Г. Д. Крапивин, Н. Д. Кожина, Л. А. Черноусенко, В. Е. Заводник

5H-ФУРАН-2-ОН В РЕАКЦИИ ВИЛЬСМЕЙЕРА—ХААКА*

СИНТЕЗ β-ЗАМЕЩЕННЫХ ФУРАНОВ. МОЛЕКУЛЯРНЫЕ СТРУКТУРЫ 3-ДИМЕТИЛАМИНОМЕТИЛЕН-5-ФОРМИЛ-3H-ФУРАН-2-ОНА И 3,5-ДИ(2,2-ДИМЕТИЛ-4,6-ДИОКСО-1,3-ДИОКСАН-5-ИЛИДЕНМЕТИЛ)ФУРАН-2-ОЛАТА ДИМЕТИЛАММОНИЯ

В результате взаимодействия 5H-фуран-2-она с реагентом Вильсмейера—Хаака—Арнольда с последующим добавлением к реакционной смеси конц. HClO4 получен перхлорат (3-диметиламинометилен-2-оксо-3H-фуран-5-ил) метилениммония, гидролиз которого в разных условиях приводит к 3-диметиламинометилен-5-формил-3H-фуран-2-ону либо к калиевой соли 5-гидроксифуран-2,4-дикарбальдегида. Исследовано взаимодействие последних с CH-кислотами. Методом рентгеноструктурного анализа доказаны структуры ключевых в данной работе соединений.

5H-Фуран-2-он (I) является амбидентным соединением — слабой СН-кислотой, способной давать продукты конденсации с ароматическими альдегидами [2], и непредельным эфиром, присоединяющим электрофильные, нуклеофильные и радикальные агенты по кратной связи [3]. Кроме того, сам непредельный лактон I, в принципе, способен к прототропным таутомерным превращениям с миграцией кратной связи и ароматизацией:

Последнюю таутомерную форму (IB) фиксируют в виде триметилсилилового эфира — продукта реакции с триметилсиланом [4].

Цель настоящей работы — изучение взаимодействия соединения I с классическим реагентом Вильсмейера—Хаака—Арнольда (ВХА), образующимся, в частности, при смешении ДМФА с POCl₃ [5]. Известно, что реагент ВХА способен образовывать енамины с соединениями, содержащими активированное метиленовое звено, а также является весьма активным иминоалкилирующим агентом по отношению к ароматическим соединениями [6] и кратным связям [7]. В связи с этим представляло интерес выделить и охарактеризовать продукт взаимодействия фуранона I с реагентом ВХА и исследовать его поведение при гидролизе и реакциях с CH-кислотами (типичных для альдегидной группы в явной и скрытой, в виде енамина, формах).

Реагент ВХА получали по классической методике при мольном соотношении ДМФА : POCl₃ 2 : 1, добавляли к нему 1 моль фуранона и выдерживали смесь при 60...70 °C 2 ч. Если после этого реакционную массу сразу нейтрализовать раствором поташа (классические условия реакции Вильсмейера), то выход продукта реакции очень низкий (возможно, из-за неустойчивости лактонного цикла в щелочной среде). Поэтому реакционную смесь после охлаждения разбавляли этанолом и добавляли небольшой избыток 70% хлорной кислоты. Через несколько минут выделялись желтые кристаллы соединения II (C₁₀H₁₅ClN₂O₆).

^{*} Предварительное сообщение см. [1].

Полученный таким образом перхлорат II представляет собой типичное солеобразное соединение, хорошо растворимое в воде и устойчивое при хранении без доступа влаги. Согласно элементному анализу и спектральным данным (табл. 1, 2), оно является моноперхлоратом, катион которого можно представить набором канонических структур IIA—IIB.

