

Меченные стабильными изотопами азолоазины. Синтез обогащенного изотопами ¹³С и¹⁵N производного пиразоло[5,1-*c*][1,2,4]триазина – потенциального антидиабетического агента

Татьяна С. Шестакова¹, Олег С. Ельцов¹, Юлия А. Яковлева¹, Сергей Л. Деев¹*, Вадим А. Шевырин¹, Владимир Л. Русинов^{1,2}, Валерий Н. Чарушин^{1,2}, Олег Н. Чупахин^{1,2}

¹ Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, ул. Мира, 19, Екатеринбург 620002, Россия; e-mail: deevsl@yandex.ru

² Институт органического синтеза им. И. Я. Постовского УрО РАН, ул. С. Ковалевской, 22 / Академическая, 20, Екатеринбург 620990, Россия e-mail: chupakhin@ios.uran.ru

Поступило 4.07.2019 Принято 22.07.2019

Разработан простой и селективный метод введения стабильных изотопов ¹³С и ¹⁵N в структуру натриевой соли диэтилового эфира 4-оксо-1,4-дигидропиразоло[5,1-*c*][1,2,4]триазин-3,8-дикарбоновой кислоты, потенциального антигликирующего агента. В качестве донора изотопов ¹³С был использован меченый $[1,3^{-13}C_2]$ -малоновый эфир (99% ¹³C). Включение атома ¹⁵N проведено с помощью обогащенного нитрита натрия (98% ¹⁵N). Полученный меченый изотопами ¹³C₂ и ¹⁵N аналог перспективного противодиабетического соединения ряда пиразоло[5,1-*c*][1,2,4]триазинов охарактеризован методами спектроскопии ЯМР и масс-спектрометрии высокого разрешения.

Ключевые слова: азолоазины, пиразоло[5,1-*c*][1,2,4]триазины, изотопные метки ¹³С и ¹⁵N, константы спин-спинового взаимодействия (КССВ), масс-спектр ДИС, стабильные изотопы, соединения с противодиабетической активностью, спектры ЯМР, эксперименты МС/МС.

Структурная близость азолоазинов и производных пуринов (аденина, гуанина и гипоксантина) обусловливает постоянный интерес к этому классу соединений. В ряду азоло[5,1-с][1,2,4]триазин-7-онов обнаружены соединения, обладающие широким спектром биологической активности,^{1,2} в том числе структуры с высоким противовирусным действием. Например, натриевая соль 2-метилсульфанил-6-нитро-1,2,4-триазоло[5,1-с]-[1,2,4]триазин-7-она (рис. 1), препарат Триазавирин (Riamilovir®), используется в медицинской практике для лечения гриппа.³⁻⁵ Особое место занимают пиразоло-[5,1-с][1,2,4]триазины, которые оказались эффективными лигандами рецепторов ГАМК^{6,7} и проявили потенциальное антидиабетическое действие. Диэтиловый эфир 4-оксо-1,4-дигидропиразоло[5,1-с][1,2,4]триазин-3,8-дикарбоновой кислоты (1) (рис. 1) проявил перспективную антигликирующую активность,⁸ превышающую действие аминогуанидина, являющегося признанным стандартом при оценке ингибирования неферментативного взаимодействия белков с глюкозой (реакция Майера).⁹ Именно данный процесс приводит к образованию конечных продуктов гликирования, которые играют существенную негативную роль в развитии сахарного диабета и сопутствующих осложнений.^{10,11}

Рисунок 1. Биологически активные азоло[5,1-*c*][1,2,4]триазин-7-оны.

В настоящее время соединение **1** проходит цикл доклинических исследований как средство для лечения диабета и его осложнений.

