J.; Sharkey W. H. J. Org. Chem. 1965, 30, 1384.
- Popkova, V. Ya.; Bekker, R. A.; Mysov, E. I.; Galakhov, M. V.; Knunyants, I. L. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1985, 34, 2536. [*H36. AH CCCP, Cep. xum.* 1985, 2740.]
- (a) Mloston, G.; Linden, A.; Heimgartner, H. Helv. Chim. Acta 1991, 74, 1386. (b) Huisgen, R.; Li, X.; Mloston, G.; Fulka, C. Eur. J. Org. Chem. 2000, 1695.
- Mykhaylychenko, S. S.; Bouillon, J.-P.; Shermolovich, Yu. G. J. Fluorine Chem. 2009, 130, 878.
- 14. Karlson, S.; Högberg, H.-E. Org. Lett. 1999, 1, 1667.
- 15. Pikun, N. V.; Mykhaylychenko, S. S.; Rusanov, E. B.; Shermolovich, Yu. G. *Russ. J. Org. Chem.* **2013**, *49*, 1572. [Журн. орган. химии **2013**, *49*, 1597.]
- 16. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.