Таблица 1

Coe-	Брутто-		<u>Найдено</u> Вычисле	<u>), %</u> ho, %		ЙК	уф спектр (этэнол)	7 00	n	Вы-
дине- ние	формула	формула С Н N Hal		Hal	ν, cm ⁻¹	λ _{max} , нм (lg ε)	1 _{пл} , ч	ĸŗ	%	
п	C10H15ClN2O6	<u>40,62</u> 40,76	<u>5.22</u> 5,13	<u>9,45</u> 9,51	<u>12,10</u> 12,03	<u>1725;</u> 1740		245		93
ш	C ₈ H9NO5	<u>57,42</u> 57,46	<u>5.56</u> 5,43	<u>8,33</u> 8,38		1650; 1720	290 (3,84) 384 (4,53)	193194	0,17	70
IV	C ₆ H ₃ O ₄ K	<u>40,41</u> 40,44	<u>1,39</u> 1,10			1720; 1655		235240		73
Va	C15H19NO6	<u>58,50</u> 58,23	<u>6,24</u> 6,19	<u>4.35</u> 4,43		1713; 1725; 1738	413 (4,68)	172173	0,49	13
Vб	C14H17NO5	<u>60,35</u> 60,19	<u>6,06</u> 6,14	<u>4.88</u> 5,02		1713; 1725; 1750	430 (4,53)	170171	0,38	35
Vв	C ₁₃ H ₁₅ NO4	<u>62.55</u> 62,63	<u>5,92</u> 6,07	<u>5,37</u> 5,62		1710;	228 (4,63) 427 (4,23)	216217	0,61	16
Vr	C9H10N2O4	<u>51.22</u> 51,41	<u>5,03</u> 4,80	<u>13,40</u> 13,33		1715	291 (3,51) 380 (3,96)	203204	0,51	32
V д	C12H11NO4	<u>61.55</u> 61,78	<u>4.96</u> 4,76	<u>5,83</u> 6,01		1720; 1760; 1780	457 (3,73)	250251	0,77	30
Ve	C ₁₆ H ₁₆ N ₂ O ₄	<u>64,12</u> 63,98	<u>5,23</u> 5,37	<u>9,17</u> 9,33		1725; 1745; 1762; 2225	509 (4,34)	305306	0,51	84
Ѵж	C13H14N2O4	<u>59,44</u> 59,52	<u>5,18</u> 5,38	<u>10,56</u> 10,69		1680; 1715; 2200	461 (4,62)	232233	0,35	38
VIa	C ₂₀ H ₂₃ NO ₁₀	<u>54.61</u> 54,90	<u>5,57</u> 5,30	<u>3,00</u> 3,20		1680; 1720	558 (4,64)	191192	0,12	68
VIG	C18H21N5O6	<u>57,76</u> 57,58	<u>5,37</u> 5,64	<u>11,28</u> 11,20		1700; 1990; 2015	539 (4,72)	186187	0,28	57

Физико-химические характеристики синтезированных соединений

Спектры ПМР синтезированных соединений

Соеди- нение	Раство- ритель	Химический сдвиг, δ , м. д., <i>J</i> , Гц
п	CF3COOD	3,43 (3H, c, N—CH ₃); 3,47 (3H, c, N—CH ₃); 3,53 (3H, c, N—CH ₃); 3,57 (3H, c, N—CH ₃); 7,50 (1H, c, α -H); 7,85 (1H, c, β -H); 8,02 (1H, c, 4-H)
ш	CDCl₃	3,26 (3H, c, N—CH3); 3,46 (3H, c, N—CH ₃); 6,46 (1H, c, β -H); 7,66 (1H, c, 4-H); 9,56 (1H, c, CHO)
IV	ДМCO-D6	7,30 (1H, c, 4-H); 8,73 (1H, c, CH α O); 9,27 (1H, c, CH β O)
Va	CDCl3	1,25 (3H, T, CH ₂ CH ₃); 1,30 (3H, T, CH ₂ CH ₃); 3,17 (3H, c, N—CH ₃); 3,25 (3H, c, N—CH ₃); 4,20 (2H, K, <u>CH₂CH₃)</u> ; 4,30 (2H, K, <u>CH₂CH₃)</u> ; 6,57 (1H, c, β -H); 6,93 (1H, c, 4-H); 7,23 (1H, c, α -H)
Υб	CDCI3	E-изомер: 1,40 (3H, τ, CH2 <u>CH3</u>); 2,23 (3H, c, COCH3); 3,20 (3H, c, N—CH3); 3,26 (3H, c, N—CH3); 4,30 (2H, κ, <u>CH2</u> CH3); 6,73 (1H, c, β -H); 6,83 (1H, c, 4-H); 7,30 (1H, c, α -H); Z-изомер: 1,25 (3H, τ, CH2 <u>CH3</u>); 2,40 (3H, c, COCH3); 3,20 (3H, c, N—CH3); 3,26 (3H, c, N—CH3); 4,21 (2H, κ, <u>CH2</u> CH3); 6,63 (1H, c, β -H); 6,90 (1H, c, 4-H); 7,20 (1H, c, α -H); соотношение Z/E-изомеров = 2 : 3
VB	CDCl ₃	2,23 (3H, c, COCH3); 2,40 (3H, c, COCH ₃); 3,20 (3H, c, N—CH ₃); 3,25 (3H, c, N—CH ₃); 6,73 (1H, c, β -H); 6,80 (1H, c, 4-H); 7,36 (1H, c, α -H)
Vr	CDCl ₃	E-изомер: 3,30 (3H, c, N—CH3); 3,35 (3H, c, N—CH ₃); 6,70 (1H, c, α -H); 7,32 (1H, α , β-H); 7,40 (1H, α , γ-H); 7,45 (1H, c, 4-H)
νд	CDCl3	3,18 (3H, c, N—CH ₃); 3,22 (3H, c, N—CH ₃); 7,45 (1H, c, α -H); 7,46 (1H, π , H _B); 7,53 (1H, c, 4-H); 7,58 (1H, π , β -H); 7,62 (1H, π . π , H _A , $J_{AB} = 4,0, J_A \beta = 0,6$)
Ve	CDCl ₃	1,46 (6H, c, 2 × CH ₃); 3,23 (3H, c, N—CH ₃); 3,30 (3H, c, N—CH ₃); 6,31 (1H, α , γ -H); 6,73 (1H, c, α -H); 7,36 (1H, c, 4-H); 7,38 (1H, α , β -H, $J\beta,\gamma$ = 16,0)
Vж	CDCl ₃	1,36 (3H, T, CH ₂ CH ₃); 3,34 (3H, c, N—CH ₃); 3,40 (3H, c, N—CH ₃); 4,32 (2H, κ , <u>CH₂CH₃</u>); 7,42 (1H, c, α -H); 7,59 (1H, c, 4-H); 7,64 (1H, c, β -H)
VIa	(CD ₃) ₂ CO	1,69 (12H, c, 4 × CH ₃); 3,00 (6H, c, N(CH ₃) ₂); 7,60 (1H, c, α-H); 8,18 (1H, c, β-H); 9,56 (1H, ym. c, 4-H)
VIG	CDC13	1,33 (6H, τ, 2 × CH ₂ CH ₃); 2,89 (6H, c, N(CH ₃) ₂); 4,28 (4H, κ, 2 × <u>CH₂CH₃</u>); 7,41 (1H, c, α-H); 7,95 (1H, c, 4-H); 7,97 (1H, c, β-H)
VIB	ДМСО-D ₆	2,50 (6H, c, N(CH ₃) ₂); 7,35 (1H, c, α -H); 7,45 (1H, c, β -H); 7,70 (1H, c, 4-H)