Включение стабильных изотопов (²H, ¹³C, ¹⁵N) в биологически активные молекулы является одним из приемов, который используется для изучения фармакокинетики и метаболизма соединений на различных этапах разработки лекарственных препаратов. 12-16 Кроме того, введение атомов ¹³С и ¹⁵N в структуры азотсодержащих гетероциклов представляет несомненный интерес с точки зрения установления методом спектроскопии ЯМР особенностей строения и поведения в растворе различных конденсированных азолоазинов. 17-26 Специфической характеристикой этих полиазотистых систем является пониженное содержание атомов углерода и водорода. Это снижает эффективность использования данных одномерных спектров ЯМР ¹H и ¹³C и двумерных экспериментов ЯMP (¹H-¹³C HMBC, ¹H-¹³C HSQC и ¹H-¹⁵N HMBC) для структурных исследований. Кроме того, азотсодержащие гетероциклы склонны к кольчато-цепным и таутомерным превращениям, что дополнительно усложняет исследование их структуры. Введение меченых атомов азота и углерода приводит к появлению дополнительных спин-спиновых взаимодействий, что значительно расширяет возможности спектроскопии ЯМР. Таким образом, присутствие меченых атомов ¹³С и ¹⁵N способствует решению проблем по установлению структурных особенностей азагетероциклов.

В данной работе реализован синтез меченного изотопами ${}^{13}C_2$, ${}^{15}N$ соединения **1**, которое содержит одновременно несколько типов стабильных изотопов. Наличие в структуре **1** трех меченых атомов позволило изучить характеристики масс-спектрометрического распада и получить данные по отнесению спинспинового взаимодействия ${}^{13}C-{}^{13}C$ и ${}^{13}C-{}^{15}N$. Важно отметить, что такая комбинация меченых атомов ${}^{13}C$ и ${}^{15}N$ позволяет расширить возможности масс-спектрометрии и спектроскопии ЯМР в изучении фармако-кинетики соли **1**, а также создать оптимальные процедуры для определения е концентрации в крови и распределения по органам в опытах на животных.

Метод получения соединения 1, представленный в литературе,⁸ основан на взаимодействии соли диазония 2 с малоновым эфиром 3 в присутствии Na_2CO_3 и включает спонтанную циклизацию гидразона 4 (схема 1).

Соль диазония 2 была получена из соответствующего аминопиразола 5. Для синтеза соли $[{}^{13}C_2, {}^{15}N]$ -1 нами была модифицирована ранее описанная процедура получения немеченого соединения 1,⁸ а в качестве доноров обогащенных соединений были использованы меченые Na¹⁵NO₂ (98% ${}^{15}N$) и малоновый эфир [${}^{13}C_2$]-3 (99% ${}^{13}C$) (схема 2). Модификация метода синтеза пиразолотриазина [${}^{13}C_2, {}^{15}N$]-1 основана на использовании AcONa при азосочетании соли [${}^{15}N$]-2 с соединением [${}^{13}C_2$]-3 и термической циклизацией гидразона [${}^{13}C_2, {}^{15}N$]-4. Введение атома ${}^{15}N$ было реализовано на стадии диазотирования аминопиразола 5, который был

превращен в соль диазония $[^{15}N]$ -2 под действием Na¹⁵NO₂ в кислой среде. Соль диазония в виде полученного на предыдущей стадии раствора использовалась в реакции азосочетания с диэтилмалонатом $[^{13}C_2]$ -3. Этот процесс протекал в присутствии AcONa и приводил к гидразону $[^{13}C_2, ^{15}N]$ -4, который подвергался внутримолекулярной циклизации в натриевую соль пиразоло[5,1-*c*][1,2,4]триазина $[^{13}C_2, ^{15}N]$ -1 при нагревании в водном EtOH (схема 2). Выход соединения $[^{13}C_2, ^{15}N]$ -1 составил 45%.

Обогащенный стабильными изотопами образец $[{}^{13}C_2, {}^{15}N]$ -1 был охарактеризован данными спектроскопии ЯМР ¹H, ${}^{13}C$ и ${}^{15}N$ (табл. 1). Отнесение сигналов меченых и немеченых атомов в протонных и углеродных спектрах ЯМР проведено на основании значений химических сдвигов, мультиплетности и интенсивности сигналов, анализа КССВ ${}^{13}C-{}^{13}C$ и ${}^{13}C-{}^{15}N$, а также с учетом данных корреляционных экспериментов ЯМР ${}^{1}H-{}^{13}C$ НМВС и HSQC. Измерение констант ${}^{13}C-{}^{13}C$ и ${}^{13}C-{}^{15}N$ проведено с использованием одномерных экспериментов ЯМР ${}^{13}C$, зарегистрированных с селективной развязкой от меченых ядер ${}^{13}C-4$ и ${}^{13}C-9$ и без нее.

