

Взаимодействие 4-аминокумарина с β-карбонилзамещенными 4*H*-хроменами: синтез производных 5*H*-хромено[4,3-*b*]пиридин-5-она

Дмитрий В. Осипов¹, Алина А. Артёменко¹, Виталий А. Осянин¹*, Юрий Н. Климочкин¹

¹ Самарский государственный технический университет, ул. Молодогвардейская, 244, Самара 443100, Россия; e-mail: VOsyanin@mail.ru Поступило 10.01.2019 Принято после доработки 4.03.2019

При взаимодействии 4*H*-хромен-3-карбальдегидов и 1*H*-бензо[*f*]хромен-3-карбальдегидов с 4-аминокумарином получена серия производных пиридокумаринов, содержащих 2-гидроксибензильный или 2-гидрокси-1-нафтильный заместитель в β-положении к атому азота, как результат карбо-реакции Михаэля, раскрытия хроманового цикла и циклодегидратации.

Ключевые слова: 4-аминокумарин, хромен-3-карбальдегиды, 5*H*-хромено[4,3-*b*]пиридин-5-оны, реакция Михаэля.

Интерес к разработке новых методов синтеза функционально замещенных 5*H*-хромено[4,3-*b*]пиридин-5-онов (пиридокумаринов) обусловлен широким спектром их биологического действия.¹ Среди них найдены соединения, обладающие противораковой (структуры A-D),² противовоспалительной (соединение E),³ антибактериальной (соединение F)⁴ активностью, а также ингибиторы топоизомераз I (соединение A) и II (соединение B) и ароматазы (соединение C). Кроме того, данный структурный фрагмент присутствует в составе ряда алкалоидов. Из природных хроменопиридинов известны выделенные из мангрового энтофитного грибка *Phomopsis* sp. фохродины A–C (структура G);^{5а} выделенные из *Ganoderma calidophilum* – ганокалицины A и B (структура H), обладающие антиаллергической активностью; выделенный из *Ganoderma cochlear* – ганокохлеарин G (соединение \mathbf{I})^{5b} и кохлеарин A (соединение \mathbf{J}),^{5c} являющийся ингибитором кальциевых каналов T-типа (рис. 1).^{5d-f}

Схема 1

Настоящая работа продолжает исследования синтетического потенциала карбонилзамещенных 4H-хроменов применительно к получению гетероциклов.⁶ Нами разработан способ синтеза 5H-хромено[4,3-*b*]пиридин-5-онов **За–h**, содержащих 2-гидроксибензильный или 2-гидрокси-1-нафтильный заместитель в β-положении пиридинового цикла и незамещенных по α - и γ -положениям, из хроменкарбальдегидов **1а–h** и 4-аминокумарина (**2**), взятых в соотношении 1:1.5, в присутствии 5 экв. AcONH₄ в кипящей AcOH. Выходы продуктов составили 52–77% (схема 1).

Добавление AcONH₄ не является принципиальным для протекания реакции, однако в его отсутствие выходы 5*H*-хромено[4,3-*b*]пиридин-5-онов **3a–h**, как правило, ниже, а время реакции увеличивается. Использование 50% избытка 4-аминокумарина (**2**) также повышает выходы продуктов, что можно объяснить конкурирующим ацидолизом 4-аминокумарина (**2**), приводящим к *о*-гидроксиацетофенону.⁷

В ИК спектрах производных 5*H*-хромено[4,3-*b*]пиридин-5-онов За-h наблюдается широкая полоса поглощения гидроксильной группы в области 3480–2400 см⁻¹, присутствует интенсивная полоса поглощения карбонильной группы при 1748–1699 см⁻¹. В спектрах ЯМР ¹Н соединений 3a-f,h протоны метиленового фрагмента, протон гидроксильной группы, атомы водорода в α-и у-положениях пиридинового цикла резонируют соответственно в областях 4.10-4.52, 9.38-11.32 (8.14 м. д. в спектре соединения 3f), 8.86-9.10 и 8.01-8.36 м. д. При этом протоны пиридинового цикла проявляются, как правило, в виде дублетов с КССВ 1.8-2.1 Гц. В случае соединения 3f экранирование гидроксильного протона, по-видимому, связано с наличием соседнего адамантильного заместителя. В спектрах ЯМР ¹³С 5*H*-хромено-[4,3-b]пиридин-5-онов За-h характеристичными являются сигналы атомов углерода карбонильной группы при 161 м. д. и сигнал α-углеродного атома пиридинового фрагмента в области 156.6-157.4 м. д. В случае производных нафтола 3a-d и кумарина 3h атом углерода метиленового фрагмента резонирует при 25.8-28.0 м. д., а в случае производных фенола 3e,f - в области 32.7-33.2 м. д. В спектрах DEPT число протонов, непосредственно связанных с атомами ¹³С, согласуется с приведенными структурами.