Спектр ПМР соли II (табл. 2) содержит три синглетных сигнала олефиновых протонов равной интенсивности (1Н) и сигналы 12 протонов двух диметиламиногрупп в виде четырех синглетов — каждого интенсивностью по 3Н. Судя по наличию в ИК спектре этой соли (табл. 2) интенсивной полосы поглощения при 1740 см⁻¹, характерной для валентных колебаний лактонной карбонильной группы, вклад структуры IIB в общий резонанс незначителен.

В водном растворе при нагревании соль II гладко гидролизуется (оптимальные условия — 1 ч при 60...70 °С) до диенаминоальдегида III. Последний представляет собой желтое кристаллическое вещество с четкой температурой плавления (табл. 1). Полоса карбонильного поглощения альдегидной группы в результате сильного сопряжения смещена в область высоких частот (до 1650 см⁻¹) как, впрочем, и полоса поглощения лактонной карбонильной группы (1720 см⁻¹). В спектре ПМР (табл. 2) имеется характерный сигнал альдегидного протона, два синглетных сигнала олефиновых протонов (все три одинаковой интенсивности 1H) и два синглетных сигнала протонов диметиламиногруппы. Особенностью полученного альдегида является то, что он не дает типичных для альдегидов реакций с реактивами Фелинга и Толленса, не образует семи- и тиосемикарбазонов.

Анализ спектральных данных не позволяет сделать однозначного заключения о структуре полученного диенаминоальдегида, так как такому же набору сигналов может соответствовать две альтернативные структуры III (А и Б):

Для точного установления структуры и исследования особенностей сопряжения в молекуле проведен рентгеноструктурный анализ монокристалла III, выращенного из раствора в этаноле. Проекция пространственной модели соединения III, основные межатомные расстояния и валентные углы представлены на рис. 1, основные межатомные расстояния и валентные углы приведены в табл. 3, координаты атомов в ячейке кристалла — в табл. 4.

Таблица З

Связь	d, Å	Угол	arphi, град.
O(1) - C(1)	1,392(4)	C(6)—N—C(7)	122,4(3)
$O_{(1)}-C_{(4)}$	1,391(4)	C(6)—N—C(8)	121,3(3)
$O_{(2)}-C_{(1)}$	1,220(4)	$C_{(1)}-O_{(1)}-C_{(4)}$	106,6(2)
O(3)-C(5)	1,213(5)	$O_{(1)}-C_{(1)}-O_{(2)}$	119,6(3)
N-C(6)	1,306(4)	$C_{(1)}-C_{(2)}-C_{(3)}$	105,2(3)
NC(7)	1,471(6)	$C_{(2)}-C_{(3)}-C_{(4)}$	108,5(3)
N—C(8)	1,466(5)	$C_{(3)}-C_{(4)}-O_{(1)}$	111,4(3)
$C_{(1)} - C_{(2)}$	1,446(5)	$O_{(1)}-C_{(4)}-C_{(5)}$	120,3(3)
C(2)-C(3)	1,422(5)	$C_{(4)}-C_{(5)}-O_{(3)}$	126,5(4)
$C_{(2)} - C_{(6)}$	1,380(5)		
$C_{(3)} - C_{(4)}$	1,343(5)		
C(4)C(5)	1,430(5)		
C(6)—C(19)	1,522(6)		

Длины связей и валентные углы в молекуле соединения III

Как видно из рис. 1, выделенный продукт гидролиза является 3-диметиламинометилен-5-формил-2(3H)-фураноном. Молекула III в кристалле практически плоская, исключая водородные атомы метильных групп (среднее отклонение не превышает 0,027 Å), атомы кислорода альдегидной группы и лактонного кольца имеют взаимное *цис*-расположение.