Два обогащенных атома углерода ${}^{13}\text{C-4}$ и ${}^{13}\text{C-9}$ регистрировались в виде мощных сигналов, которые характеризовались КССВ ${}^{13}\text{C}{-}^{13}\text{C}$ (J_{CC}) и ${}^{13}\text{C}{-}^{15}\text{N}$ (J_{CN}) (табл. 1). Так, сигнал атома ${}^{13}\text{C-4}$ характеризовался одной геминальной константой ${}^{2}J_{CC9}$ = 8.8 Гц, в то

Атом/группа	Химические сдвиги, б, м .д. (Ј, Гц)
Спектр ЯМР ¹ Н	
H-7	$8.18 ({}^{4}J_{\rm HC4} = 0.8)$
10-СН ₂ и 13-СН ₂	$4.25 ({}^{3}J_{\rm HH} = 7.1, {}^{3}J_{\rm HC9} = 3.1)$
11-СН ₃ и 14-СН ₃	1.29 (${}^{3}J_{\rm HH} = 7.1$) и 1.30 (${}^{3}J_{\rm HH} = 7.1$)
Спектр ЯМР ¹³ С	
C-3	129.5 (${}^{1}J_{CC} = 91.7$, ${}^{1}J_{CC} = 71.6$, ${}^{1}J_{CN2} = 5.9$)
C-4	147.9 ($^2J_{\rm CC9} = 8.8$)
C-7	145.2 (${}^{3}J_{CC4} = 5.1$)
C-8	99.9*
C-8a	151.1*
C-9	164.8 (${}^{2}J_{CC4} = 8.8, {}^{2}J_{CN2} = 9.2$)
C-10	$59.7 (^2 J_{\rm CC9} = 2.3)$
C-11	14.5 (${}^{3}J_{CC9} = 2.1$)
C-12	162.2
C-13	59.3
C-14	14.6
Спектр ЯМР ¹⁵ N	
N-2	$415.88 (^2 J_{C9N} = 9.4, ^2 J_{C4N} \approx 0.3)$

Таблица 1. Спектры ЯМР ¹H, ¹³С и ¹⁵N соединения [¹³C₂, ¹⁵N]-1

* КССВ ¹³С-¹⁵N и ¹³С-¹³С измерить не удалось из-за уширения сигнала.

время как для углерода ¹³С-9 наблюдалось спинспиновое взаимодействие с атомами ¹³С-4 и ¹⁵N-2 с КССВ ² $J_{CC4} = 8.8$ и ² $J_{CN2} = 9.2$ Гц соответственно. Важно отметить, что J_{C4N2} зафиксировать в углеродных спектрах не удалось из-за ее малой амплитуды.

Несмотря на то, что положение изотопных меток в структуре [$^{13}C_2$, ^{15}N]-1 предопределено методом синтеза, позиции атомов $^{13}C-4$, $^{13}C-9$ и $^{15}N-2$ дополнительно подтверждены значениями КССВ $^{13}C-^{13}C$ и $^{13}C-^{15}N$ для немеченого сигнала атома C-3 триазинового фрагмента. Для этого углеродного атома наблюдались три прямые константы ССВ со значениями 91.7, 71.6 и 5.9 Гц (табл. 1). Такая картина обусловлена спинспиновым взаимодействием атома C-3 с двумя мечеными атомами углерода и атомом азота $^{15}N-2$. Таким образом, сигнал атома C-3 в углеродном спектре проявлялся в виде дублета дублетов дублетов (рис. 2*a*).

Кроме того, в спектре ЯМР ¹³С соединения [13 С₂, ¹⁵N]-1 спин-спиновое взаимодействие 13 С– 13 С было зафиксировано у немеченых атомов С-10 (2 *J*_{С10С9} = 2.3 Гц), С-11 (3 *J*_{С11С9} = 2.1 Гц) и С-7 (3 *J*_{С7С4} = 5.1 Гц). Для атомов углерода С-8 и С-8а КССВ 13 С– 13 С и 13 С– 15 N измерить прямым методом не удалось из-за уширенной формы сигналов и малых значений констант *J*_{СС} и *J*_{СN}.

