

Химия гетероциклических соединений 2019, 55(8), 739–747

Нуклеофильное присоединение амид-анионов к солям 1-метил-5(6,7,8)-нитрохинолиния

Елена К. Авакян¹, Гульминат А. Амангазиева¹, Олег П. Демидов¹, Анастасия А. Боровлева¹, Елена С. Бекетова¹, Оксана А. Нечаева¹, Иван В. Боровлев¹*

¹ Северо-Кавказский федеральный университет, ул. Пушкина, 1a, Ставрополь 355009, Россия; e-mail: ivborovlev@rambler.ru Поступило 17.04.2019 Принято 16.05.2019

Ключевые слова: нитрохинолины, *N*-метильные катионы нитрохинолинов, нуклеофильное присоединение.

Современная химическая наука и технология развиваются в соответствии с принципами зеленой химии и атомной экономии, что предполагает разработку экологически чистых процессов.¹ В связи с этим прямая функционализация связи С–Н в аренах и гетероаренах действием нуклеофильных реагентов является одним из приоритетных направлений органической химии.² Одной из разновидностей реакций кросс-сочетания, которая не требует использования галогенидов и катализа переходными металлами, является прямое нуклеофильное замещение водорода (реакция S_N^{N}),³ включая его окислительную⁴ и викариозную⁵ версии.

Важным преимуществом методологии окислительного нуклеофильного замещения водорода является тот факт, что она не требует предварительного введения в молекулу реагента хорошо уходящей группы. Исследования в нашей лаборатории сосредоточены на $S_N^{\rm H}$ функционализации молекул π -дефицитных субстратов относительно слабыми и мягкими N-нуклеофилами, такими как анионы амидов, карбамидов и ариламинов. Впервые о прямом замещении водорода в молекуле нитробензола на *N*-амидную функцию сообщалось в 1993 г.⁶ В продолжение этого пионерского исследования мы недавно разработали методы окислительного $S_N^{\rm H}$ амидирования 1,3,7-триазапиренов,^{7а} акридина,^{7b} 3-нитропиридина^{7c} и нитрохинолинов^{7d} с использованием амид-анионов карбоновых кислот в качестве N-нуклеофилов в безводном ДМСО.

Еще одной областью применения амид-анионов являются реакции нуклеофильного присоединения к азиниевым катионам. Так, мы нашли, что амид- и карбамид-анионы легко присоединяются к солям 10-алкил-акридиния, образуя соответствующие *N*-(10-алкил-9,10-дигидроакридин-9-ил)ациламиды; в случае формамида и акриламида обнаружена их необычная способность реагировать в качестве N,N-динуклеофилов с образованием пространственно перегруженных молекул *N*,*N*-бис-(10-алкил-9,10-дигидроакридин-9-ил)ациламидов.⁸

Цель настоящей работы – изучение возможности нуклеофильного присоединения амид-анионов карбоновых кислот к катионам 1-замещенного нитрохинолиния, содержащих нитрогруппу в бензольном цикле молекулы. Интерес представляла прежде всего региоселективность присоединения этих анионов, а также стабильность предполагаемых σ^{H} -аддуктов. Возможные причины различной региоселективности нуклеофильного присоединения к катионам 1-R-пиридиния и хинолиния рассмотрены в обстоятельном обзоре,⁹ однако, по мнению его автора, вероятность успешного прогнозирования направления нуклеофильной атаки остается все еще весьма низкой.

Известно, что в реакциях нитрохинолинов с N-нуклеофилами группа NO₂ обладает большей электрофильностью и ориентирующей способностью по сравнению с атомом азота в гетероцикле независимо от ее расположения в пиридиновом или бензольном цикле молекулы хинолина.^{10,7d} Лишь при расположении с согласованным ориентирующим эффектом заместителя NO_2 и эндоциклического атома азота региоселективность реакции определяется природой вступающего нуклеофила.^{7c,11} Можно было предположить, что переход от нейтрального азина к азиниевому катиону изменит региоселективность нуклеофильной атаки. Отметим также, что интерес к хинолинам обусловлен обширным спектром их биологической активности,¹² поэтому поиск новых синтетических путей к производным этого гетероцикла по-прежнему представляет значительный интерес.^{5a}

Исходные соли 1-метил-5(6,7,8)-нитрохинолиния 5-8 были получены с высокими выходами кватернизацией соответствующих нитрохинолинов 1-4 при кипячении их с метилирующим агентом в PhH (схема 1). В реакцию с эквимолярным количеством метилтрифторметансульфоната (метилтрифлата) вступают не только 5-, 6- и 7-нитрохинолины 1-3, но и 8-нитрохинолин 4, в молекуле которого пространственные помехи со стороны группы 8-NO₂, казалось бы, должны препятствовать S_N2 процессу кватернизации. Однако в 2011 г. рентгеноструктурное исследование кристалла 8-нитрохинолина показало, ^{13а} что группа 8-NO₂ не сопряжена с бензольным фрагментом, так как сильно выходит из плоскости молекулы (торсионный угол ~55°). По-видимому, это результат электростатического отталкивания со стороны неподеленной электронной пары атома азота. Конечно, при нагревании в растворе нельзя исключать возможность вращения нитрогруппы относительно плоскости цикла, а следовательно, и наличия некоторых стерических помех для нуклеофильного центра. Действительно, высокий выход (95%) трифлата 1-метил-8-нитрохинолиния (8) достигнут нами фактически за счет значительного увеличения времени реакции по сравнению с аналогами 5-7а (см. экспериментальную часть).

Схема 1

Ранее на примере 1-метил-3,6,8-тринитро-2-хинолона было показано,^{13b} что взаимное отталкивание групп N(1)Me и 8-NO₂ приводит к существенной деформации пиридонового фрагмента молекулы. Это значительно изменяет его свойства по сравнению с другими нитрохинолинами (склонность к реакциям циклоприсоединения, *кине*-замещения, присоединения нуклеофилов по положению 4).^{13c} Несомненно, что подобное отталкивание наблюдается и в случае катиона 1-метил-8-нитрохинолиния соли 8. Косвенное тому подтверждение – смещение сигнала протонов NCH₃ в сильное поле на 0.3 м. д. в спектре ЯМР ¹Н соли 8 по сравнению со спектрами солей 5–7. Отметим, что, помимо трифлата 7а, действием избытка диметилсульфата в тех же условиях мы получили также метилсульфонат 7-нитрохинолиния (7b) для сравнительного эксперимента (схема 1).

В поисках оптимальных условий для реакции карбоксамид-анионов с солями 5-8 мы пришли к выводу, что наилучшие результаты, как и в случае солей 10-алкилакридиния,⁸ получены при использовании в качестве растворителя безводного MeCN. Применение ДМФА или ДМСО приводит к образованию побочных продуктов и уменьшает выходы продуктов. Реакцию проводили путем добавления соответствующей соли 5-8 в MeCN к раствору 1.5-кратного молярного избытка карбоксамид-аниона, предварительно полученного из амида в том же растворителе действием NaH при комнатной температуре (схема 2). Как выяснилось, амиды алифатических кислот образуют в этих условиях сложную смесь соединений. Возможной причиной этого является неустойчивость их аддуктов к гидролизу на стадии выделения. Напротив, ароматические амиды как с донорными, так и с акцепторными заместителями в бензольном цикле легко присоединяются к катионам 5-8 по положению 2 с образованием кристаллических σ-аддуктов – продуктов присоединения 9–12 (кинетический контроль;⁹ схема 2).

Отметим, что с наибольшими выходами образуются продукты присоединения к катиону 1-метил-6-нитрохинолиния (6) – N-(1-метил-6-нитрохинолин-2-ил)бензамиды **10а–f**. Возможно, это результат их дополнительной стабилизации за счет сопряжения неподеленной пары электронов атома N-1 с нитрогруппой в *пара*положении. На примере солей **7а,b**, отличающихся лишь анионом, и бензамида мы показали, что характер аниона практически не влияет на выход продукта присоединения **11а** (см. экспериментальную часть). В целом, полученные амиды **9–12** относительно стабильны, однако все они плавятся с разложением. Структура N-(1-метил-8-нитро-1,2-дигидрохинолин-2-ил)бензамида (**12а**) подтверждена рентгеноструктурным анализом (рис. 1, 2). В элементарной ячейке кристалла соеди-

Рисунок 1. Молекулярная структура соединения **12а** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью. Межмолекулярная водородная связь О···HN показана пунктиром.