Эта региоселективная реакция протекает с образованием связи между α-углеродным атомом хроменкарбальдегида 1 и β-углеродным атомом 4-аминокумарина (2), по всей видимости, по механизму, сходному с недавно описанным синтезом β-(2-гидроксибензил)пиридинов из карбонилзамещенных 4*H*-хроменов, СН-кислот и аммиака или предварительно полученного енаминона на основе димедона.⁸ Однако попытки ввести в реакцию с 4-аминокумарином (2) хромены, содержащие трифторацетильную или бензоильную группу вместо формильной, не увенчались успехом. Следует отметить, что в реакции 1*H*-бензо[*f*]хромен-2-карбальдегида (1а) с 4-(бензиламино)кумарином также были выделены лишь исходные соединения. В то же время реакция дигидропиранкарбальдегида 1i с 4-аминокумарином (2) протекает аналогично превращениям хроменкарбальдегидов 1а-h с образованием 3-(3-гидроксипропил)-5*H*-хромено[4,3-*b*]пиридин-5-она (**3i**) (схема 2).

Схема 2

Стоит отметить, что 4-аминокумарины являются одними из очевидных прекурсоров в синтезе 5Н-хромено-[4,3-*b*]пиридин-5-онов. Из последних примеров следует упомянуть инициируемые медью конденсации 4-аминокумаринов с пропиофенонами в присутствии 4-OH-TEMPO,^{9a} с ү-стирил/арил/гетарил-β, ү-ненасыщенными α-кетоэфирами при микроволновой активации,⁹⁶ конденсацию с α-азидохалконами,^{9c} а также катализируемую медью циклизацию 4-ариламинокумаринов в присутствии ТВРВ с ДМФА в качестве источника углерода с получением 6Н-хромено[4,3-b]хинолин-6-онов.^{9d} Хромено[4,3-*b*]пиридин-5-оны также были получены на основе хромон-3-карбальдегидов и 4-гидроксикумарина в присутствии AcONH₄.⁹

Неописанные ранее хроменкарбальдегиды 1e,g,hбыли получены из соответствующих предшественников *о*-хинонметидов 4-6 и 3-(диэтиламино)акролеина (7) (схема 3).¹⁰ При этом нам впервые удалось применить гидроксибензиловые спирты (соединения 4 и 5) в качестве субстратов для получения 4H-хромен-3-карбальдегидов, в то время как ранее для получения неконденсированных хроменкарбальдегидов были использованы менее устойчивые 2-хлорметилфенолы.^{10с} Хромен **1е** был получен с выходом 32% из нитросалицилового спирта **4** при активации последнего *in situ* Ac₂O.^{10b} Для получения хроменкарбальдегидов **1g,h** из диарилкарбинола **5** или основания Манниха **6** на основе 4-метил-7-гидроксикумарина также как и для 1-(диметиламино)метил-2-нафтолов **1а–d** достаточно нагревания в AcOH без дополнительной активации.^{10d}

Схема 3

Таким образом, мы показали, что в реакции 4-аминокумарина с 4*H*-хромен-3-карбальдегидом или 3,4-дигидро-2*H*-пиран-5-карбальдегидом в качестве акцепторов Михаэля происходит аннелирование пиридинового цикла к кумариновому фрагменту с образованием 5*H*-хромено[4,3-*b*]пиридин-5-онов.

Экспериментальная часть

ИК спектры записаны на спектрометре Shimadzu IRAffinity-1, оснащенном приставкой Specac Diamond ATR GS 10800-В. Спектры ЯМР ¹Н и ¹³С (400 и 100 МГц соответственно), а также DEPT зарегистрированы на спектрометре JEOL JNM-ECX400 в ДМСО- d_6 или CDCl₃, внутренний стандарт – остаточные сигналы растворителя: 2.50 и 7.26 м. д. для ядер ¹Н, 39.5 и 77.0 м. д. для ядер ¹³С. Элементный анализ выполнен на автоматическом CHNS-анализаторе Euro Vector EA-3000. Температуры плавления определены капиллярным методом на приборе SRS OptiMelt MPA100. Тонкослойная хроматография проведена на алюминиевых пластинах, покрытых силикагелем (Macherey-Nagel XtraSilGel UV-254), проявление в УФ свете и в парах иода.

