

Химия гетероциклических соединений 2019, 55(6), 573-577

КРАТКИЕ СООБЩЕНИЯ

Эффективный метод синтеза азоло[1,5-*а*]пиримидин-7-аминов

Денис А. Газизов¹*, Виктор В. Федотов², Евгений Б. Горбунов¹, Евгений Н. Уломский^{1,2}, Олег С. Ельцов², Геннадий Л. Русинов^{1,2}, Владимир Л. Русинов^{1,2}

¹ Институт органического синтеза им. И. Я. Постовского УрО РАН,

ул. С. Ковалевской, 22 / Академическая, 20, Екатеринбург 620990, Россия; e-mail: dengaz94@mail.ru

² Уральский федеральный университет им. первого Президента России Б. Н. Ельцина,

ул. Мира, 19, Екатеринбург 620002, Россия; e-mail: victor0493@mail.ru

Поступило 19.04.2019 Принято 29.05.2019

X = CH, CSMe, CCF₃, N, CHet; Y = N, CCO₂Et

Реакциями конденсации аминоазолов с (2*E*)-(3-морфолин-4-ил)акрилонитрилом и 3,3-диэтоксипропионитрилом был синтезирован ряд азоло[1,5-*a*]пиримидин-7-аминов. Установлено, что в реакциях с некоторыми аминотриазолами образуются смеси региоизомеров: азоло[1,5-*a*]пиримидин-7-аминов и азоло[4,3-*a*]пиримидин-5-аминов.

Ключевые слова: азоло[1,5-*а*]пиримидин-7-амины, 3,3-диэтоксипропионитрил, (2*E*)-(3-морфолин-4-ил)акрилонитрил, гетероциклизация, перегруппировка Димрота.

В ряду производных азоло[1,5-а]пиримидинов известны противовирусные, антибактериальные, противопаразитарные, противоопухолевые средства.^{1,2} Широкий спектр биологической активности этих соединений объясняется их структурной аналогией с природными пуриновыми основаниями, отвечающими за контроль ключевых биохимических процессов, а также их способностью к хелатированию металлов.³⁻⁵ Синтетические методы, наиболее часто используемые для построения азолопиримидиновых систем, обычно включают реакции гетероциклизации на основе соответствующих аминоазолов либо функционализированных производных пиримидина. В первом случае при создании пиримидина по типу [3+3]-процесса в качестве компонента, присоединяемого к 3-аминоазолу, используются 1,3-дикарбонильные системы или их структурные аналоги.^{2,6} Другой путь получения азоло[1,5-а]пиримидинов на основе производных пиримидина более разнообразен, однако ограничивается труднодоступностью этих производных. Как правило, такой подход сводится к реакциям гетероциклизации 2-гидразинопиримидинов или диаминопиримидинов с карбонильными соединениями,7-11 а также к окислительной циклизации (пиримидин-2-ил)амидинов. 12,13 Однако синтез 7-аминозамещенных азолопиримидинов в литературе ограничивается двумя примерами, а именно получением незамещенного [1,2,4]триазоло[1,5-а]пиримидин-7-амина и 2-метил[1,2,4]триазоло[1,5-а]пиримидин-7-амина взаимодействием соответствующего аминотриазола с 3-(пиперидино)акрилонитрилом или 3-(диметиламино)акрилонитрилом. 14-16 Многие производные [1,2,4]триазоло[1,5-а]пиримидин-7-аминов зарекомендовали себя как соединения, обладающие рядом полезных биологических свойств.¹ Чаще всего синтез таких аминопроизводных включает трудоемкую протекающую с невысокими выходами стадию хлордезоксигенирования с последующим ипсо-замещением галогена.¹⁷ Таким образом, поиск новых и удобных способов синтеза данного класса соединений является актуальной задачей.

В настоящей работе мы предлагаем альтернативный ранее описанным в литературе вариант синтеза азоло-[1,5-*a*]пиримидин-7-аминов из аминоазолов **1***a*-*h* и (*2E*)-(3-морфолин-4-ил)акрилонитрила **(2)**, полученного трехкомпонентной конденсацией циануксусной кислоты с морфолином и триэтилортоформиатом¹⁸ или из коммерчески доступного 3,3-диэтоксипропионитрила.

Установлено, что кипячение растворов азолов **1а-h** с (2*E*)-(3-морфолин-4-ил)акрилонитрилом (**2**) приводит к образованию целевых азоло[1,5-*a*]пиримидин-7-аминов **3а-h** (схема 1). В таких растворителях, как MeCN, ДМФА, АсOH, продукты **3а-h** были получены с выходами 30–40%. Однако использование смеси Ру, АсOH в эквимолярном соотношении позволило увеличить их выходы до 60–75%.

c X = CCF₃, Y = N (63%), **d** X = CSNIE, Y = N (60%), **c** X = CCF₃, Y = N (63%), **d** X = Y = N (72%), **e** X = CH, Y = CCO₂Et (67%), **f** X = C(2-thienyl), Y = N (69%), **g** X = C(2-Fur), Y = N (65%), **h** X = CMe, Y = N (62%)

Другой синтетический подход, основанный на взаимодействии 3-аминоазолов **1а-h** с 3,3-диэтоксипропионитрилом (**4**) (схема 2), для соединений **1а,b,h** оказался неселективным – реакция в трех случаях сопровождалась образованием изомерных азоло[4,3-*a*]пиримидинов **5**.