Сопряжение в системе связей между альдегидной и диметиламиногруппой сильно искажает межатомные расстояния в молекуле. Так, формально простая связь $C_{(6)}$ —N очень сильно укорочена (до 1,306 Å), ее длина даже меньше, чем длина связи C=N в сопряженных системах (1,340 Å [8]). Сильно укорочена (на 0,04 Å по сравнению со стандартной) и формально ординарная связь $C_{(2)}$ — $C_{(3)}$. Напротив, формально двойные связи $C_{(2)}$ — $C_{(6)}$ и $C_{(4)}$ — $C_{(5)}$ значительно длиннее стандартных (на 0,03 и 0,015 Å соответственно). Отметим, что оба межатомных расстояния C—O в лактонном цикле значительно больше, чем в фурановом кольце (примерно на 0,02 Å), что, возможно, связано с отсутствием ароматичности в последнем.

Атом	x	У	z	U*2
) (1)	5129(4)	6163(2)	7457(2)	41(1)
O ₍₂₎	1829(4)	5436(2)	6801 (3)	55(1)
O ₍₃₎	9048(4)	7052(2)	8805(3)	66(1)
N	3606(4)	5992(2)	2173(3)	38(1)
C ₍₁₎	3560(6)	5854(3)	8379(4)	39(1)
C ₍₂₎	4422(5)	6104(2)	4879(4)	32(1)
C ₍₃₎	6557(6)	6552(3)	5134(4)	38(1)
C(4)	6921(6)	6580(3)	6643(4)	39(1)
C(5)	8813(7)	6993(3)	7434(5)	49(2)
C(6)	3154(6)	5861(2)	3618(4)	36(1)
C(7)	5722(7)	6442(4)	1640(5)	49(2)
C(8)	2056(8)	5636(4)	987(5)	56(2)
H(3)	754(6)	680(2)	442(4)	5(1)
H(5)	993(6)	726(3)	673(4)	5(1)
H(6)	17.1 (6)	556(3)	383(4)	5(1)

Координаты атомов* (Å $\times 10^4$) и температурные факторы (Å² $\times 10^3$) в молекуле соединения Ш

* Координаты атомов водорода не приведены и могут быть получены у авторов.
*2 Эквивалентные изотропные факторы определены как одна третья проекции ортогонализированного U_(i,i) тензора.

Гидролиз соли II водным метанолом в присутствии КОН (или метилата калия) проходит более глубоко до 5-гидроксифуран-2,4-дикарбальдегида, выделенного в виде калиевой соли IV (табл. 1), анион которой может быть представлен набором резонансных структур:

Структуры IVБ и IVB, видимо, вносят очень малый вклад в общий резонанс аниона, так как в ИК спектре (табл. 2) полоса поглощения карбонильной группы лактонного кольца отсутствует, полосы же карбонильного поглощения альдегидных групп сливаются в одну (1716 см⁻¹). В спектре ПМР сигналы неэквивалентных альдегидных протонов смещены в сильное поле (табл. 2), что свидетельствует о значительном переносе электронной плотности с ионизированного кислорода на высокополярные кратные связи С=О и, как следствие, повышении экранирования находящихся рядом с ними протонов.

Сам диальдегид IV — соединение весьма лабильное и гигроскопичное, поэтому его реакции изучены несколько хуже, хотя он вступает во взаимодействие с СН-кислотами подобно исходной соли II и моноальдегиду III, но как и последний не дает типичных для альдегидов реакций с реактивами Фелинга и Толленса.

Соль II и альдегид III достаточно легко взаимодействуют с СН-кислотами в условиях реакции Кневенагеля (растворитель — спирт, несколько капель триэтиламина в качестве катализатора и даже без такового в случае сильных СН-кислот) с образованием одних и тех же продуктов кротонового

Рис. 1. Проекция пространственной модели молекулы альдегида Ш

уплотнения. Слабые СН-кислоты, такие, как малоновый эфир, ацетилацетон, нитрометан и т.п., даже при их избытке образуют в ходе реакции только продукты V.

Структуру соединений Vа—ж подтверждают результаты элементного анализа и спектральные данные (табл. 1, 2).

Более сильные СН-кислоты (кислота Мельдрума, малонодинитрил) в основном образуют продукты конденсации VI (типа 1 : 2). Для получения продуктов V необходимо строго контролировать соотношение реагентов и время реакции (и даже при соблюдении этих условий соединения V необходимо многократно очищать от продуктов более глубокой конденсации, например с помощью колоночной хроматографии на силикагеле). При двухкратоном или немного большем избытке сильной СН-кислоты всегда получаются достаточно чистые продукты VI.

Строение соединений VI представляет определенный интерес, так как согласно результатам элементного анализа и спектральным данным (табл. 1, 2), они представляют собой диметиламмониевые соли 3,5-дизамещенного 2-гидроксифурана, подобно тому как описанный выше диальдегид IV является калиевой солью дизамещенного 2-гидроксифурана.