Синтез исходных хроменкарбальдегидов **1а-d**,**f** проведен по известным методикам.^{10c,d}

6-Нитро-4*H*-хромен-3-карбальдегид (1е). К раствору 4.225 г (25 ммоль) 2-(гидроксиметил)-4-нитрофенола (4) и 3.175 г (25 ммоль) 3-(диэтиламино)акролеина (7) в 20 мл АсОН добавляют 2.550 г (25 ммоль) Ас₂О и кипятят полученную смесь в течение 2 ч. Большую часть АсОН (15 мл) упаривают при пониженном давлении, к остатку добавляют 5 мл горячего МеОН, смесь медленно охлаждают до комнатной температуры и затем выдерживают в течение 2 ч при -30 °C. Выпавший осадок отфильтровывают, промывают ледяным МеОН и перекристаллизовывают из EtOH. Выход 1.640 г (32%), желтые кристаллы, т. пл. 181–182 °С. ИК спектр, v, см⁻¹: 1653 (С=О), 1580, 1516, 1483, 1429, 1344, 1335, 1302, 1229, 1206, 1180, 1134, 1086, 926, 907, 824, 746. Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (J, Гц): 3.63 (2H, с, CH₂); 7.12 (1H, д, J = 9.6, H-8); 7.40 (1Н, с) и 7.06-8.10 (2Н, м, Н-2,5,7); 9.51 (1Н, с, СНО). Спектр ЯМР ¹³С (CDCl₃), б, м. д.: 20.8 (CH₂); 118.0 (CH); 118.1; 121.1; 124.1 (CH); 126.0 (CH); 144.7 (C-6); 154.5 (C-8a); 157.9 (2-СН); 189.3 (СНО). Найдено, %: С 58.61; Н 3.39; N 6.75. C₁₀H₇NO₄. Вычислено, %: C 58.54; H 3.44; N 6.83.

4-Фенил-4*H*-хромен-3-карбальдегид (1g). Смесь 1.500 г (7.5 ммоль) 2-[гидрокси(фенил)метил]фенола (5) и 0.990 г (7.8 ммоль) 3-(диэтиламино)акролеина (7) в 10 мл АсОН нагревают при кипячении в течение 1.5 ч, разбавляют 10 мл MeOH и выдерживают при -30 °C в течение ночи. Выпавший осадок отфильтровывают и очищают перекристаллизацией из EtOH. Выход 1.133 г (64%), бледно-желтые кристаллы, т. пл. 121-123 °С. ИК спектр, v, см⁻¹: 1670 (С=О), 1643, 1578, 1485, 1454, 1317, 1225, 1184, 1103, 890, 777, 750, 741, 694. Спектр ЯМР ¹Н (CDCl₃), б, м. д. (*J*, Гц): 5.02 (1Н, с, 4-СН); 7.04– 7.28 (9H, м, H Ar); 7.52 (1H, с, 2-CH); 9.38 (1H, с, CHO). Спектр ЯМР ¹³С (CDCl₃), б, м. д.: 37.8 (4-CH); 117.0 (CH); 122.2; 124.1; 125.8 (CH); 126.9 (CH); 128.2 (3CH); 128.6 (2CH); 130.6 (CH); 145.0; 149.6; 158.5; 189.4 (CHO). Найдено, %: С 81.27; Н 5.08. С₁₆Н₁₂О₂. Вычислено, %: С 81.34; Н 5.12.

4-Метил-2-оксо-2H,10H-пирано[2,3-f]хромен-9-карбальдегид (1h). Смесь 1.293 г (4.7 ммоль) 7-гидрокси-4-метил-8-(морфолин-4-илметил)-2*H*-хромен-2-она (6) и 0.597 г (4.7 ммоль) 3-(диэтиламино)акролеина (7) в 10 мл АсОН нагревают при кипячении в течение 40 мин, разбавляют 5 мл МеОН и выдерживают в течение ночи при -30 °C. Выпавший осадок отфильтровывают, промывают ледяным МеОН и перекристаллизовывают из ДМФА. Выход 0.353 г (31%), бесцветные кристаллы, т. пл. 249-250 °С. ИК спектр, v, см⁻¹: 1732, 1676, 1655, 1655, 1628, 1597, 1493, 1439, 1385, 1352, 1306, 1263, 1234, 1209, 1186, 1169, 1144, 1130, 1045, 1001, 937, 866, 814, 770, 756. Спектр ЯМР ¹Н (ДМСО-*d*₆, 100 °С), б, м. д. (*J*, Гц): 2.39 (3H, c, CH₃); 3.41 (2H, c, CH₂); 6.26 (1H, c, 3-CH); 7.05 (1Н, д, J = 8.7, Н-5); 7.63 (1Н, д, J = 8.7, Н-6); 7.83 (1Н, с, 8-СН); 9.52 (1Н, с, СНО). Спектр ЯМР ¹³С (ДМСО-*d*₆, 100 °С), б, м. д.: 16.0 (СН₂); 18.5 (СН₃); 108.6; 113.2 (СН); 113.3 (CH); 117.1; 118.0; 125.1 (CH); 152.2; 152.3; 153.3; 159.0 (8-СН); 159.8; 190.7 (СНО). Найдено, %: С 69.38; Н 4.11. С₁₄Н₁₀О₄. Вычислено, %: С 69.42; Н 4.16.