нения **12а** энантиомерные молекулы связаны между собой межмолекулярными водородными связями О…HN (рис. 1). Пространственная геометрия дигидрохинолинового фрагмента амида **12а** представлена на рис. 2.

Рисунок 2. Фрагмент молекулы 12а (фенильная группа для наглядности опущена).

Стерические препятствия со стороны метильной группы выводят нитрогруппу из сопряжения с карбоциклическим ядром за счет ее разворота на 43°. К тому же близкое расположение этих групп вызывает существенное выталкивание нитрогруппы из плоскости цикла на 11.8°, и торсионный угол между группами N(1)Me и 8-NO₂ составляет при этом 27.5° (рис. 2).

Поскольку реакции нуклеофильного присоединения проводились без изоляции от кислорода воздуха, который, как и группа NO_2 , может проявлять окислительные свойства, можно было ожидать образования окисленных форм аддуктов **9–12**. Однако обнаружить их не удалось. Возможность получения ароилиминов мы продемонстрировали на примере окислительного

дегидрирования продуктов присоединения *n*-метилбензамида **9–12 b** в безводных условиях (схема 3). При действии эквивалентного количества 2,3-дихлор-5,6дициано-1,4-бензохинона (DDQ) на раствор этих соединений в дихлорэтане дегидрирование протекает при комнатной температуре с образованием с умеренными выходами соответствующих продуктов **13–16**.

Схема 3

Таким образом, амид-анионы ароматических кислот как с донорными, так и с акцепторными заместителями в бензольном цикле легко присоединяются при комнатной температуре в безводном MeCN к солям 1-метил-5(6,7,8)-нитрохинолиния по положению 2, образуя относительно стабильные N-(1-метил-5(6,7,8)-нитро-1,2-дигидрохинолин-2-ил)бензамиды. В отличие от нитрохинолинов, в которых региоселективность нуклеофильной атаки амид-анионами определяется исключительно нитрогруппой, в случае катионов нитрохинолиния направление присоединения нуклеофила диктуется положительно заряженным атомом азота. При окислительном дегидрировании синтезированных амидов получены первые представители N-(1-метил-5(6,7,8)-нитрохинолин-2(1H)-илиден)бензамидов.

Экспериментальная часть

ИК спектры зарегистрированы на приборе Shimadzu IRTracer-100 в тонком слое. Спектры ЯМР ¹Н и ¹³C записаны на приборе Bruker Avance HD 400 (400 и 100 МГц соответственно); в качестве внутреннего стандарта использованы остаточные сигналы ДМСО¹⁴ (2.50 м. д. для ядер ¹H, 40.45 м. д. для ядер ¹³C) и SiMe₄ при использовании CDCl₃ в качестве растворителя. Строение ключевых продуктов **9с**, **10b**, **11с**, **12b**, **15** подтверждено с помощью 2D экспериментов ЯМР на том же приборе. Масс-спектры записаны на приборе Bruker UHR-TOF MaxisTM Impact (ионизация электрораспылением). Температуры плавления определены на приборе REACH Devices RD-MP. Контроль за ходом реакций осуществен методом TCX на пластинах Silufol UV-254.

Коммерческие реактивы – нитрохинолины и NaH (60% суспензия в парафиновом масле (фирма abcr GmbH&Co. KG)) – использованы без дополнительной очистки.

Кватернизация нитрохинолинов (общая методика). К раствору 0.87 г (5 ммоль) соответствующего нитрохинолина 1-4 в 20 мл РhH добавляют 0.82 г (5 ммоль) метилтрифторметансульфоната (метилтрифлата) и кипятят реакционную смесь в течение 0.5 ч (в случае 8-нитрохинолина (4) – 5 ч). После охлаждения до комнатной температуры осадок отфильтровывают, промывают сначала 1 мл PhH, затем 3 мл петролейного эфира, сушат. **Трифлат 1-метил-5-нитрохинолиния (5)**. Выход 1.45 г (86%), бледно-желтые кристаллы, т. пл. 84–85 °С (EtOAc). Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д. (*J*, Гц): 4.72 (3H, c, NCH₃); 8.38 (1H, д. д, *J* = 9.0, *J* = 5.7, H-3); 8.40–8.46 (1H, м, H-7); 8.78 (1H, д, *J* = 7.8, H-8); 8.92 (1H, д, *J* = 9.0, H-4); 9.53 (1H, д, *J* = 8.9, H-6); 9.67 (1H, д, *J* = 5.7, H-2). Спектр ЯМР ¹³С (ДМСО- d_6), δ , м. д. (*J*, Гц): 46.7; 120.7 (к, ¹*J*_{CF} = 320.3, CF₃SO₃⁻); 121.8; 124.5; 125.5; 127.1; 133.9; 138.5; 142.4; 146.3; 151.8. Найдено, *m/z*: 189.0656 [M]⁺. С₁₀Н₉N₂O₂. Вычислено, *m/z*: 189.0659.

Трифлат 1-метил-6-нитрохинолиния (6). Выход 1.35 г (80%), бесцветные кристаллы, т. пл. 132–133 °С (EtOAc). Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д. (J, Гц): 4.69 (3H, c, NCH₃) 8.36 (1H, д. д, J = 8.4, J = 5.7, H-3); 8.73 (1H, д, J = 9.6, H-8); 8.91(1H, д. д, J = 9.6, J = 2.5, H-7); 9.50 (1H, д, J = 2.5, H-5); 9.53 (1H, д, J = 8.4, H-4); 9.69 (1H, д, J = 5.7, H-2). Спектр ЯМР ¹³С (ДМСО- d_6), δ , м. д. (J, Гц): 46.0; 120.7 (к, ¹ $J_{CF} = 320.3$, CF₃SO₃⁻); 121.8; 124.0; 126.5; 128.1; 128.9; 140.5; 146.8; 149.0; 153.4. Найдено, m/z: 189.0653 [M]⁺. С₁₀H₉N₂O₂. Вычислено, m/z: 189.0659.

Трифлат 1-метил-7-нитрохинолиния (7а). Выход 1.67 г (99%), бесцветные кристаллы, т. пл. 168–169 °С (EtOAc). Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 4.77 (3H, с, NCH₃); 8.39 (1H, д. д, *J* = 8.5, *J* = 5.6, H-3); 8.75 (2H, уш. с, H-5,6); 9.28 (1H, уш. с, H-8); 9.42 (1H, д, *J* = 8.5, H-4); 9.71 (1H, д, *J* = 5.6, H-2). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 46.0; 115.8; 120.7 (к, ¹*J*_{CF} = 320.3, CF₃SO₃⁻); 123.5; 125.1; 131.8; 132.8; 137.8; 147.1; 150.2; 153.3. Найдено, *m/z*: 189.0648 [M]⁺. С₁₀Н₉N₂O₂. Вычислено, *m/z*: 189.0659.

Трифлат 1-метил-8-нитрохинолиния (8). Выход 1.61 г (95%), бесцветные кристаллы, т. пл. 138–139 °С (EtOAc). Спектр ЯМР ¹Н (ДМСО-*d*₆), δ , м. д. (*J*, Гц): 4.42 (3H, с, NCH₃); 8.18–8.22 (1H, м, H-6); 8.39 (1H, д. д, *J* = 8.4, *J* = 5.7, H-3); 8.79 (1H, д. д, *J* = 8.3, *J* = 1.2, H-5); 8.83 (1H, д. д, *J* = 7.7, *J* = 1.2, H-7); 9.48 (1H, уш. д, *J* = 8.4, H-4); 9.65 (1H, уш. д, *J* = 5.7, H-2). Спектр ЯМР ¹³С (ДМСО-*d*₆), δ , м. д. (*J*, Гц): 47.2; 120.7 (к, ¹*J*_{CF} = 320.3, CF₃SO₃⁻); 123.9; 129.4; 129.9; 130.9; 132.5; 135.6; 141.7; 148.4; 154.8. Найдено, *m*/*z*: 189.0650 [M]⁺. C₁₀H₉N₂O₂. Вычислено, *m*/*z*: 189.0659.