Для получения наиболее объективной информации о структуре аниона оксифурана были предприняты попытки выращивания монокристаллов соединений III и VI для проведения рентгеноструктурного исследования. Нам удалось вырастить, содержащие кристаллизационную воду и спирт (V16 · 2H₂O · 0,5 C₂H₅OH) монокристаллы соединения VIa из 50% водно-спиртового раствора. Возможно, именно содержащиеся в кристалле вода и спирт обусловили его низкую устойчивость в условиях рентгеновского эксперимента (кристалл достаточно быстро разрушался при облучении, что привело к невысокому качеству эксперимента). Тем не менее, учитывая необычность синтезированных веществ типа VI, мы позволили себе опубликовать полученные результаты.

Проекция пространственной модели соединения VIa представлена на рис. 2 (водородные атомы метильных групп аммониевого иона на рисунке не показаны), основные межатомные расстояния приведены в табл. 5, координаты атомов одной из независимых молекул — в табл. 6. Как видно из рисунка 2, соединение VIa действительно является диметиламмониевой солью замещенного гидроксифурана. В кристалле диметиламмониевый катион располагается в непосредственной близости от ионизированного атома кислорода $O_{(2)}$ и связан с последним линейной водородной связью $O_{(2)...H_n(1)}$ —N так, что атомы $H_n(1)$ и N располагаются в плоскости фуранового цикла.

Рис. 2. Проекция пространственной модели диметиламмониевой соли VIa

Ионизированный атом кислорода O(2) выступает в роли сильного донора электронов, что вызывает существенное изменение межатомных расстояний в системе сопряжения O(2)—C(1)—C(2)—C(3)— C(4)—C(5)—C(6) и далее к карбонильным группам диоксандионового кольца. Перенос электронной плотности настолько велик, что происходит так называемое «переальтернирование связей в системе сопряжения»: формально двойные связи C(1)—C(2), C(3)—C(4), C(5)—C(6) становятся длиннее формально ординарных C(2)—C(3) и C(4)—C(5). (Подобное явление наблюдалось нами ранее в неионизированной молекуле N-[5-(2,2-диметил-4,6-диоксо-1,3-диоксан-5-илиден) метил-фурил-2]иминотрифенилфосфорана [9], где в качестве сильного электронодонора выступал атом азота иминофосфорановой группы). Межатомное расстояние O(2)—C(1) имеет промежуточную величину между стандартными значениями простой C—O (1,37 Å [10]) и двойной C=O (1,20 Å [9]) связей.

Связь	d, Å	Угол	arphi, град.
O(1)-C(1)	1,34(2)	$C_{n(1)} - N - C_{n(2)}$	111.2(11)
O(1)-C(4)	1,47(1)	$O_{(2)}$ — $H_{n(1)}$ — N	179,9(10)
O(2)C(1)	1,25(2)	$C_{(1)} - O_{(1)} - C_{(4)}$	101,4(10)
$C_{(1)} - C_{(2)}$	1,42(2)	$O_{(1)} - C_{(1)} - O_{(2)}$	128,8(15)
C(2)C(3)	1,38(2)	$O_{(1)}-C_{(1)}-C_{(2)}$	115,0(11)
C(3)C(4)	1,38(2)	$C_{(1)}-C_{(2)}-C_{(3)}$	104,7(13)
C(4)C(5)	1,42(2)	$C_{(2)}-C_{(3)}-C_{(4)}$	108,6(11)
C(5)-C(6)	1,36(2)	$C_{(3)} - C_{(4)} - O_{(1)}$	110,2(11)
C ₍₆₎ —C ₍₇₎	1,47(2)	$C_{(3)}-C_{(4)}-C_{(5)}$	138,1(11)
C(7)—O(4)	1,22(2)	$C_{(4)} - C_{(5)} - C_{(6)}$	135,2(13)
C(6)-C(8)	1,46(2)	$C_{(5)}-C_{(6)}-C_{(7)}$	124,6(13)
O(3)—C(8)	1,18(2)	$C_{(5)}-C_{(6)}-C_{(8)}$	115,5(11)
O(5)—C(7)	1,37(1)	$C_{(7)}-C_{(6)}-C_{(8)}$	119,8(11)
O(6)-C(8)	1,39(1)	$O_{(3)}-C_{(8)}-C_{(6)}$	126,9(11)
O(5)-C(9)	1,43(2)	$O_{(3)} - C_{(8)} - O_{(6)}$	118,5(12)
O(6)-C(9)	1,41(1)	$O_{(4)} - C_{(7)} - C_{(6)}$	126,0(11)
C(9)-C(10)	1,51(2)	$O_{(3)} - C_{(8)} - O_{(6)}$	117,5(10)
C(9)—C(11)	1,50(2)	$O_{(5)} - C_{(9)} - O_{(6)}$	109,8(9)
C(2)—C(12)	1,42(2)	$C_{(10)}-C_{(9)}-C_{(11)}$	112,3(11)
C(12)-C(13)	1,37(2)	$C_{(2)}-C_{(12)}-C_{(13)}$	133,6(12)
C(13)-C(14)	1,42(2)	$C_{(12)}-C_{(13)}-C_{(14)}$	125,8(12)
C(13)-C(15)	1,48(2)	$C_{(12)}-C_{(13)}-C_{(15)}$	113,8(11)
O(7)—C(14)	1,19(2)	$C_{(14)}-C_{(13)}-C_{(15)}$	120,2(12)
O(8)—C(15)	1,20(2)	$O_{(7)}-C_{(14)}-C_{(13)}$	127,1(12)
O(9)C(14)	1,35(2)	$O_{(8)} - C_{(15)} - C_{(13)}$	127,6(13)
O(10)-C(15)	1,37(2)	O(9)-C(16)-O(10)	111,0(11)
O(9)-C(16)	1,42(2)	O(9)-C(16)-C(17)	110,0(11)
O(10)—C(16)	1,42(2)	$O_{(10)}-C_{(16)}-C_{(17)}$	109,6(11)
C(16)-C(17)	1,51(2)	$C_{(17)}-C_{(16)}-C_{(18)}$	112,5(12)
$C_{(16)} - C_{(18)}$	1,52(2)	$C_{(15)} - O_{(10)} - C_{(16)}$	118,1(10)