Получение 5*H*-хромено[4,3-*b*]пиридин-5-онов 3а–h (общая методика). Смесь 1 ммоль альдегида 1а–h, 0.241 г (1.5 ммоль) 4-аминокумарина (2) и 0.385 г (5 ммоль) AcONH₄ в 3 мл AcOH нагревают при кипячении в течение 10 ч, охлаждают до комнатной температуры, при перемешивании добавляют 2 мл MeOH и выдерживают при -30 °C в течение 2 ч. Выпавший осадок отфильтровывают, промывают ледяным MeOH, затем CH₂Cl₂ и очищают перекристаллизацией.

3-[(2-Гидроксинафталин-1-ил)метил]-5Н-хромено-[4,3-*b*]пиридин-5-он (3а). Выход 0.230 г (65%), бесцветные кристаллы, т. пл. 282-284 °С (АсОН). ИК спектр, v, cm⁻¹: 3400–2600 (OH), 1736 (C=O), 1630, 1603, 1584, 1560, 1514, 1501, 1456, 1447, 1437, 1356, 1317, 1292, 1267, 1242, 1223, 1153, 1107, 1090, 993, 872, 802, 756, 741, 729. Спектр ЯМР¹Н (ДМСО-*d*₆), б, м. д. (*J*, Гц): 4.51 (2H, с, CH₂); 7.22-7.28 (2H, м, H Ar); 7.32-7.37 (2H, м, H Ar); 7.38–7.42 (1H, м, H Ar); 7.51–7.56 (1H, м, H Ar); 7.72 (1H, д, J = 9.0, H Ar); 7.77 (1H, д, J = 8.0, H Ar); 7.96 (1H, д, J = 8.5, H Ar); 8.18 (1H, д, J = 2.1, H- γ пиридин); 8.38 (1H, д. д, J = 7.8, J = 1.4, H Ar); 9.10 (1H, д, J = 2.1, H- α пиридин); 10.02 (1H, c, OH). Спектр ЯМР ¹³С (ДМСО-*d*₆), б, м. д.: 27.5 (СН₂); 117.1; 117.4 (СН, C); 118.6 (CH); 119.5; 123.1 (2CH); 124.4 (CH); 125.3 (CH); 127.2 (CH); 128.8; 129.1 (2CH); 132.4 (CH); 133.4; 136.7 (CH); 138.7; 149.2; 152.3; 153.4; 156.7 (a-CH пиридин); 161.0 (С=О). Найдено, %: С 78.07; Н 4.30; N 3.89. C₂₃H₁₅NO₃. Вычислено, %: С 78.18; Н 4.28; N 3.96.

3-[(6-Бром-2-гидроксинафталин-1-ил)метил]-5Нхромено[4,3-b]пиридин-5-он (3b). Выход 0.320 г (74%), бесцветные кристаллы, т. пл. 336-338 °С (ДМФА). ИК спектр, v, см⁻¹: 3400–2600 (ОН), 1732 (С=О), 1674, 1628, 1601, 1582, 1560, 1501, 1456, 1447, 1294, 1267, 1161, 1109, 1092, 885, 878, 866, 816, 800, 758. Спектр ЯМР ¹Н (ДМСО-*d*₆), б, м. д. (*J*, Гц): 4.50 (2H, с, CH₂); 7.30 (1H, д, J = 8.9, H Ar); 7.36–7.41 (2H, м, H Ar); 7.49 (1H, д. д. J = 8.9, J = 2.0, H Ar); 7.56–7.60 (1H, м, H Ar); 7.73 (1H, д, J = 9.2, H Ar); 7.93 (1H, д, J = 9.2, H Ar); 8.05 (1H, д, *J* = 2.0, H Ar); 8.16 (1H, д, *J* = 2.0, H Ar); 8.41 (1H, д. д, *J* = 7.7, *J* = 1.6, H Ar); 9.08 (1H, д, *J* = 2.0, H-а пиридин); 10.18 (1H, с, OH). Спектр ЯМР ¹³С (ДМСО-*d*₆), δ, м. д.: 27.5 (CH₂); 116.0; 117.5 (C, CH); 119.5; 119.8 (CH); 124.4 (CH); 125.4 (CH); 125.6 (CH); 128.4 (CH); 129.9 (CH); 130.1; 130.8 (CH); 132.1; 132.5 (CH); 136.6 (CH); 138.4; 149.3; 152.4; 153.9; 156.7 (а-СН пиридин); 161.0 (C=O). Найдено, %: С 63.99; Н 3.19; N 3.15. С₂₃H₁₄BrNO₃. Вычислено, %: С 63.91; Н 3.26; N 3.24.