Метилсульфонат 1-метил-7-нитрохинолиния (7b) получают при кипячении 0.87 г (5 ммоль) 7-нитрохинолина (3) и 0.945 г (7.5 ммоль) диметилсульфата в PhH в течение 5 ч. Выделение – по общей методике синтеза трифлатов. Выход 1.17 г (78%), бежевые кристаллы, т. пл. 169–170 °С (ЕtOH–PhH). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (J, Гц): 3.36 (3H, с, CH₃SO₄⁻); 4.77 (3H, с, NCH₃); 8.39 (1H, д. д, J = 8.5, J = 5.6, H-3); 8.75 (2H, уш. д, J = 1.1, H-5,6); 9.28 (1H, уш. д, J = 1.1, H-8); 9.42 (1H, д, J = 8.5, H-4); 9.71 (1H, д, J = 5.6, H-2). Спектр ЯМР ¹³С (ДМСО- d_6), δ , м. д.: 46.0; 52.8; 115.8; 123.5; 125.1; 131.8; 132.8; 137.8; 147.1; 150.2; 153.3. Найдено, m/z: 189.0648 [M]⁺. С₁₀H₉N₂O₂. Вычислено, m/z: 189.0659.

Присоединение амидов к солям нитрохинолиния (общая методика). К раствору 0.75 ммоль соответствующего ароматического амида в 5 мл безводного МеСN при перемешивании добавляют 18 мг суспензии NaH (10.8 мг (0.75 ммоль) NaH). По окончании выделения водорода (~10−15 мин) в реакционную смесь добавляют 0.5 ммоль соответствующей соли 1-метилнитрохинолиния 5–8. Смесь интенсивно перемешивают при комнатной температуре в течение 0.5 ч, выливают в 50 г измельченного льда и по достижении комнатной температуры подкисляют разбавленной HCl до pH ~7. Полученный осадок отфильтровывают, промывают водой, сушат. При применении *n*-нитробензамида полученные продукты дополнительно очищают кристаллизацией из PhH.

N-(1-Метил-5-нитро-1,2-дигидрохинолин-2-ил)бензамид (9а). Выход 114 мг (74%), оранжевые кристаллы, т. пл. 138–139 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3282, 2923, 1635, 1581, 1519. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 3.23 (3H, с, NCH₃); 6.10 (1H, д. д, *J* = 9.9, *J* = 5.8, 3-CH); 6.42 (1H, д. д, *J* = 9.2, *J* = 5.8, 2-CH); 6.51 (1H, уш. д, *J* = 9.2, NH); 6.93 (1H, д, *J* = 7.8, H-8); 7.28 (1H, д, *J* = 9.9, 4-CH); 7.29–7.31 (1H, м, H-7); 7.33 (1H, д. д, *J* = 8.0, *J* = 1.2, H-6); 7.41 (2H, д. д, *J* = 7.8, *J* = 7.4, H-3',5'); 7.51 (1H, т, *J* = 7.4, H-4'); 7.72 (2H, д, *J* = 7.8, H-2',6'). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 37.7; 61.9; 113.5; 113.6; 116.3; 122.3; 122.9; 127.2; 128.8; 128.9; 132.2; 133.5; 143.4; 147.7; 166.4. Найдено, *m/z*: 332.0994 [M+Na]⁺. C₁₇H₁₅N₃NaO₃. Вычислено, *m/z*: 332.1006.

4-Метил-*N***-(1-метил-5-нитро-1,2-дигидрохинолин-2-ил)бензамид (9b)**. Выход 119 мг (74%), желтые кристаллы, т. пл. 146–147 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3254, 3001, 1635, 1520, 1396. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 2.38 (3H, с, CH₃); 3.22 (3H, с, NCH₃); 6.09 (1H, д. д, *J* = 9.8, *J* = 5.6, 3-CH); 6.41 (1H, д. д, *J* = 9.1, *J* = 5.6, 2-CH); 6.46 (1H, уш. д, *J* = 9.1, NH); 6.93 (1H, уш. д, *J* = 7.8, H-8); 7.21 (2H, д. *J* = 8.2, H-3',5'); 7.25 (1H, д. *J* = 9.8, 4-CH); 7.29 (1H, д. д, *J* = 8.2, *J* = 8.0, H-7); 7.33 (1H, д. д, *J* = 8.0, *J* = 1.1, H-6); 7.62 (2H, д. *J* = 8.2, H-2',6'). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 21.6; 37.7; 61.8; 113.4; 113.6; 116.3; 122.2; 123.0; 127.2; 128.9; 129.5; 130.6; 142.8; 143.5; 147.7; 166.3. Найдено, *m/z*: 346.1158 [M+Na]⁺. C₁₈H₁₇N₃NaO₃. Вычислено, *m/z*: 346.1162.

N-(1-Метил-5-нитро-1,2-дигидрохинолин-2-ил)-4-метоксибензамид (9с). Выход 127 мг (75%), желтые кристаллы, т. пл. 139-140 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3317, 2927, 1626, 1522, 1398. Спектр ЯМР ¹Н (CDCl₃), б, м. д. (*J*, Гц): 3.25 (3H, с, NCH₃); 3.86 (3H, с, ОСН₃); 6.11 (1Н, д. д, J = 9.9, J = 5.5, 3-СН); 6.41–6.45 (2H, м, 2-CH, NH); 6.93 (2H, д, J = 8.8, H-3',5'); 6.95 (1H, д, J = 8.3, H-8); 7.26 (1Н, д, J = 9.9, 4-СН); 7.30 (1Н, д. д. *J* = 8.2, *J* = 7.9, H-7); 7.34 (1H, д. д, *J* = 8.0, *J* = 1.3, H-6); 7.73 (2H, д, J = 8.8, H-2',6'). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 37.6 (NCH₃); 56.0 (CH₃O); 61.8 (C-2); 113.4 (C-4a); 113.6 (C-6); 114.0 (C-3',5'); 116.3 (C-8); 122.1 (C-4); 123.1 (C-3); 125.6 (C-1'); 128.8 (C-7); 129.2 (C-2',6'); 143.5 (C-8a); 147.7 (C-5); 162.8 (C-4'); 165.8 (СО). Найдено, *m/z*: 362.1103 [M+Na]⁺. C₁₈H₁₇N₃NaO₄. Вычислено, *m/z*: 362.1111.

N-(1-Метил-5-нитро-1,2-дигидрохинолин-2-ил)-2-нитробензамид (9d). Выход 127 мг (72%), оранжевые кристаллы, т. пл. 151–152 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3261, 2920, 1647, 1518, 1396. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 3.37 (3H, с, NCH₃); 6.14 (1H, д. д, *J* = 9.9, *J* = 5.9, 3-CH); 6.27 (1H, уш. д, *J* = 9.1, NH); 6.37 (1H, д. д, *J* = 9.1, *J* = 5.9, 2-CH); 7.00–7.05 (1H, м, H-8); 7.23 (1H, д, *J* = 9.9, 4-CH); 7.29–7.32 (2H, м, H-6,7); 7.44 (1H, уш. д, *J* = 7.4, H-3'); 7.54–7.59 (1H, м, H-5'); 7.66 (1H, т, *J* = 7.4, H-4'); 8.06 (1H, д, *J* = 8.1, H-6'). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 38.1; 62.1; 113.6 (2C); 116.8; 122.2; 122.6; 124.9; 128.5; 129.0; 130.9; 132.5; 134.1; 143.3; 146.3; 147.6; 165.8. Найдено, *m/z*: 353.0893 [M–H]⁻. С₁₇H₁₃N₄O₅. Вычислено, *m/z*: 353.0891.