Длины связей и валентные углы в молекуле соединения VIa

Второй диоксандионовый фрагмент (в β -положении фуранового цикла) как бы «выключен» из сопряжения с фурановым кольцом. Связи $C_{(2)}-C_{(12)}$ и $C_{(12)}-C_{(13)}$ имеют нормальное альтернирование. Как результат «выключения» сопряжения можно рассматривать и небольшое отклонение плоскости диоксандионового фрагмента $C_{(12)}-C_{(13)}...C_{(15)}$ от плоскости фуранового кольца со «скручиванием» по связи $C_{(2)}-C_{(12)}$ – классический тип деформации в пространственно перегруженных сопряженных системах [11].

В экзоциклах $H_{(3)}-C_{(3)}-C_{(4)}-C_{(5)}-C_{(6)}-C_{(7)}-O_{(4)}$ и $H_{(3)}-C_{(3)}-C_{(2)}-C_{(12)}-C_{(13)}-C_{(14)}-O_{(7)}$ наблюдается неклассический тип деформации сопряженных систем — искажение валентных углов у sp^2 -гибридизованных атомов $C_{(5)}$ и $C_{(12)}$ до 135° , причем плоскость диоксандионового фрагмента, проведенная через атомы $O_{(6)}$, $C_{(8)}$, $C_{(6)}$, $C_{(7)}$ и $O_{(5)}$, практически сопадает с плоскостью фуранового цикла, т. е. «скручивание» по экзоциклическим связям $C_{(5)}-C_{(6)}$ и $C_{(6)}-C_{(7)}$ практически отсутствует. Такого рода неклассические деформации валентных углов наблюдались ранее в пространственно перегруженных молекулах фурфурилидендиоксандионов [9, 12, 13].

Сферичность оболочки атома водорода H(3) в результате двух контактов H(3)...O(4) и H(3)...O(7) (межатомные расстояния H(3)...O(4) и H(3)...O(7) равны соответственно 2,55 и 2,79 Å), видимо, настолько искажена, что

химический сдвиг этого протона в спектре ПМР смещен в слабое поле до 9,56 м. д. (табл. 2).

Соединения V и VI резко отличаются не только глубиной и интенсивностью окраски, но и формой полосы поглощения в электронных спектрах. Неионизированные соединения V в видимой области спектра имеют широкие, гладкие и симметричные полосы поглощения, а соли VI узкие, асимметричные, причем сами длинноволновые полосы солей VI располагаются в более красной области спектра. Положение длинноволновых

Таблица б

Атом	x	У	Z	U* ²
0.00	7107(7)	1028(8)	-1511(3)	74(4)
	6078(0)	705(11)	-1004(3)	115(6)
0(2)	0076(9) 8026(7)	1610(9)	-2740(3)	68(4)
0(3)	0930(7) 10006(7)	1622(0)	-1575(3)	71(4)
0(4)	10990(7)	1032(9)	-2144(2)	56(4)
0(5)	11/00(0)	2224(7)	-2716(2)	50(4)
0(6)	10/40(7)	1107(8)	-2710(2) -527(2)	58(4)
0(7)	10401(6)	078(0)	-327(2)	73(4)
U ₍₈₎	7313(7)	976(9)	291(3)	52(A)
O(9)	10539(6)	1057(8)	60(3) (02(3)	56(4)
O(10)	9007(7)	1002(8)	492(3)	56(1)
O(2)	-830(2)	-2508(2)	152(2)	51(7)
C(1)	7056(10)	950(14)	-1125(5)	JI(7)
C(2)	8055(11)	1076(11)	-902(4)	47(6)
C(3)	8890(9)	1239(11)	-1177(4)	41(5)
C(4)	8417(9)	1260(11)	-1542(5)	46(6)
C(5)	8772(10)	1455(11)	-1934(4)	48(6)
C(6)	9770(10)	1732(11)	-2116(4)	44(5)
C(7)	10847(10)	1852(11)	-1919(4)	55(6)
C(8)	9726(10)	1845(12)	-2540(4)	54(6)
C(9)	11636(10)	2858(12)	-2499(4)	48(5)
C(10)	12692(12)	2809(14)	-2725(4)	78(7)
C(11)	11467(11)	4139(13)	-2419(4)	63(6)
C(12)	7981(10)	1090(11)	-488(4)	44(6)
C(13)	8756(10)	1266(11)	-194(4)	39(5)
C(14)	9922(10)	1347(12)	-242(4)	51(6)
C(15)	8269(12)	1265(12)	201 (5)	54(7)
C(16)	10073(11)	2285(15)	384(4)	56(6)
C(17)	9986(11)	3562(14)	255(5)	74(7)
C(18)	10797(11)	2266(12)	746(4)	68(6)
N	4143(8)	611(10)	-1457(3)	71(5)
$C_{n(1)}$	4225(13)	1808(12)	-1660(4)	98(7)
$C_{n(2)}$	3265(12)	485(15)	-1134(4)	104(8)
H(3)	982	145	-111	5
H(5)	806	136	-213	5
H(12)	708	111	-39	5
(12) U (1)	473	67	-133	5