3-{[6-(трет-Бутил)-2-гидроксинафталин-1-ил]метил}-5H-хромено[4,3-b]пиридин-5-он (3с). Выход 0.287 г (70%), бесцветные кристаллы, т. пл. 251-253 °С (ДМФА-МеОН, 2:1). ИК спектр, v, см⁻¹: 3400–2600 (ОН), 1748 (C=O), 1601, 1578, 1562, 1501, 1481, 1456, 1317, 1292, 1265, 1163, 1150, 1111, 1090, 995, 820, 804, 750. Спектр ЯМР ¹Н (ДМСО-*d*₆), б, м. д. (*J*, Гц): 1.27 (9Н, с, С(СН₃)₃); 4.47 (2H, с, CH₂); 7.23 (1H, д, J = 8.9, H Ar); 7.32–7.37 (2H, м, H Ar); 7.48 (1H, д. д, J = 8.9, J = 1.8, H Ar); 7.54 (1H, т. д, *J* = 7.9, *J* = 1.4, H Ar); 7.64–7.73 (2H, м, H Ar); 7.87 (1H, д, J = 8.9, H Ar); 8.17 (1H, д, J = 2.0, H- γ пиридин); 8.38 (1H, д, J = 7.8, H Ar); 9.09 (1H, д, J = 2.0, H-α пиридин); 9.89 (1H, с, OH). Спектр ЯМР ¹³С (ДМСО-*d*₆), б, м. д.: 27.6 (СН₂); 31.5 (3СН₃); 34.7 (<u>С</u>(СН₃)₃); 116.8; 117.4 (CH, C); 118.5 (CH); 119.5; 122.9 (CH); 124.0 (CH); 124.4 (CH); 125.3 (CH); 125.9 (CH); 128.7; 129.1 (CH); 131.5; 132.3 (CH); 136.7 (CH); 138.8; 145.1; 149.2; 152.3; 152.8; 156.7 (α-СН пиридин); 161.0 (С=О).

Найдено, %: С 79.18; Н 5.59; N 3.37. С₂₇Н₂₃NO₃. Вычислено, %: С 79.20; Н 5.66; N 3.42.

3-{[6-(Адамантан-1-ил)-2-гидроксинафталин-1-ил]метил}-5*H*-хромено[4,3-*b*]пиридин-5-он (3d). Выход 0.327 г (67%), бесцветные кристаллы, т. пл. 255-257 °С (ДМФА). ИК спектр, v, см⁻¹: 3400-2600 (ОН), 2901, 2845 (СН адамантан), 1746 (С=О), 1609, 1599, 1501, 1456, 1317, 1294, 1261, 1157, 1149, 1111, 993, 881, 816, 756. Спектр ЯМР ¹Н (ДМСО-*d*₆, 125 °С), δ, м. д. (*J*, Гц): 1.74 (6H, уш. с, CH₂ адамантан); 1.92 (6H, уш. с, CH₂ адамантан); 2.05 (3H, уш. с, CH адамантан); 4.52 (2H, с, CH₂); 7.22 (1H, д, J = 8.9, H Ar); 7.32–7.39 (2H, м, H Ar); 7.48 (1Н, д, J = 8.7, Н Аг); 7.54–7.58 (1Н, м, Н Аг); 7.64– 7.69 (2Н, м, Н Аг); 7.87 (1Н, д, J = 8.9, Н Аг); 8.27 (1Н, с, Н-у пиридин); 8.43 (1Н, д, J = 7.8, Н Ar); 9.02 (1Н, с, H-α пиридин); 9.38 (1H, уш. с, OH). Спектр ЯМР ¹³С (ДМСО-*d*₆, 125 °С), б, м. д.: 28.0 (СН₂); 29.1 (3СН адамантан); 36.2 (С адамантан); 37.0 (3CH₂ адамантан); 43.4 (3СН₂ адамантан); 116.8; 117.3 (СН, С); 118.8 (СН); 119.7; 122.8 (CH); 124.0 (CH); 124.5 (CH); 124.9 (CH); 125.2 (CH); 129.1 (CH); 129.3; 131.9; 132.2 (CH); 136.8 (CH); 138.9; 145.6; 149.3; 152.6; 152.9; 156.8 (α-CH пиридин); 160.9 (С=О). Найдено, %: С 81.37; Н 5.94; N 2.76. С₃₃Н₂₉NO₃. Вычислено, %: С 81.29; Н 6.00; N 2.87.