сигналов и малых значений констант $J_{\rm CC}$ и $J_{\rm CN}$. Наличие меченого атома азота в структуре [${}^{13}C_2$, ${}^{15}N$]-1 подтверждается присутствием в спектре ЯМР ${}^{15}N$ дублета дублетов (415.88 м. д., ${}^{2}J_{\rm C9N} = 9.4$, ${}^{2}J_{\rm C4N} \approx 0.3$ Гц) (табл. 1, рис. 2*b*). Важно отметить, что анализ мультиплетности сигнала меченого атома азота показал наличие ССВ между атомами С-4 и ${}^{15}N$ -2. Однако уширение сигнала ${}^{15}N$ -2 позволило оценить значение константы ${}^{13}C$ -4 ${}^{-15}N$ -2 только примерно. Кроме того, на основании значения химического сдвига атома ${}^{15}N$ -2 и литературных данных, полученных для 6-нитропроизводных 1,2,4-триазоло[5,1-*c*][1,2,4]триазин-7-онов, 26

Рисунок 2. Сигналы атома углерода C-3 (*a*) и меченого атома азота 15 N-2 (*b*) в одномерных спектрах ЯМР 13 C и 15 N, зарегистрированных в растворе ДМСО-*d*₆ при частоте 150 и 61 МГц соответственно.

установлено, что азолоазинон $[{}^{13}C_2, {}^{15}N]$ -1 существует в виде соли.

Характерной чертой протонного спектра ЯМР соединения [${}^{13}C_{2}, {}^{15}N$]-1 является наличие спин-спиновых взаимодействий ${}^{1}H^{-13}C-4/{}^{1}H^{-13}C-9$ для сигналов атомов H-7 (${}^{4}J_{HC4} = 0.8$ Гц) и H-10 (${}^{3}J_{HC9} = 3.1$ Гц) соответственно (табл. 1). Эти значения являются дополнительными аргументами, которые подтверждают положение меченых атомов углерода.

Получение соединения с тремя изотопными метками $[{}^{13}C_2, {}^{15}N]$ -1 подтверждено также методом масс-спектрометрии высокого разрешения, включая проведение тандемных экспериментов. Масс-спектр соединения $[{}^{13}C_2, {}^{15}N]$ -1 содержит сигналы протонированной молекулы $[M+H]^+$ с m/z 306.0744, а также ионов $[M+Na]^+$ с m/z 328.0557, $[M+K]^+$ с m/z 344.0292 и $[M-Na+2H]^+$ с m/z 284.0923. Измеренные значения точных масс ионов соответствуют брутто-формуле соединения $[{}^{13}C_2, {}^{15}N]$ -1.

Тандемные эксперименты, проведенные для протонированной молекулы H-формы соединения $[{}^{13}C_2, {}^{15}N]$ -1 (m/z 284.0918) в режиме диссоциации, индуцируемой соударениями (ДИС), показали (рис. 3), что фрагментация молекулы протекает, прежде всего, с последовательным элиминированием молекул этилена и воды или молекулы этанола из сложноэфирных групп (ионы с m/z 256.0605, 238.0499, 210.0186, 192.0081). Возмож-

Рисунок 3. Основные направления фрагментации протонированной молекулы *H*-формы соединения $[{}^{13}C_2, {}^{15}N]$ -1 в условиях ДИС (указаны расчетные значения *m/z*).

ность потери молекулы воды для ионов с m/z 256.0605 и 210.0186 подтверждена с помощью экспериментов псевдо-MC³. Образующийся в результате масс-спектрометрического распада сложноэфирных групп катион с m/z 192.0081 элиминирует молекулу диоксида триуглерода, содержащую оба атома ¹³С, с разрушением триазинового цикла. Полученные спектральные данные подтверждают структуру синтезированного соединения и в дальнейшем могут быть полезны при изучении метаболизма, фармакокинетики и биодоступности в организме соединения **1**.

Таким образом, в результате проведенной работы разработан метод селективного включения изотопов 13 С и 15 N в структуру натриевой соли диэтилового эфира 4-оксо-1,4-дигидропиразоло[5,1-*c*][1,2,4]триазин-3,8-дикарбоновой кислоты, которая проходит доклинические исследования, как потенциальный препарат для лечения диабета и его осложнений. Полученный обогащенный изотопами 13 С и 15 N образец (99% 13 С и 98% 15 N) охарактеризован методами спектроскопии ЯМР и масс-спектрометрии высокого разрешения.