N-(1-Метил-5-нитро-1,2-дигидрохинолин-2-ил)-**3**-нитробензамид (9е). Выход 92 мг (52%), желтые кристаллы, т. пл. 140–141 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3312, 3089, 1640, 1518, 1343. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 3.25 (3H, с, NCH₃); 6.11 (1H, д. д, *J* = 9.9, *J* = 5.9, 3-CH); 6.45 (1H, д. д, *J* = 8.9, *J* = 5.9, 2-CH); 6.63 (1H, уш. д, *J* = 8.9, NH); 6.97 (1H, уш. д, *J* = 7.9, H-8); 7.30 (1H, д. *J* = 9.9, 4-CH); 7.31–7.38 (2H, м, H-6,7); 7.64 (1H, т, *J* = 8.0, H-5'); 8.10 (1H, уш. д, *J* = 7.7, H-4'); 8.37 (1H, уш. д, *J* = 8.0, H-6'); 8.56 (1H, уш. с, H-2'). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 37.9; 62.5; 113.6; 113.8; 116.5; 122.2; 122.3; 122.8; 126.7; 129.1; 130.1; 133.3; 135.3; 143.2; 147.7; 148.4; 164.0. Найдено, *m/z*: 353.0889 [M–H]⁻. C₁₇H₁₃N₄O₅. Вычислено, *m/z*: 353.0891.

N-(1-Метил-5-нитро-1,2-дигидрохинолин-2-ил)-4-нитробензамид (9f). Выход 126 мг (71%), оранжевые кристаллы, т. пл. 163–164 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3254, 1642, 1599, 1486, 1397. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 3.25 (3H, с, NCH₃); 6.11 (1H, д. д, *J* = 9.9, *J* = 5.9, 3-CH); 6.43 (1H, д. д, *J* = 8.9, *J* = 5.9, 2-CH); 6.56 (1H, уш. д, *J* = 8.9, NH); 6.96 (1H, уш. д, *J* = 7.9, H-8); 7.29 (1H, д, *J* = 9.9, 4-CH); 7.31–7.38 (2H, м, H-6,7); 7.90 (2H, д, *J* = 8.7, H-3',5'); 8.27 (2H, д, *J* = 8.7, H-2',6'). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 37.9; 62.5; 113.6; 113.8; 116.5; 122.2; 122.8; 124.0; 128.5; 129.1; 139.1; 143.2; 147.7; 150.0; 164.4. Найдено, *m*/*z*: 353.0896 [M–H]⁻. C₁₇H₁₃N₄O₅. Вычислено, *m*/*z*: 353.0891.

N-(1-Метил-6-нитро-1,2-дигидрохинолин-2-ил)бензамид (10а). Выход 148 мг (96%), желтые кристаллы, т. пл. 180–181 °C (с разл., PhH). ИК спектр, v, см⁻¹: 3308, 2925, 1633, 1575, 1482. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 3.22 (3H, с, NCH₃); 5.91 (1H, д. д, *J* = 9.6, *J* = 5.2, 3-CH); 6.55 (1H, д. д, *J* = 9.4, *J* = 5.2, 2-CH); 6.59 (1H, д, *J* = 9.2, H-8); 6.70 (1H, д, *J* = 9.6, 4-CH); 7.06 (1H, уш. д, *J* = 9.4, NH); 7.43 (2H, т, *J* = 7.4, H-3',5'); 7.52 (1H, т, *J* = 7.4, H-4'); 7.81 (1H, д. *J* = 9.2, *J* = 2.5, H-7). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 36.7; 63.2; 110.3; 118.8; 121.5; 123.3; 126.0; 126.7; 127.4; 128.8; 132.3; 133.4; 137.8; 147.6; 166.1. Найдено, *m/z*: 332.1001 [M+Na]⁺. C₁₇H₁₅N₃NaO₃. Вычислено, *m/z*: 332.1006.

4-Метил-*N***-(1-метил-6-нитро-1,2-дигидрохинолин-2-ил)бензамид (10b)**. Выход 145 мг (90%), желтые кристаллы, т. пл. 202–203 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3382, 2921, 1651, 1602, 1404. Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (*J*, Гц): 2.39 (3H, с, CH₃); 3.23 (3H, с, NCH₃); 5.91 (1H, д. д, *J* = 9.6, *J* = 5.2, 3-CH); 6.54 (1H, д. д,

J = 9.4, J = 5.2, 2-CH); 6.62 (1H, д, J = 9.2, H-8); 6.72 (1H, д, J = 9.6, 4-CH); 6.77 (1H, уш. д, J = 9.4, NH); 7.23 (2H, д, J = 8.1, H-3',5'); 7.69 (2H, д, J = 8.1, H-2',6'); 7.89 (1H, д, J = 2.5, H-5); 8.04 (1H, д. д, J = 9.2, J = 2.5, H-7). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 21.6 (CH₃); 36.8 (NCH₃); 63.1 (C-2); 110.4 (C-8); 118.8 (C-4a); 121.5 (C-3); 123.4 (C-5); 126.0 (C-7); 126.9 (C-4); 127.3 (C-2,6); 129.5 (C-3,5); 130.5 (C-1); 138.1 (C-6); 143.0 (C-4); 147.6 (C-8a); 166.0 (CO). Найдено, *m/z*: 346.1157 [M+Na]⁺. C₁₈H₁₇N₃NaO₃. Вычислено, *m/z*: 346.1162.

N-(1-Метил-6-нитро-1,2-дигидрохинолин-2-ил)-4-метоксибензамид (10с). Выход 153 мг (90%), желтые кристаллы, т. пл. 215–216 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3379, 2925, 1644, 1516, 1483. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 3.23 (3H, с, NCH₃); 3.84 (3H, с, OCH₃); 5.91 (1H, д. д, *J* = 9.6, *J* = 5.1, 3-CH); 6.53 (1H, д. д, *J* = 9.4, *J* = 5.1, 2-CH); 6.63 (2H, уш. д, *J* = 9.1, NH, H-8); 6.73 (1H, д. д, *J* = 9.6, 4-CH); 6.91 (2H, д, *J* = 8.8, H-3',5'); 7.75 (2H, д, *J* = 8.8, H-2',6'); 7.92 (1H, д. *J* = 2.5, H-5); 8.06 (1H, д. д, *J* = 9.2, *J* = 2.5, H-7). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 36.8; 55.6; 63.1; 110.4; 114.0; 118.8; 121.5; 123.4; 125.5; 126.0; 126.9; 129.2; 138.2; 147.6; 162.9; 165.5. Найдено, *m/z*: 362.1105 [M+Na]⁺. C₁₈H₁₇N₃NaO₄. Вычислено, *m/z*: 362.1111.

N-(1-Метил-6-нитро-1,2-дигидрохинолин-2-ил)-2-нитробензамид (10d). Выход 173 мг (98%), желтые кристаллы, т. пл. 182–183 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3239, 2925, 1646, 1601, 1578. Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (*J*, Гц): 3.38 (3H, с, NCH₃); 5.91 (1H, д. д, *J* = 9.6, *J* = 5.3, 3-CH); 6.37 (1H, уш. д, *J* = 9.3, NH); 6.49 (1H, д. д, *J* = 9.3, *J* = 5.3, 2-CH); 6.71 (1H, д, *J* = 9.3, H-8); 6.75 (1H, д. д, *J* = 9.6, 4-CH); 7.49 (1H, д, *J* = 7.5, H-6'); 7.59 (1H, д. д, *J* = 8.2, *J* = 7.4, H-5'); 7.68 (1H, д. д, *J* = 7.6, *J* = 7.4, H-4'); 7.91 (1H, д, *J* = 2.5, H-5); 8.05–8.10 (2H, м, H-7, H-3'). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 37.3; 63.5; 110.8; 118.9; 120.7; 123.4; 124.9; 126.1; 127.4; 128.6; 131.0; 132.3; 134.1; 138.5; 146.3; 147.3; 165.5. Найдено, *m/z*: 353.0885 [M–H]⁻. C₁₇H₁₃N₄O₅. Вычислено, *m/z*: 353.0891.