3-(2-Гидрокси-5-нитробензил)-5Н-хромено[4,3-b]пиридин-5-он (Зе). Выход 0.181 г (52%), бесцветные кристаллы, т. пл. 312-314 °С (АсОН). ИК спектр, v, см⁻¹: 3300-2400 (OH), 1730 (C=O), 1611, 1587, 1562, 1520, 1493, 1456, 1433, 1335, 1279, 1265, 1171, 1159, 1113, 1098, 1082, 910, 827, 748. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д. (*J*, Гц): 4.14 (2H, c, CH₂); 6.95 (1H, д, *J* = 8.9, H-3 фенол); 7.37-7.41 (2Н, м, Н Аг); 7.57-7.61 (1Н, м, Н Аг); 8.01 (1H, д. д. J = 8.9, J = 2.8, H-4 фенол); 8.26 (1H, д. J = 2.8, H-6 фенол); 8.36 (1H, д, J = 2.1, H- γ пиридин); 8.41 (1H, д. д, *J* = 8.2, *J* = 1.4, H Ar); 9.03 (1H, д, *J* = 2.1, Н-α пиридин); 11.32 (1Н, уш. с, ОН). Спектр ЯМР ¹³С (ДМСО-*d*₆), б, м. д.: 32.7 (СН₂); 115.9 (СН); 117.5 (С, CH); 119.5; 124.5 (CH); 125.3 (CH); 125.4 (CH); 127.0 (CH); 127.8; 132.5 (CH); 137.2; 137.4 (CH); 140.1; 149.5; 152.5; 157.0 (α-СН пиридин); 161.0; 162.3 (С=О). Найдено, %: С 65.60; Н 3.44; N 7.93. С₁₉H₁₂N₂O₅. Вычислено, %: С 65.52; Н 3.47; N 8.04.

3-[3-(Адамантан-1-ил)-2-гидрокси-5-метилбензил]-5H-хромено[4,3-b]пиридин-5-он (3f). Выход 0.276 г (61%), бесцветные кристаллы, т. пл. 236-238 °С (ДМФА-МеОН, 2:1). ИК спектр, v, см⁻¹: 3480 (ОН), 2903, 2843 (СН адамантан), 1711 (С=О), 1611, 1603, 1560, 1503, 1454, 1271, 1206, 1171, 1152, 1115, 1103, 764. Спектр ЯМР ¹Н (ДМСО-*d*₆), б, м. д. (*J*, Гц): 1.67 (6Н, уш. с, СН₂ адамантан); 1.97 (3Н, уш. с, СН адамантан); 2.05 (6Н, уш. с, СН₂ адамантан); 2.13 (3Н, c, CH₃); 4.10 (2H, c, CH₂); 6.79 (1H, c, H Ar); 6.80 (1H, c, H Ar); 7.36–7.40 (2H, м, H Ar); 7.56–7.60 (1H, м, H Ar); 8.14 (1H, с, OH); 8.22 (1H, с, Н-у пиридин); 8.41 (1H, д, J = 7.3, H Ar); 8.92 (1H, c, H-а пиридин). Спектр ЯМР ¹³С (ДМСО-*d*₆), б, м. д.: 21.1 (СН₃); 29.0 (3СН адамантан); 33.2 (CH₂); 36.9 (С адамантан); 37.2 (3CH₂ адамантан); 40.7 (3СН₂ адамантан); 117.3; 117.5 (СН); 119.6; 124.4 (CH); 125.4 (CH); 126.4 (CH); 128.2; 129.0 (2C); 132.4 (CH); 137.2 (CH); 138.3; 138.7; 149.2; 151.6; 152.4; 156.9 (α-СН пиридин); 161.1 (С=О). Найдено, %:

С 79.72; Н 6.45; N 2.99. С₃₀Н₂₉NO₃. Вычислено, %: С 79.80; Н 6.47; N 3.10.

3-[(2-Гидроксифенил)(фенил)метил]-5Н-хромено-[4,3-b]пиридин-5-он (3g). Выход 0.224 г (59%), бесцветные кристаллы, т. пл. 243-245 °С (АсОН). ИК спектр, v, cm⁻¹: 3400–3200 (OH), 1713 (C=O), 1597, 1560, 1454, 1406, 1341, 1281, 1271, 1231, 1207, 1171, 1159, 1150, 1111, 1086, 872, 816, 756. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д. (J, Гц): 6.01 (1Н, с, СНРh); 6.72-6.76 (2Н, м, H Ar); 6.83 (1H, д, J = 8.0, H Ar); 7.06–7.14 (3H, м, H Ar); 7.23 (1H, т, J = 7.3, H Ar); 7.30–7.34 (2H, м, H Ar); 7.38–7.42 (2H, м, H Ar); 7.58–7.62 (1H, м, H Ar); 8.01 (1H, д, *J* = 1.8, H-у пиридин); 8.43 (1H, д, *J* = 7.8, H Ar); 8.86 (1H, д, J = 1.8, Н-а пиридин); 9.62 (1H, с, OH). Спектр ЯМР ¹³С (ДМСО-*d*₆), δ, м. д.: 47.5 (СНРh); 115.9 (CH); 117.3; 117.5 (CH); 119.5; 119.6 (CH); 124.5 (CH); 125.4 (CH); 127.2 (CH); 128.6 (CH); 128.9; 129.1 (2CH); 129.7 (2CH); 130.2 (CH); 132.6 (CH); 137.0 (CH); 141.0; 142.4; 149.4; 152.5; 155.2; 157.4 (а-СН пиридин); 161.1 (C=O). Найдено, %: С 79.21; Н 4.48; N 3.60. С₂₅H₁₇NO₃. Вычислено, %: С 79.14; Н 4.52; N 3.69.