Экспериментальная часть

Спектры ЯМР ¹H, ¹³С и ¹⁵N (600, 150 и 61 МГц соответственно) соединения $[{}^{13}C_{2}, {}^{15}N]$ -1, а также ¹H-¹³C HSQC, ¹H-¹³C HMBC и ¹H-¹⁵N HMBC записаны в растворе ДМСО- d_6 на приборе Bruker Avance NEO 600, укомплектованном широкополосным градиентным криодатчиком Prodigy, в качестве стандарта использованы сигналы растворителя, а также внутренний стандарт – ТМС (для ядер ¹³С, ¹Н), и внешний стандарт – жидкий аммиак (для ядер ¹⁵N). Измерение КССВ ¹H-¹³C, ¹³С-¹³С и ¹³С-¹⁵N проведено из анализа форм линии соответствующих сигналов в спектрах ЯМР ¹H, ¹³С и ¹⁵N. Анализ констант ¹³C-¹³C и ¹³C-¹⁵N в углеродном спектре проведен с учетом одномерных экспериментов ЯМР¹³С, зарегистрированных с селективной развязкой от ядер ¹³C-4 и ¹³C-9. Для селективной развязки от ядер ¹³С использована импульсная программа zghdig (мощность импульса 25 dB). Масс-спектрометрические исследования проведены на квадруполь-времяпролетном масс-спектрометре Agilent 6545 Q-TOF LC/MS (Agilent Technologies, США) с источником ионизации электрораспылением в режиме регистрации положительно заряженных ионов. В режиме МС/МС при изоляции иона-предшественника полоса пропускания - $\Delta m/z$ 1.3. Спектр ДИС записан при столкновении ионапредшественника с молекулами азота (99.999%) с энергией столкновений 10 эВ при напряжении на фрагменторе 100 В. При проведении экспериментов псевдо-МС³ напряжение на фрагменторе – 180 В при энергии столкновений 10 эВ. Для ввода пробы использована хроматографическая система Agilent 1290 Infinity II.

 $Na^{15}NO_2$ (обогащение по ¹⁵N 98%) и ¹³C₂-малоновый эфир [¹³C₂]-3 (обогащение по каждому ¹³C 99%) получены от фирмы ISOTEC. 5-Амино-4-этоксикарбонилпиразол (5) синтезирован по описанной ранее методике.²⁷