N-(1-Метил-6-нитро-1,2-дигидрохинолин-2-ил)-**3**-нитробензамид (10е). Выход 165 мг (93%), оранжевые кристаллы, т. пл. 191–192 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3370, 3087, 2928, 1664, 1574. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 3.25 (3H, с, NCH₃); 5.95 (1H, д. д, *J* = 9.6, *J* = 5.3, 3-CH); 6.57 (1H, д. д, *J* = 9.3, *J* = 5.3, 2-CH); 6.64 (1H, д, *J* = 9.2, H-8); 6.77 (1H, д. *J* = 9.6, 4-CH); 7.09 (1H, уш. д, *J* = 9.3, NH); 7.65 (1H, т. *J* = 8.0, H-5'); 7.87 (1H, д. *J* = 2.6, H-5); 8.03 (1H, д. д, *J* = 9.2, *J* = 2.6, H-7); 8.22 (1H, д. *J* = 7.8, H-6'); 8.37 (1H, д. д, *J* = 8.1, *J* = 1.2, H-4'); 8.67 (1H, уш. с, H-2'). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 37.0; 63.6; 110.6; 118.9; 120.9; 122.4; 123.5; 126.1; 126.8; 127.4; 130.2; 133.5; 135.1; 138.3; 147.4; 148.4; 163.7. Найдено, *m*/*z*: 353.0895 [M–H]⁻.

*N***-(1-Метил-6-нитро-1,2-дигидрохинолин-2-ил)-4-нитробензамид (10f)**. Выход 140 мг (79%), оранжевые кристаллы, т. пл. 214–215 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3356, 3106, 1658, 1600, 1575. Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (*J*, Гц): 3.09 (3H, с, NCH₃); 5.93 (1H, д. д, J = 9.7, J = 4.9, 3-CH); 6.42 (1H, уш. с, 2-CH); 6.80 (1H, д, J = 9.8, H-8); 6.91 (1H, д, J = 9.8, H-7); 8.03–8.07 (2H, м, 4-CH, H-5); 8.10 (2H, д, J = 8.6, H-3',5'); 8.29 (2H, д, J = 8.6, H-2',6'); 9.60 (1H, д, J = 6.2, NH). Спектр ЯМР ¹³С (CDCl₃); δ , м. д.: 36.0; 63.2; 110.4; 119.3; 121.9; 122.5; 123.5; 125.4; 126.0; 129.3; 137.0; 139.2; 148.2; 149.2; 163.5. Найдено, *m*/*z*: 353.0890 [M–H]⁻. C₁₇H₁₃N₄O₅. Вычислено, *m*/*z*: 353.0891.

N-(1-Метил-7-нитро-1,2-дигидрохинолин-2-ил)бензамид (11а). Выход 121 мг (78%, из соли 7а), 124 мг (80%, из соли 7b), ярко-оранжевые кристаллы, т. пл. 144–145 °C (с разл., PhH). ИК спектр, v, см⁻¹: 3253, 3056, 1636, 1511, 1333. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 3.20 (3H, с, CH₃); 6.05 (1H, д. д, *J* = 9.6, *J* = 5.2, 3-CH); 6.49 (1H, д. д, *J* = 9.3, *J* = 5.2, 2-CH); 6.53 (1H, уш. д, *J* = 9.3, NH); 6.78 (1H, д. *J* = 9.6, 4-CH); 7.18 (1H, д, *J* = 8.2, H-5); 7.41 (2H, т, *J* = 7.4, H-3',5'); 7.48 (1H, д. *J J* = 8.2, *J* = 2.0, H-6); 7.73 (2H, д. *J* = 7.4, H-2',6'). Спектр ЯМР ¹³C (CDCl₃), δ , м. д.: 36.5; 62.6; 106.2; 112.8; 123.8; 125.5; 126.6; 127.2; 127.7; 128.8; 132.3; 133.5; 142.8; 148.7; 166.1. Найдено, *m/z*: 332.0997 [M+Na]⁺. C₁₇H₁₅N₃NaO₃. Вычислено, *m/z*: 332.1006.

4-Метил-*N***-(1-метил-7-нитро-1,2-дигидрохинолин-2-ил)бензамид (11b)**. Выход 144 мг (89%), желтые кристаллы, т. пл. 152–153 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3251, 2943, 1635, 1500, 1340. Спектр ЯМР ¹H (CDCl₃), δ, м. д. (*J*, Гц): 2.38 (3H, с, CH₃); 3.20 (3H, с, NCH₃); 6.05 (1H, д. д, *J* = 9.6, *J* = 5.1, H-3); 6.43–6.50 (2H, м, 2-CH, NH); 6.77 (1H, д, *J* = 9.6, 4-CH); 7.18 (1H, д, *J* = 8.3, H-5); 7.21 (2H, д, *J* = 8.1, H-3',5'); 7.48 (1H, д, *J* = 1.9, H-8); 7.58–7.64 (3H, м, H-2',6,6'). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 21.5; 36.3; 62.4; 106.1; 112.7; 123.7; 125.4; 126.5; 127.1; 127.5; 129.4; 130.5; 142.7; 142.8; 148.6; 165.9. Найдено, *m/z*: 346.1160 [M+Na]⁺. C₁₈H₁₇N₃NaO₃. Вычислено, *m/z*: 346.1162.

N-(1-Метил-7-нитро-1,2-дигидрохинолин-2-ил)-4-метоксибензамид (11с). Выход 120 мг (71%), желтые кристаллы, т. пл. 139-140 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3287, 2931, 1653, 1604, 1340. Спектр ЯМР ¹Н (CDCl₃), б, м. д. (*J*, Гц): 3.17 (3H, с, NCH₃); 3.82 (3H, с, ОСН₃); 6.03 (1H, д. д, J = 9.6, J = 5.3, 3-CH); 6.42 (1H, уш. д, *J* = 9.4, NH); 6.47 (1H, д. д, *J* = 9.4, *J* = 5.3, 2-CH); 6.77 (1H, д, J = 9.6, 4-CH); 6.89 (2H, д, J = 8.8, H-3',5'); 7.18 (1Н, д, J = 8.2, Н-5); 7.48 (1Н, д, J = 2.0, Н-8); 7.60 (1H, Λ , J = 8.2, J = 2.0, H-6); 7.70 (2H, Λ , J = 8.8, H-2',6'). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 36.4 (CH₃N); 55.6 (CH₃O); 62.5 (C-2); 106.2 (C-8); 112.8 (C-6); 114.0 (C-3',5'); 124.0 (C-3); 125.5 (C-1'); 125.6 (C-4a); 126.5 (C-4); 127.6 (C-5); 129.1 (C-2',6'); 142.8 (C-8a); 148.7 (C-7); 162.8 (C-4'); 165.6 (CO). Найдено, m/z: 362.1104 [M+Na]⁺. С₁₈H₁₇N₃NaO₄. Вычислено, *m*/*z*: 362.1111.

N-(1-Метил-7-нитро-1,2-дигидрохинолин-2-ил)-2-нитробензамид (11d). Выход 143 мг (81%), желтые кристаллы, т. пл. 159–160 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3264, 2924, 1647, 1518, 1342. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 3.34 (3H, с, NCH₃); 6.12 (1H, д. д, *J* = 9.6, *J* = 5.5, 3-CH); 6.21 (1H, уш. д, *J* = 9.4, NH); 6.46 (1H, д. д, *J* = 9.4, *J* = 5.5, 2-CH); 6.78 (1H, д, *J* = 9.6, 4-СН); 7.15 (1H, д, J = 8.2, H-5); 7.46 (1H, д. д, J = 7.5, J = 1.4, H-6'); 7.53–7.60 (3H, м, H-4',6,8); 7.66 (1H, д. д. д. д. J = 7.6, J = 7.5, J = 1.0, H-5'); 8.07 (1H, д. д. J = 8.1, J = 1.0, H-3'). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 36.8; 63.0; 106.4; 113.0; 123.1; 124.9; 125.4; 126.9; 127.7; 128.6; 130.9; 132.4; 134.1; 142.6; 146.3; 148.7; 165.5. Найдено, *m/z*: 353.0896 [M–H]⁻. C₁₇H₁₃N₄O₅. Вычислено, *m/z*: 353.0891.