3-[(7-Гидрокси-4-метил-2-оксо-2Н-хромен-8-ил)метил]-5*H*-хромено[4,3-*b*]пиридин-5-он (3h). Выход 0.297 г (77%), бесцветные кристаллы, т. пл. 330-332 °С (ДМФА). ИК спектр, v, см⁻¹: 3258 (ОН), 1699 (С=О), 1607, 1576, 1558, 1501, 1456, 1387, 1358, 1304, 1265, 1184, 1171, 1157, 1150, 1115, 1057, 818, 764. Спектр ЯМР ¹Н (ДМСО-*d*₆), б, м. д. (*J*, Гц): 2.31 (3H, с, CH₃); 4.17 (2H, с, CH₂); 6.10 (1H, с, H-3 кумарин); 6.89 (1H, д, J = 8.4, Н Ar); 7.33–7.38 (2Н, м, Н Ar); 7.49 (1Н, д, J = 8.7, Н Ar); 7.53–7.58 (1Н, м, Н Ar); 8.19 (1Н, д, J = 1.8, H-γ пиридин); 8.37 (1H, д, J = 7.6, H Ar); 9.00 (1H, д, J = 1.8, H- α пиридин); 10.83 (1H, c, OH). Спектр ЯМР ¹³С (ДМСО-*d*₆), δ, м. д.: 18.7 (СН₃); 25.8 (СН₂); 110.7 (CH); 112.7 (CH); 112.8; 113.0; 117.4 (CH); 117.5; 119.4; 124.4 (CH); 125.3 (CH); 125.4 (CH); 132.4 (CH); 136.7 (CH); 137.3; 149.4; 152.4; 153.0; 154.4; 156.6 (α-СН пиридин); 159.2; 160.5; 160.9 (С=О). Найдено, %: С 71.75; Н 3.89; N 3.56. С₂₃Н₁₅NO₅. Вычислено, %: C 71.68; H 3.92; N 3.63.

3-(3-Гидроксипропил)-5*H***-хромено[4,3-***b***]пиридин-5-он (3i)**. Выход 0.164 г (64%), бесцветные кристаллы, т. пл. 91–92 °С (ЕtOH). ИК спектр, v, см⁻¹: 1724 (С=О), 1605, 1456, 1265, 1244, 1221, 1169, 1113, 1088, 1036, 762. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д. (*J*, Гц): 1.90–1.99 (2H, м, CH₂); 2.84 (2H, т, *J* = 7.6, CH₂); 4.01 (2H, т, *J* = 6.3, CH₂); 7.41–7.44 (2H, м, H Ar); 7.60–7.64 (1H, м, H Ar); 8.39 (1H, д, *J* = 1.8, H- γ пиридин); 8.46 (1H, д, *J* = 7.8, H Ar); 8.96 (1H, д, *J* = 1.8, H- α пиридин). Спектр ЯМР ¹³С (ДМСО-*d*₆), δ, м. д.: 28.9 (CH₂); 29.7 (CH₂); 63.5 (CH₂); 114.4; 117.5 (CH); 119.6; 124.5 (CH); 125.4 (CH); 132.5 (CH); 137.3 (CH); 138.5; 149.4; 152.5; 157.0 (α -CH пиридин); 161.0 (C=O). Найдено, %: С 70.52; Н 5.07; N 5.38. C₁₅H₁₃NO₃. Вычислено, %: С 70.58; Н 5.13; N 5.49.

Работа выполнена при поддержке РФФИ и Правительства Самарской области в рамках научного проекта 17-43-630838 р_а и при поддержке Министерства образования и науки Российской Федерации в рамках государственного задания (проект 4.5628.2017/6.7).