Натриевая соль диэтилового эфира 4-оксо-1,4дигидропиразоло[5,1-с][1,2,4]триазин-3,8-дикарбоновой кислоты ([¹³C₂,¹⁵N]-1). К 225 мг (1.45 ммоль) 5-амино-4-этоксикарбонилпиразола (5) приливают 0.150 мл H₂O и к полученной суспензии постепенно при охлаждении добавляют 0.3 мл HCl и 0.6 мл EtOH так, чтобы температура смеси находилась в пределах 20-23 °С. Полученный раствор охлаждают до температуры -10 °C и к нему по каплям добавляют раствор 110 мг (1.6 ммоль) Na¹⁵NO₂ в 0.3 мл H₂O. Образовавшуюся соль диазония приливают к охлажденной до 0 °С смеси 0.250 мл (1.54 ммоль) 1,3-¹³С₂-диэтилового эфира малоновой кислоты [¹³C₂]-3, 1.3 мл 3 М раствора AcONa и 0.3 мл ЕtOH. Реакционную смесь перемешивают в течение 1 ч при температуре 0 °C, в течение 30 мин при 20 °C, после чего смесь выдерживают при 95 °С в колбе с обратным холодильником в течение 3 ч. После охлаждения образовавшийся оранжевый осадок отфильтровывают, сушат и перекристаллизовывают из смеси *i*-PrOH-H₂O, 2:1. Выход 211 мг (45%), т. пл. 208-210 °С. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.29 (3Н, т, ${}^{3}J_{\text{HH}} = 7.1, \text{ OCH}_{2}\text{CH}_{3}$; 1.30 (3H, T, ${}^{3}J_{\text{HH}} = 7.1, \text{ OCH}_{2}\text{CH}_{3}$); 4.25 (4H, K. T, ${}^{3}J_{\text{HH}} = 7.1, {}^{3}J_{\text{HC9}} = 3.1, 2\text{OCH}_{2}\text{CH}_{3}$); 8.18 (1H, д, ${}^{4}J_{HC4} = 0.8$, H-7). Спектр ЯМР 13 С, δ , м. д. (*J*, Гц): 14.5 (д, ${}^{3}J_{CC9} = 2.1$, C-11); 14.6 (C-14); 59.3 (C-13); 59.7 $(д, {}^{2}J_{CC9} = 2.3, C-10); 99.9 (C-8); 129.5 (д. д. д. , {}^{1}J_{CC} = 91.7,$ $^{1}J_{CC} = 71.6, {}^{1}J_{CN2} = 5.9, C-3$; 145.2 (д, ${}^{3}J_{CC4} = 5.1, C-7$); 147.9 (д, ${}^{2}J_{CC9} = 8.8$, C-4); 151.1 (С-8а); 162.2 (С-12); 14/.9 (д. $g_{CQ} = 9.2$, ${}^{2}J_{CC4} = 8.8$, C-9). Спектр ЯМР ¹⁵N, δ , м. д. (J, Γ µ): 415.88 (д. д. ${}^{2}J_{C9N} = 9.4$, ${}^{2}J_{C4N} \approx 0.3$, N-2). Найдено, m/z: 306.0744 [M+H]⁺. C9¹³C2H₁₂N3¹⁵NNaO5. Вычислено. *m/z*: 306.0737. Найдено. *m/z*: 328.0557 [M+Na]⁺. С₉¹³С₂H₁₁N₃¹⁵NNa₂O₅. Вычислено, *m/z*: 328.0557. Найдено, *m/z*: 344.0292 [M+K]⁺. C₉¹³C₂H₁₁KN₃¹⁵NNaO₅. Вычислено, m/z: 344.0296. Найдено, m/z: 284.0923 [M–Na+2H]⁺. С₉¹³С₂H₁₃N₃¹⁵NO₅. Вычислено, *m/z*: 284.0918. Масс-спектр (MC/MC ДИС, 10 3B) иона [M–Na+2H]⁺, *m/z* (*I*_{отн}, %): 284.0914 (18), 256.0596 (4), 238.0495 (100), 210.0180 (2), 192.0078 (33), 122.0113 (2), 65.0129 (2).

Файл сопроводительной информации, содержащий спектры ЯМР ¹Н и ¹³С соединения [$^{13}C_2$, ¹⁵N]-1, доступен на сайте журнала http://hgs.osi.lv.

Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (4.6351.2017/8.9) и при финансовой поддержке РФФИ (грант 17-03-01029).

Список литературы

- Rusinov, V. L.; Ulomskii, E. N.; Chupakhin, O. N.; Charushin, V. N. Russ. Chem. Bull., Int. Ed. 2008, 57, 985. [*U36. AH, Cep. xum.* 2008, 967.]
- Rusinov, V. L.; Charushin, V. N.; Chupakhin, O. N. Russ. Chem. Bull., Int. Ed. 2018, 67, 573. [Изв. АН, Сер. хим. 2018, 573.]
- Karpenko, I.; Deev, S.; Kiselev, O.; Charushin, V.; Rusinov, V.; Ulomsky, E.; Deeva, E.; Yanvarev, D.; Ivanov, A.; Smirnova, O.; Kochetkov, S.; Chupakhin, O.; Kukhanova, M. Antimicrob. Agents Chemother. 2010, 54, 2017.
- Chupakhin, O. N.; Charushin, V. N.; Rusinov, V. L. Herald Russ. Acad. Sci. 2016, 86, 206. [Becmh. PAH 2016, 86, 546.]