N-(1-Метил-7-нитро-1,2-дигидрохинолин-2-ил)-**3**-нитробензамид (11е). Выход 94 мг (53%), оранжевые кристаллы, т. пл. 143–144 °C (с разл., PhH). ИК спектр, v, см⁻¹: 3373, 3097, 1654, 1501, 1344. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гп): 3.22 (3H, с, NCH₃); 6.08 (1H, д. д, *J* = 9.6, *J* = 5.5, 3-CH), 6.51 (1H, д. д, *J* = 9.2, *J* = 5.5, 2-CH); 6.74 (1H, уш. д, *J* = 9.2, NH); 6.83 (1H, д, *J* = 9.6, 4-CH); 7.20 (1H, д. *J* = 8.2, H-5); 7.47 (1H, д. *J* = 1.6, H-8); 7.58 (1H, д. д. *J* = 8.2, *J* = 1.6, H-5'); 7.64 (1H, т, *J* = 8.0, H-6); 8.15 (1H, уш. д. *J* = 7.8, H-6'); 8.36 (1H, уш. д, *J* = 8.1, H-4'); 8.56 (1H, уш. с, H-2'). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 36.6; 63.2; 106.3; 113.1; 122.1; 123.3; 125.5; 126.7; 127.1; 127.8; 130.2; 133.6; 135.2; 142.5; 148.3; 148.6; 163.7. Найдено, *m*/*z*: 353.0883 [M–H]⁻. C₁₇H₁₃N₄O₅. Вычислено, *m*/*z*: 353.0891.

N-(1-Метил-7-нитро-1,2-дигидрохинолин-2-ил)-4-нитробензамид (11f). Выход 113 мг (64%), оранжевые кристаллы, т. пл. 129–130 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3282, 1648, 1514, 1339. Спектр ЯМР ¹H (CDCl₃), δ, м. д. (*J*, Гц): 3.22 (3H, с, NCH₃); 6.07 (1H, д. д, *J* = 9.6, *J* = 5.5, 3-CH); 6.50 (1H, д. д, *J* = 9.2, *J* = 5.5, 2-CH); 6.69 (1H, уш. д, *J* = 9.2, NH); 6.82 (1H, д, *J* = 9.6, 4-CH); 7.19 (1H, д, *J* = 8.2, H-5); 7.47 (1H, д, *J* = 2.0, H-8); 7.58 (1H, д. д, *J* = 8.2, *J* = 2.0, H-6); 7.92 (2H, д, *J* = 8.8, H-2',6'); 8.26 (2H, д, *J* = 8.8, H-3',5'). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 36.6; 63.2; 106.3; 113.1; 123.2; 124.0; 125.5; 127.0; 127.8; 128.7; 139.1; 142.5; 148.5; 150.0; 164.1. Найдено, *m/z*: 353.0894 [M–H]⁻. C₁₇H₁₃N₄O₅. Вычислено, *m/z*: 353.0891.

N-(1-Метил-8-нитро-1,2-дигидрохинолин-2-ил)бензамид (12а). Выход 127 мг (82%), оранжевые кристаллы, т. пл. 150–151 °C (с разл., PhH). ИК спектр, v, см⁻¹: 3294, 1639, 1600, 1509, 1347. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 3.05 (3H, с, NCH₃); 6.01 (1H, д. д, *J* = 9.6, *J* = 5.5, 3-CH); 6.32 (1H, д. д, *J* = 9.0, *J* = 5.5, 2-CH); 6.59 (1H, уш. д, *J* = 9.0, NH); 6.75 (1H, д, *J* = 9.6, 4-CH); 6.81 (1H, д. д, *J* = 7.8, *J* = 7.7, H-6); 7.25 (1H, уш. д, *J* = 7.7, H-7); 7.42 (2H, д. д. *J* = 7.4, *J* = 7.8, H-3',5'); 7.51 (1H, д. д, *J* = 7.4, *J* = 7.3, H-4'); 7.67 (1H, д. д, *J* = 8.2, *J* = 1.2, H-5); 7.75 (2H, д. *J* = 7.4, H-2',6'). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 42.2; 64.3; 117.4; 121.7; 124.7; 126.2; 126.4; 127.3; 128.8; 131.2; 132.2; 133.8; 136.9; 138.3; 166.3. Найдено, *m/z*: 332.1004 [M+Na]⁺. C₁₇H₁₅N₃NaO₃. Вычислено, *m/z*: 332.1006.

4-Метил-*N***-(1-метил-8-нитро-1,2-дигидрохинолин-2-ил)бензамид (12b)**. Выход 128 мг (79%), желтые кристаллы, т. пл. 160–161 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3303, 2926, 2856, 1639, 1346. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 2.38 (3H, с, CH₃); 3.03 (3H, с, NCH₃); 6.00 (1H, д. д, *J* = 9.6, *J* = 5.5, 3-CH); 6.33 (1H, д. д, *J* = 9.0, *J* = 5.5, 2-CH); 6.55 (1H, уш. д, *J* = 9.0, NH); 6.74 (1H, д. д, *J* = 9.6, 4-CH); 6.81 (1H, д. д, *J* = 7.8, *J* = 7.7,

H-6); 7.22 (2H, д, J = 8.0, H-3',5'); 7.25 (1H, уш. д, J = 7.7, H-7); 7.63–7.68 (3H, м, H-2',5,6'). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 21.6 (CH₃); 42.1 (NCH₃); 64.3 (C-2); 117.3 (C-6); 121.8 (C-3); 124.7 (C-4a); 126.1 (C-4); 126.4 (C-5); 127.3 (C-2',6'); 129.5 (C-3',5'); 130.8 (C-1'); 131.2 (C-7); 136.9 (C-8a); 138.3 (C-8); 142.7 (C-4'); 166.1 (CO). Найдено, *m/z*: 346.1162 [M+Na]⁺. C₁₈H₁₇N₃NaO₃. Вычислено, *m/z*: 346.1162.

N-(1-Метил-8-нитро-1,2-дигидрохинолин-2-ил)-4-метоксибензамид (12с). Выход 124 мг (73%), желтые кристаллы, т. пл. 154–155 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3313, 2959, 1636, 1606, 1345. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 3.03 (3H, с, NCH₃); 3.84 (3H, с, OCH₃); 6.01 (1H, д. д. *J* = 9.6, *J* = 5.5, 3-CH); 6.32 (1H, д. д. *J* = 9.0, *J* = 5.5, 2-CH); 6.51 (1H, уш. д. *J* = 9.0, NH); 6.74 (1H, д. *J* = 9.6, 4-CH); 6.80 (1H, д. д. *J* = 8.2, *J* = 7.6, H-6); 6.90 (2H, д. *J* = 8.8, H-3',5'); 7.25 (1H, уш. д. *J* = 7.6, H-7); 7.66 (1H, д. д. *J* = 8.2, *J* = 1.0, H-5); 7.72 (2H, д. *J* = 8.8, H-2',6'). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 42.1; 55.6; 64.2; 114.0; 117.2; 121.9; 124.7; 125.9; 126.1; 126.3; 129.2; 131.2; 137.0; 138.3; 162.7; 165.7. Найдено, *m/z*: 362.1109 [M+Na]⁺. C₁₈H₁₇N₃NaO₄. Вычислено, *m/z*: 362.1111.

N-(1-Метил-8-нитро-1,2-дигидрохинолин-2-ил)-2-нитробензамид (12d). Выход 149 мг (84%), желтые кристаллы, т. пл. 147–148 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3288, 2928, 2853, 1646, 1347. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 3.12 (3H, с, NCH₃); 6.09 (1H, д. д, *J* = 9.6, *J* = 5.0, 3-CH); 6.28–6.33 (2H, м, NH, 2-CH); 6.75 (1H, д, *J* = 9.6, 4-CH); 6.81 (1H, д. д, *J* = 7.7, *J* = 7.5, H-6); 7.25 (1H, уш. д, *J* = 7.5, H-7); 7.53–7.60 (2H, м, H-4',5'); 7.64–7.69 (2H, м, H-5,6'); 8.07 (1H, д, *J* = 8.0, H-3'). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 42.3; 64.4; 117.6; 121.2; 124.7; 124.8; 126.3; 126.5; 128.8; 130.9; 131.3; 132.4; 134.1; 136.7; 138.5; 146.4; 165.5. Найдено, *m/z*: 353.0888 [M–H]⁻. С₁₇H₁₃N₄O₅. Вычислено, *m/z*: 353.0891.