Список литературы

- (a) Mandal, T. K.; Kuznetsov, V. V.; Soldatenkov, A. T. *Chem. Heterocycl. Compd.* **1994**, *30*, 867. [Химия гетероцикл. *соединений* **1994**, 1011.] (b) Núñez-Vergara, L. J.; Squella, J. A.; Navarrete-Encina, P. A.; Vicente-García, E.; Preciado, S.; Lavilla, R. *Curr. Med. Chem.* **2011**, *18*, 4761.
- (a) Thapa, P.; Jun, K.-Y.; Kadayat, T. M.; Park, C.; Zheng, Z.; Magar, T. B. T.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.-S. *Bioorg. Med. Chem.* 2015, *23*, 6454. (b) Thapa, U.; Thapa, P.; Karki, R.; Yun, M.; Choi, J. H.; Jahng, Y.; Lee, E.; Jeon, K.-H.; Na, Y.; Ha, E.-M.; Cho, W.-J.; Kwon, Y.; Lee, E.-S. *Eur. J. Med. Chem.* 2011, *46*, 3201.
 (c) Neves, M. A. C.; Dinis, T. C. P.; Colombo, G.; Sá e Melo, M. L. *Eur. J. Med. Chem.* 2009, *44*, 4121.
 (d) Mulakayala, N.; Rambabu, D.; Raja, M. R.; Chaitanya, M.; Kumar, C. S.; Kalle, A. M.; Krishna, G. R.; Reddy, C. M.; Rao, M. V. B.; Pal, M. *Bioorg. Med. Chem.* 2012, *20*, 759. (e) Thapa, P.; Lee, E.-S. *Bull. Korean Chem. Soc.* 2012, *33*, 3103.
- Hegab, M. I.; Abdel-Fattah, A.-S. M.; Yousef, N. M.; Nour, H. F.; Mostafa, A. M.; Ellithey, M. Arch. Pharm. Chem. Life Sci. 2007, 340, 396.
- Dawane, B. S.; Konda, S. G.; Bodade, R. G.; Bhosale, R. B. J. Heterocycl. Chem. 2010, 47, 237.
- (a) Chen, H.; Huang, M.; Li, X.; Liu, L.; Chen, B.; Wang, J.; Lin, Y. *Fitoterapia* 2018, *124*, 103. (b) Huang, S. Z.; Cheng, B. H.; Ma, Q. Y.; Wang, Q.; Kong, F. D.; Dai, H. F.; Qiu, S. Q.; Zheng, P. Y.; Liu, Z. Q.; Zhao, Y.-X. *RSC Adv.* 2016, *6*, 21139. (c) Zhou, F.-J.; Nian, Y.; Yan, Y.; Gong, Y.; Luo, Q.; Zhang, Y.; Hou, B.; Zuo, Z.-L.; Wang, S.-M.; Jiang, H.-H.; Yang, J.; Cheng, Y.-X. *Org. Lett.* 2015, *17*, 3082. (d) Luo, Q.; Yang, X.-H.; Yang, Z.-L.; Tu, Z.-C.; Cheng, Y.-X. *Tetrahedron* 2016, *72*, 4564. (e) Wang, X.-L.; Dou, M.; Luo, Q.; Cheng, L.-Z.; Yan, Y.-M.; Li, R.-T.; Cheng, Y.-X. *Fitoterapia* 2017, *116*, 93. (f) Zhao, Z.-Z.; Chen, H.-P.; Feng, T.; Li, Z.-H.; Dong, Z.-J.; Liu, J.-K. *J. Asian Nat. Prod. Res.* 2015, *17*, 1160.
- 6. Osipov, D. V.; Osyanin, V. A.; Klimochkin, Yu. N. Targets Heterocycl. Syst. 2018, 22, 436.
- 7. Ivanov, I. C.; Karagiosov, S. K.; Simeonov, M. F. Arch. Pharm. (Weinheim) 1991, 324, 61.
- Osipov, D. V.; Osyanin, V. A.; Klimochkin, Yu. N. Chem. Heterocycl. Compd. 2018, 54, 1121. [Химия гетероцикл. соединений 2018, 54, 1121.]
- 9. (a) Ling, F.; Xiao, L.; Fang, L.; Lv, Y.; Zhong, W. Adv. Synth. Catal. 2018, 360, 444. (b) Yadav, A.; Biswas, S.; Mobin, S. N.; Samanta, S. Tetrahedron Lett. 2017, 58, 3634. (c) Adib, M.; Peytam, F.; Rahmanian-Jazi, M.; Mohammadi-Khanaposhtani, M.; Mahernia, S.; Bijanzadeh, H. R.; Jahani, M.; Imanparast, S.; Faramarzi, M. A.; Mahdavi, M.; Larijani, B. New J. Chem. 2018, 42, 17268. (d) Weng, Y.; Zhou, H.; Sun, C.; Xie, Y.; Su, W. J. Org. Chem. 2017, 82, 9047. (e) Lee, Y. R. KR Patent 20180003668A.
- (a) Osipov, D. V.; Osyanin, V. A.; Klimochkin, Yu. N. Russ. Chem. Rev. 2017, 86, 625. [Успехи химии 2017, 86, 625.]
 (b) Lukashenko, A. V.; Osyanin, V. A.; Osipov, D. V.; Klimochkin, Yu. N. J. Org. Chem. 2017, 82, 1517.
 (c) Lukashenko, A. V.; Osipov, D. V.; Osyanin, V. A.; Klimochkin, Yu. N. Russ. J. Org. Chem. 2016, 52, 1817. [Журн. орган. химии 2016, 52, 1824.]
 (d) Lukashenko, A. V.; Osyanin, V. A.; Osipov, D. V.; Klimochkin, Yu. N. Chem. Heterocycl. Compd. 2016, 52, 711. [Химия гетероцикл. соединений 2016, 52, 711.]