- Киселев, О. И.; Деева, Е. Г.; Мельникова, Т. И.; Козелецкая, К. Н.; Киселев, А. С.; Русинов, В. Л.; Чарушин, В. Н.; Чупахин, О. Н. Вопросы вирусологии 2012, 57, 9.
- Guerrini, G.; Ciciani, G.; Daniele, S.; Martini, C.; Costagli, C.; Guarino, C.; Selleri, S. *Bioorg. Med. Chem.* 2018, 26, 2475.
- 7. Li, M.; Zhao, B.-X. Eur. J. Med. Chem. 2014, 85, 311.
- Rusinov, V. L.; Sapozhnikova, I. M.; Bliznik, A. M.; Chupakhin, O. N.; Charushin, V. N.; Spasov, A. A.; Vassiliev, P. M.; Kuznetsova, V. A.; Rashchenko, A. I.; Babkov, D. A. Arch. Pharm. Chem. Life Sci. 2017, 350, e1600361.
- 9. Thornalley, P. J. Arch. Biochem. Biophys. 2003, 419, 31.
- Ramasamy, R.; Yan, S. F.; Schmidt, A. M. Ann. N. Y. Acad. Sci. 2011, 1243, 88.
- 11. Goh, S.-Y.; Coope, M. E. J. Clin. Endocrinol. Metab. 2008, 93, 1143.
- 12. Knebel, N. G.; Sharp, S. R.; Madigan, M. J. J. Mass Spectrom. 1995, 30, 1149.
- Khojasteh, S. C.; Yue, Q.; Ma, S.; Castanedo, G.; Chen, J. Z.; Lyssikatos, J.; Mulder, T.; Takahashi, R.; Ly, J.; Messick, K.; Jia, W.; Liu, L.; Hop, C. E. C. A.; Wong, H. *Drug Metab. Dispos.* **2014**, *42*, 343.
- Nakagawa, A.; Nakamura, K.; Maeda, K.; Kamataki, T.; Kato, R. Life Sci. 1987, 41, 133.
- Hesk, D.; McNamara, P. J. Labelled Compd. Radiopharm. 2007, 50, 875.
- Artemov, D.; Bhujwalla, Z. M.; Maxwell, R. J.; Griffiths, J. R.; Judson, I. R.; Leach, M. O.; Glickson, J. D. *Magn. Reson. Med.* **1995**, *34*, 338.

- 17. Spinelli, D.; Zanirato, P.; Miceli, E. D.; Lamartina, L.; Guerrera, F. J. Org. Chem. **1997**, *62*, 4921.
- Deev, S. L.; Shenkarev, Z. O.; Shestakova, T. S.; Chupakin, O. N.; Rusinov, V. L.; Arseniev, A. S. J. Org. Chem. 2010, 75, 8487.
- van Linden, O. P. J.; Wijtmans, M.; Roumen, L.; Rotteveel, L.; Leurs, R.; de Esch, I. J. P. J. Org. Chem. 2012, 77, 7355.
- Deev, S. L.; Paramonov, A. S.; Shestakova, T. S.; Khalymbadzha, I. A.; Chupakhin, O. N.; Subbotina, J. O.; Eltsov, O. S.; Slepukhin, P. A.; Rusinov, V. L.; Arseniev, A. S.; Shenkarev, Z. O. *Beilstein J. Org. Chem.* **2017**, *13*, 2535.
- Khalymbadzha, I. A.; Shestakova, T. S.; Deev, S. L.; Rusinov, V. L.; Chupakhin, O. N.; Shenkarev, Z. O.; Arseniev, A. S. Russ. Chem. Bull., Int. Ed. 2013, 62, 521. [*U36. AH, Cep. xum.* 2013, 519.]
- 22. Ryabokon', I. G.; Kalinin, V. N.; Polumbrik, O. M.; Markovskii, L. N. Chem. Heterocycl. Compd. **1985**, 21, 1175. [Химия гетероцикл. соединений **1985**, 1425.]
- 23. Lyčka, A.; Fryšova, I.; Slouka, J. Magn. Reson. Chem. 2007, 45, 46.
- 24. Farras, J.; Fos, E.; Ramos, R.; Vilarrasa, J. J. Org. Chem. 1988, 53, 887.
- Chatzopoulou, M.; Martínez, R. F.; Willis, N. J.; Claridge, T. D. W.; Wilson, F. X.; Wynne, G. M.; Davies, S. G.; Russell, A. J. *Tetrahedron* 2018, 74, 5280.
- Shestakova, T. S.; Deev, S. L.; Ulomskii, E. N.; Rusinov, V. L.; Kodess, M. I.; Chupakhin, O. N. *ARKIVOC* 2009, (ix), 69.
- 27. Kumar, A. A. K.; Bodke, Y. D.; Lakra, P. S.; Sambasivam, G.; Bhat, K. G. *Med. Chem. Res.* **2017**, *26*, 714.