Координаты	атомов*	(Å	×	10 ⁴)	и	температурни	ые	факторы	(Å ²	×	10 ³)
		В	MC	лекул	ıe	соединения	VIa				

Координаты атомов водорода метильных групп не приведены и могут быть получены у авторов.
 Эквивалентные изотропные факторы определены как одна третья проекции ортогонализированного U(i,j) тензора.

полос поглощения солей VI, очевидно, обусловлено наличием скрещивающихся систем сопряжения в их анионах, что, согласно А. И. Киприянову [14], приводит к раздвижению полос поглощения, соответствующих поглощению «материнских красителей». В данном случае величина раздвижения, видимо, настолько велика, что коротковолновая полоса поглощения гипсохромно смещена в УФ область, где маскируется другими полосами высокоэнергетических переходов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры для суспензии в вазелиновом масле записаны на приборе IR-71. Спектры ПМР получены на спектрометрах Tesla BS-467A (60 МГц) и Brüker WM-250 (250 МГц). Электронные спектры поглощения сняты на спектрофотометре Specord M-40 для растворов в спирте и воде.

Для хроматографического разделения и очистки веществ использовали силикагель с размерами частиц 40/100 меш. Чистоту полученных соединений и ход реакции контролировали методом TCX на пластинках Silufol UV-254 с использованием системы растворителей ацетон—хлороформ, 1:1.

Рентгеноструктурное исследование соединений III, VI5. Моноклинные светло-желтые кристаллы соединения III, выращенные из спиртового раствора, имеют следующие параметры элементарной ячейки: a = 6,420(2), b = 14,178(5), c = 8,769(3) Å, $\gamma = 100,28(2)^\circ$, V = 785,4(0,8) Å³, пространственная группа P2(1)/b, Z = 4. Параметры элементарной ячейки и интенсивности 734 независимых отражений с $I > 3\sigma(I)$ получены на автоматическом дифрактометре Syntex P1 (МоК α -излучение, $\theta/2\theta$ -сканирование). Структура расшифрована прямым методом с помощью комплекса программ SHELXTL [15] и уточнена в анизотропном (изотропном для атомов водорода) приближении до факторов расходимости R = 0,043 и $R_w = 0,044$.

Моноклинные фиолетовые кристаллы соединения VI6 выращены из 50% спирта, параметры элементарной ячейки: a = 12,215(2), b = 11,122, $c = .0.0^*(9)$ Å, $\gamma = 99,36(1)^\circ$, V = 4593,6(2,9) Å³, пространственная группа P2_{1/n}, Z = 8. Параметры элементарной ячейки и интенсивности 2278 независимых отражений с $I > 3\sigma(I)$ получены на автоматическом дифрактометре CAD-4 (МоК α -излучение, $\theta/2\theta$ -сканирование). Структура расшифрована прямым методом с помощью комплекса программ SHELXTL [15] и уточнена в анизотропном (изотропном для атомов водорода) приближении до факторов расходимости R = 0,081 и $R_w = 0,079$.

Перхлорат (3-диметиламинометилен-2-оксо-3Н-фуран-5-ил) метилениммония (II). К охлажденным до 0 °C 47,9 мл (0,62 моль) N,N-диметилформамида при интенсивном перемешивании добавляют 29,14 мл (0,31 моль) POCl₃. Смесь перемешивают 0,5 ч при комнатной температуре, снова охлаждют до 0 °C и медленно по каплям добавляют 10,59 мл (0,15 моль) 5H-фуран-2она. Затем реакционную смесь выдерживают 2 ч при 60...70 °C, охлаждают до 0 °C и приливают 150 мл охлажденного этанола, тщательно перемешивают и добавляют по каплям 20 мл 70% хлорной кислоты. Выпавшие светло-желтые кристаллы отфильтровывают, промывают холодным спиртом и сушат без доступа влаги.

3-Диметиламинометилен-5-формил-3H-фуран-2-он (III). Раствор 2 г (6,7 ммоль) соли II в 70 мл воды перемешивают 1 ч при 60...70 °С, охлаждают и экстрагируют хлороформом (3 × 25 мл). Объединенный экстракт сушат над Na₂SO₄, растворитель упаривают в вакууме, остаток перекристаллизовывают из этанола.