N-(1-Метил-8-нитро-1,2-дигидрохинолин-2-ил)-3-нитробензамид (12е). Выход 122 мг (69%), оранжевые кристаллы, т. пл. 168–169 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3405, 2923, 1662, 1517, 1352. Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (*J*, Гц): 3.06 (3H, с, NCH₃); 6.04 (1H, д. д, *J* = 9.6, *J* = 5.6, 3-CH); 6.33 (1H, д. д, *J* = 8.8, *J* = 5.6, 2-CH); 6.71 (1H, уш. д, *J* = 8.8, NH); 6.81 (1H, д, *J* = 9.6, 4-CH); 6.85 (1H, т, *J* = 7.8, H-6); 7.30 (1H, уш. д, *J* = 7.8, H-7); 7.64 (1H, д, *J* = 8.0, H-6'); 7.69 (1H, уш. д, *J* = 7.8, H-5'); 8.15 (1H, д, *J* = 7.8, H-4'); 8.37 (1H, уш. д, *J* = 8.2, H-5); 8.56 (1H, уш. с, H-2'). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 42.4; 64.7; 117.8; 121.1; 122.2; 124.7; 126.5; 126.7 (2C); 130.2; 131.5; 133.6; 135.4; 136.7; 138.6; 148.3; 163.9. Найдено, *m/z*: 353.0893 [M–H]⁻. C₁₇H₁₃N₄O₅. Вычислено, *m/z*: 353.0891.

N-(1-Метил-8-нитро-1,2-дигидрохинолин-2-ил)-4-нитробензамид (12f). Выход 127 мг (72%), желтые кристаллы, т. пл. 164–165 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3150, 1629, 1599, 1402. Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (*J*, Гц): 3.07 (3H, с, NCH₃); 6.04 (1H, д. д, *J* = 9.6, *J* = 5.6, 3-CH); 6.32 (1H, д. д, *J* = 8.2, *J* = 5.6, 2-CH); 6.61 (1H, уш. д, *J* = 8.2, NH); 6.80 (1H, д, *J* = 9.6, 4-CH); 6.85 (1H, уш. т, *J* = 7.8, H-6); 7.29 (1H, уш. д, *J* = 7.2, H-7); 7.69 (1H, уш. д, J = 8.0, H-5); 7.92 (2H, д, J = 8.5, H-3',5'); 8.28 (2H, д, J = 8.5, H-2',6'). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 42.4; 64.6; 117.8; 121.2; 124.1; 124.8; 126.4; 126.7; 128.5; 131.4; 136.7; 138.6; 139.4; 150.0; 164.4. Найдено, m/z: 353.0882 [M–H]⁻. C₁₇H₁₃N₄O₅. Вычислено, m/z: 353.0891.

Синтез ароилиминов 13–16 (общая методика). К раствору 97 мг (0.3 ммоль) соответствующего соединения 9b, 10b, 11b или 12b в 8 мл $C_2H_4Cl_2$ добавляют 68 мг (0.3 ммоль) DDQ и перемешивают при комнатной температуре в течение 1 ч, осадок отфильтровывают, фильтрат упаривают при пониженном давлении. Сухой остаток растворяют в минимальном количестве PhH и хроматографируют на силикагеле флеш-хроматографией на сухой колонке,¹⁵ элюент PhH–EtOAc, 10:1, собирают первую фракцию желтого цвета. После упаривания растворителя получают соответствующие продукты 13–16.

4-Метил-*N***-(1-метил-5-нитрохинолин-2(1***H***)-илиден)бензамид (13). Выход 34 мг (35%), желтые кристаллы, т. пл. 182–183 °С (с разл., PhH). ИК спектр, v, см⁻¹: 2928, 2362, 1518, 1374, 1270, 1168. Спектр ЯМР ¹H (CDCl₃); \delta, м. д. (***J***, Гц): 2.42 (3H, с, CH₃); 4.03 (3H, с, NCH₃), 7.25 (2H, д,** *J* **= 8.0, H-3',5'); 7.67–7.69 (1H, м, H-7); 7.76 (1H, уш. д,** *J* **= 8.6, H-8); 7.83 (1H, д,** *J* **= 10.2, 3-CH); 7.86 (1H, уш. д,** *J* **= 7.8, H-6); 8.13 (2H, д,** *J* **= 8.0, H-2',6'); 8.20 (1H, д,** *J* **= 10.2, 4-CH). Спектр ЯМР ¹³С (CDCl₃), \delta, м. д.: 21.8; 33.2; 115.1; 119.2; 119.8; 122.4; 129.0; 129.8; 130.2; 130.8; 134.3; 141.0; 142.7; 147.5; 155.8; 176.4. Найдено,** *m/z***: 344.1018 [M+Na]⁺. C₁₈H₁₅N₃NaO₃. Вычислено,** *m/z***: 344.1006.**

4-Метил-*N***-(1-метил-6-нитрохинолин-2(1***H***)-илиден)бензамид (14). Выход 48 мг (50%), желтые кристаллы, т. пл. 257–258 °С (с разл., PhH). ИК спектр, v, см⁻¹: 3072, 2922, 2359, 1637, 1547, 1419, 1330. Спектр ЯМР ¹Н (CDCl₃), \delta, м. д. (***J***, Гц): 2.43 (3H, с, CH₃); 4.01 (3H, с, NCH₃); 7.24–7.26 (2H, м, H-3',5'); 7.56 (1H, д,** *J* **= 9.3, H-8); 7.64 (1H, д,** *J* **= 9.8, 3-CH); 7.68 (1H, д,** *J* **= 9.8, 4-CH); 8.11 (2H, д,** *J* **= 8.1, H-2',6'); 8.42 (1H, д. д,** *J* **= 9.3,** *J* **= 2.5, H-7); 8.46 (1H, д,** *J* **= 2.5, H-5). Спектр ЯМР ¹³С (CDCl₃), \delta, м. д.: 21.8; 32.9; 115.5; 121.0; 121.3; 124.5; 125.8; 129.1; 129.9; 134.0; 136.5; 142.5; 143.0; 144.0; 156.1; 176.7. Найдено,** *m***/***z***: 344.1010 [M+Na]⁺. C₁₈H₁₅N₃NaO₃. Вычислено,** *m***/***z***: 344.1006.**

4-Метил-*N***-(1-метил-7-нитрохинолин-2(1***H***)-**илиден)бензамид (15). Выход 39 мг (40%), желтые кристаллы, т. пл. 229–230 °С (с разл., PhH). ИК спектр, v, см⁻¹: 2928, 1599, 1528, 1487, 1343, 1262, 1166. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 2.43 (3H, с, CH₃); 4.05 (3H, с, NCH₃); 7.24–7.26 (2H, м, H-3',5'); 7.65 (1H, д, *J* = 9.7, 4-CH); 7.71 (1H, д, *J* = 8.7, H-5); 7.82 (1H, д, *J* = 9.7, 3-CH); 8.10 (1H, д. д, *J* = 8.7, *J* = 1.5, H-6); 8.13 (2H, д, *J* = 8.1, H-2',6'); 8.37 (1H, д, *J* = 1.5, H-8). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 21.8 (CH₃); 32.7 (NCH₃); 110.5 (C-8); 117.4 (C-6); 122.8 (C-3); 126.1 (C-4a); 129.0 (C-3',5'); 129.8 (C-5); 129.9 (C-2',6'); 134.3 (C-1'); 135.6 (C-4); 140.1 (C-8a); 142.8 (C-4'); 149.0 (C-7); 156.5 (C-2); 176.5 (CO). Найдено, *m*/*z*: 344.0992 [M+Na]⁺. C₁₈H₁₅N₃NaO₃. Вычислено, *m*/*z*: 344.1006. **4-Метил-***N***-(1-метил-8-нитрохинолин-2(1***H***)-***и***лиден**)**бензамид (16)**. Выход 39 мг (40%), желтые кристаллы, т. пл. 181–182 °С (с разл., PhH). ИК спектр, v, см⁻¹: 2931, 1545, 1521, 1448, 1399, 1274, 1170, 1063. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 2.42 (3H, с, CH₃); 3.64 (3H, с, NCH₃); 7.24–7.28 (2H, м, H-3',5'); 7.30 (1H, т, *J* = 7.8, H-6); 7.60 (1H, д, *J* = 9.7, 3-CH); 7.64 (1H, д, *J* = 9.7, 4-CH); 7.72 (1H, д. д, *J* = 7.8, *J* = 1.3, H-7); 7.91 (1H, д. д, *J* = 7.9, *J* = 1.2, H-5); 8.11 (2H, д, *J* = 8.1, H-2',6'). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 21.8; 38.5; 120.4; 122.2; 124.6; 127.8; 129.1; 130.0; 132.6; 133.9; 134.1; 136.2; 140.5; 143.0; 156.7; 176.8. Найдено, *m/z*: 344.1009 [M+Na]⁺. C₁₈H₁₅N₃NaO₃. Вычислено, *m/z*: 344.1006.

Рентгеноструктурное исследование соединения 12a проведено на дифрактометре Agilent SuperNova при использовании микрофокусного источника рентгеновского излучения с анодом из меди и координатным CCD-детектором Atlas S2. Кристаллы, пригодные для РСА, получены из раствора PhH медленным испарением при комнатной температуре. Сбор отражений, определение и уточнение параметров элементарной ячейки проведены с использованием специализированного программного пакета CrysAlisPro 1.171.38.41 (Rigaku Oxford Diffraction, 2015).¹⁶ Структура расшифрована с помощью программы ShelXT,¹⁷ уточнение структуры проведено с помощью программы ShelXL,¹⁸ молекулярная графика и подготовка материала для публикации выполнены с использованием программного пакета Olex2 1.2.10.¹⁹ Полные рентгеноструктурные данные РСА соединения 12а депонированы в Кембриджском банке структурных данных (депонент CCDC 1910464).

Файл сопроводительной информации, содержащий спектры ЯМР 1 Н и 13 С всех синтезированных соединений, а также данные РСА соединения **12а**, доступен на сайте журнала http://hgs.osi.lv.

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации в рамках государственного задания (проект № 4.6306.2017/8.9).

Список литературы

- 1. Anastas, P. T.; Warner, J. C. *Green Chemistry: Theory and Practice*; Oxford University Press: New York, 1998.
- Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L., Jr.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. *Green Chem.* 2007, *9*, 411.
- (a) Chupakhin, O. N.; Charushin, V. N.; van der Plas, H. C. *Nucleophilic Aromatic Substitution of Hydrogen*; Academic Press: San Diego, 1994, p. 367. (b) Mąkosza, M.; Wojciechowski, K. *Chem. Rev.* 2004, *104*, 2631.
- (a) Charushin, V. N.; Chupakhin, O. N. Top. Heterocycl. Chem. 2014, 37, 1. (b) Gulevskaya, A. V.; Pozharskii, A. F. Top. Heterocycl. Chem. 2014, 37, 179. (c) van der Plas, H. C. Adv. Heterocycl. Chem. 2004, 86, 1.
- (a) Makosza, M.; Wojciechowski, K. *Top. Heterocycl. Chem.* 2014, 37, 51. (b) Makosza, M. *Synthesis* 2017, 3247.
- 6. Stern M. K.; Cheng, B. K. J. Org. Chem. 1993, 58, 6883.

- (a) Borovlev, I. V.; Demidov, O. P.; Kurnosova, N. A.; Amangasieva, G. A.; Avakyan, E. K. Chem. Heterocycl. Compd. 2015, 51, 170. [Химия гетероцикл. соединений 2015, 51, 170.] (b) Demidov, O. P.; Borovlev, I. V.; Amangasieva, G. A.; Avakyan, E. K. Chem. Heterocycl. Compd. 2016, 52, 104. [Химия гетероцикл. соединений 2016, 52, 104.] (c) Amangasieva, G. A.; Borovlev, I. V.; Demidov, O. P.; Avakyan, E. K.; Borovleva, A. A. Russ. J. Org. Chem. 2018, 54, 867. [Журн. орган. химии 2018, 54, 865.] (d) Amangasieva, G. A.; Avakyan, E. K.; Demidov, O. P.; Borovleva, A. A.; Pobedinskaya, D. Yu.; Borovlev, I. V. Chem. Heterocycl. Compd. 2019, 55, 623. [Химия гетероцикл. coeдинений 2019, 55, 623.]
- Demidov, O. P.; Amangasieva, G. A.; Avakyan, E. K.; Borovlev, I. V. Synthesis 2017, 3710.
- 9. Poddubnyi, I. S. *Chem. Heterocycl. Compd.* **1995**, *31*, 682. [Химия гетероцикл. соединений **1995**, 774.]
- 10. (a) Tondys, H.; van der Plas, H. C.; Woźniak, M. J. *Heterocycl. Chem.* 1985, 22, 353. (b). Woźniak, M.; Baranski, A.; Nowak, K.; van der Plas, H. C. J. Org. Chem. 1987, 52, 5643. (c) Grzegożek, M. J. *Heterocycl. Chem.* 2008, 45, 1879. (d) Grzegożek, M.; Szpakiewicz, B.; Kowalski, P. ARKIVOC 2009, (vi), 84. (e) Demidov, O. P.; Pobedinskaya, D. Yu.; Avakyan, E. K.; Amangasieva, G. A.; Borovlev, I. V. Chem. Heterocycl. Compd. 2018, 54, 875. [Химия гетероцикл. соединений 2018, 54, 875.]
- (a) Patriciu, O.-I.; Pillard, C.; Fînaru, A.-L.; Săndulescu, I.; Guillaumet, G. Synthesis 2007, 3868. (b) Borovlev, I. V.; Demidov, O. P.; Amangasieva, G. A.; Avakyan, E. K.; Borovleva, A. A.; Pobedinskaya, D. Yu. Synthesis 2018, 3520. (c) Avakyan, E. K.; Borovlev, I. V.; Demidov, O. P.; Amangasieva, G. A.; Pobedinskaya, D. Yu. Chem.

Heterocycl. Compd. **2017**, *53*, 1207. [Химия гетероцикл. соединений **2017**, *53*, 1207.]

- (a) Michael, J. P. Nat. Prod. Rep. 1997, 14, 605. (b) Kumar, S.; Bawa, S.; Gupta, H. Mini-Rev. Med. Chem. 2009, 9, 1648.
 (c) Puskullu, M. O.; Tekiner, B.; Suzen, S. Mini-Rev. Med. Chem. 2013, 13, 365. (d) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014, 57, 5845. (e) Gopaul, K.; Shintre, S. A.; Koorbanally, N. A. Anticancer Agents Med. Chem. 2015, 15, 631. (f) Hussaini, S. M. A. Expert Opin. Ther. Pat. 2016, 26, 1201. (g) Jain, S.; Chandra, V.; Jain, P. K.; Pathak, K.; Pathak, D.; Vaidya, A. Arabian J. Chem. 2016. DOI: 10.1016/j.arabjc.2016.10.009. (h) Sharma, V.; Mehta, D. K.; Das, R. Mini-Rev. Med. Chem. 2017, 17, 1557.
 (i) Musiol, R. Expert Opin. Drug Discovery 2017, 12, 583.
- (a) Xu, L.; Xu, B.-L.; Lu, S.-J.; Wang, B.; Kang, T.-G. *Acta Crystallogr., Sect. E: Struct. Rep. Online* **2011**, *67*, 0957.
 (b) Nishiwaki, N.; Tanaka, C.; Asahara, M.; Asaka, N.; Tohda, Y.; Ariga, M. *Heterocycles* **1999**, *51*, 567. (c) Hao, F.; Asahara, H.; Nishiwaki, N. Org. Biomol. Chem. **2016**, *14*, 5128.
- 14. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512.
- Шарп, Дж.; Госни, И.; Роули, А. Практикум по органической химии; Москва, В. В., Ред.; Мир: Москва, 1993, с. 193.
- CrysAlisPro, version 1.171.38.41; Rigaku Oxford Diffraction, 2015. https://www.rigaku.com/en/products/smc/crysalis.
- 17. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Adv. 2015, A71, 3.
- Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3.
- Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.