3,5-Диформилфуран-2-олат калия (IV). К раствору 2 г (6,7 ммоль) соли II в 100 мл 50% метанола добавляют 3,2 г (13,4 ммоль) КОН. Смесь кипятят с обратным холодильником 4...5 ч. После охлаждения растворитель упаривают при комнатной температуре в вакууме, твердый остаток перекристаллизовывают из метанола.

3-(3-Диметиламинометилен-5-(2,2-диэтоксикарбонилвинил)-3H-фуран-2-он (Va). А. К раствору 2,95 г (10 ммоль) соли II в 100 мл этанола добавляют 1,6 г (10 ммоль) малонового эфира и 2...3 капли триэтиламина. Реакционную смесь выдерживают 1...2 ч при 60 °С, контролируя расход исходного продукта с помощью TCX. Растворитель упаривают до объема 20...30 мл, раствор охлаждают, выпавшие кристаллы отфильтровывают и перекристаллизовывают из этанола.

Б. К раствору 1,67 г (10 ммоль) альдегида III в 30 мл этанола добавляют 1,6 г (10 ммоль) малонового эфира и 2...3 капли триэтиламина. Далее реакцию проводят, как указано в методике А.

Аналогично получают соединения Vб-ж.

3,5-Ди (2,2-диметил-4,6-диоксо-1,3-диоксан-5-илиденметил) фуран-2-олат диметиламмония (VIa). А. К раствору 5,9 г (0,02 моль) соли II в 60 мл этанола добавляют 5,76 г (0,04 моль) кислоты Мельдрума и 2...3 капли триэтиламина. Реакционную смесь выдерживают при комнатной температуре, через 3...4 ч из нее начинают выпадать фиолетовые кристаллы. Смесь охлаждают, выпавшие кристаллы отфильтровывают и перекристаллизовывают из спирта.

Б. К раствору 1,67 г (10 ммоль) альдегида Ш в 40 мл этанола добавляют 2,88 г (20 ммоль) кислоты Мельдрума, 2...3 капли триэтиламина. Смесь слегка нагревают до полного растворения кислоты Мельдрума. Далее следуют методике А.

Аналогично синтезируют соединения VIб,в.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кожина Н. Д., Крапивин Г. Д., Заводник В. Е., Граиза Т., Вегх Д., Черноусенко Л. А., Бадовская Л. А. // ХГС. — 1995. — № 1. — С. 135.
- 2. Сороикая Л. Н., Бадовская Л. А., Каклюгина Т. Я., Беленький Л. И., Игнатенко А. В., Крутошикова А., Паниева Л. А. // ЖОрХ. — 1989. — Т. 25. — С. 175.
- 3. Музыченко Г. Ф., Глуховцев В. Г., Бадовская Л. А., Кожина Н. Д., Игнатенко А. В., Кравченко О.Б., Никишин Г. И. // ЖОрХ. — 1981. — Т. 17. — С. 481.
- 4. Yoshii E., Koizumi N., Kitatsuji E. // Heterocycles. 1976. Vol. 4. P. 1663.
- 5. Vilsmeier A., Haak A. // Ber. 1927. Bd 60. S. 121.
- 6. Kira M. A., Nofal Z. M., Gadolla K. Z. // Tetrah. Lett. 1970. Vol. 48. P. 4215.
- 7. Kiyomi K., Ichino M. // J. Org. Chem. 1972. Vol. 37. P. 284.
- 8. Китайгородский А. И., Зоркий П. М., Бельский В. К. Строение органического вещества (данные структурных исследований 1971—1973). — М.: Наука, 1982. — 510 с. 9. Крапивин Г. Д., Вальтер Н. И., Заводник В. Е., Каклюгина Т. Я., Кульневич В. Г. //
- XΓC. 1994. № 3. C. 335.
- 10. Гордон А., Форд Р. // Спутник химика. М.: Мир, 1976. С. 129.
- 11. Коулсон К. А. // Теоретическая органическая химия. Докл., представленные на симпозиуме, посвященном памяти Кекуле, организованном Химическим обществом, Лондон, сентябрь 1958 г. — М.: ИЛ, 1963. — С. 66.
- 12. Крапивин Г. Д., Вальтер Н. И., Заводник В. Е., Бельский В. Е., Кульневич В. Г. // ХГС. 1988. — № 11. — C. 1453.
- 13. Крапивин Г. Д., Вальтер Н. И., Заводник В. Е., Вегх Д., Фишера Л., Кульневич В. Г. // XΓC. — 1995. — № 7. — C. 899.
- 14. Киприянов А. И. // Успехи химии. 1971. Т. 11. С. 1283.
- 15. Sheldrick G. M. // Computational Crystallography. New York; Oxford: Oxford Univ. Press, 1982. - P. 506.

Кубанский государственный технологический университет, Краснодар 350072, Россия e-mail: genn1803@yahoo.com

Поступило в редакцию 15.12.97