В случае аминоазолов 1a,h в реакционной смеси преобладали региоизомерные продукты 5a,h (их содержание составляло 95 и 60% соответственно), а в случае соединения 1b доля изомера 5b была около 5% (соотношение продуктов получено на основании данных спектров ЯМР ¹Н). Однако последующая обработка 2% водным раствором КОН смесей соединений 3a + 5a и 3h + 5h и 1% водно-спиртовым раствором КОН смеси соединений 3b + 5b сопровождалась перегруппировкой Димрота менее устойчивых изомеров 5a,b,h в продукты 3a,b,h с хорошими выходами. Предполагаемый механизм перегруппировки представлен на схеме 3.

В литературе способность к перегруппировке Димрота описывается как общее свойство азаиндолизинов, заключающееся в перестановке двух гетероатомов циклической системы, которая происходит, как Схема 3

правило, в осно́вных или кислых условиях.^{19,20} Начальная стадия реакции, катализируемой основанием, включает нуклеофильную атаку гидроксид-иона по положению 5 с последующим раскрытием пиримидинового цикла, таутомеризацией образующегося интермедиата и его рециклизацией.

Для выбора оптимальных условий синтеза было исследовано взаимодействие ацеталя 4 с аминоазолами **1а-h** в различных растворителях. Установлено, что проведение реакции в AcOH сопровождается ацетилированием исходных аминоазолов **1а-h**, что существенно снижает выходы целевых продуктов. Система Ру, AcOH также оказалась непригодна. Лучшие результаты были получены при проведении синтеза в ДМФА, EtOH и диоксане (выходы продуктов сопоставимы).

Строение синтезированных соединений подтверждается данными спектров ЯМР, ИК и элементного анализа. В ИК спектрах соединений **3а**-**h** отмечаются характерные полосы поглощения первичной аминогруппы в области 3210–3430 см⁻¹. В спектрах ЯМР ¹Н всех соединений присутствуют уширенный синглет двух протонов аминогруппы в области 7.84–8.51 м. д., два дублета пиримидиновых протонов H-5 и H-6 в области 8.17–8.98 м. д. и 6.30–6.58 м. д. соответственно, а также сигналы, характерные для азольной части молекулы.

Строение региоизомерных продуктов и протекание перегруппировки Димрота доказано с использованием корреляционных методов ¹H-¹³C HSQC и ¹H-¹³C HMBC на примере выделенных в индивидуальном виде соединений **3a** и **5a** (рис. 1). В спектре ¹H-¹³C HSQC [1,2,4]триазоло[1,5-а]пиримидин-7-амина (3а) однозначно установлено положение следующих сигналов: атома углерода С-2 (154.4 м. д.), имеющего корреляционный пик с единственным синглетом протона H-2 (8.44 м. д.), атома С-6 (90.8 м. д.), который находится в более сильном поле из-за донорного влияния аминогруппы, атома С-5 (153.5 м. д.), положение которого было выявлено методом исключения. С помощью спектра ¹H–¹³С НМВС установлено положение атома С-7 (149.3 м. д.), сигнал которого имеет кросс-пики с сигналами протонов Н-5 (8.26 м. д.) и Н-6 (6.30 м. д.), а также положение узлового атома С-За, сигнал которого имеет кросс-пики с сигналами триазольного протона Н-2 (8.44 м. д.) и пиримидинового Н-5 (8.26 м. д.), что не противоречит структуре, представленной на рис. 1.

Рисунок 1. Ключевые взаимодействия в спектрах ${}^{1}H{-}^{13}C$ HSQC и ${}^{1}H{-}^{13}C$ HMBC соединений **3a**, **5a** (δ , м. д.).

В спектре ${}^{1}H{-}{}^{13}C$ HSQC [1,2,4]триазоло[4,3-*a*]пиримидин-5-амина (5а), по аналогии с соединением За, однозначно установлено положение атомов углерода С-3 (131.5 м. д.), С-6 (88.1 м. д.) и С-7 (155.1 м. д.). Сигналы пиримидиновых протонов Н-6 (6.03 м. д.) и Н-7 (8.19 м. д.) имеют кросс-пики с сигналом атома С-5 (147.9 м. д.), что дает возможность однозначно установить его положение. У сигнала единственного протона триазольного цикла H-3 (9.24 м. д.) в данном случае отсутствует кросс-пик с сигналом узлового атома С-8а (155.1 м. д.), положение которого, в свою очередь, установлено по резонансному сигналу с протоном Н-7 (8.19 м. д.). В то же время для сигнала протона Н-3 (9.24 м. д.) наблюдается кросс-пик с сигналом атома С-5 (147.9 м. д.), что не противоречит предполагаемой структуре, представленной на рис. 1.

Таким образом, разработан удобный и простой метод синтеза азоло[1,5-*a*]пиримидин-7-аминов с использованием (2*E*)-(3-морфолин-4-ил)акрилонитрила и 3,3-диэтоксипропионитрила.

Экспериментальная часть

ИК спектры зарегистрированы на спектрометре Вruker Alpha, ZnSe (НПВО). Спектры ЯМР ¹Н и ¹³С и корреляционные спектры ¹H–¹³С HSQC и ¹H–¹³С HMBC зарегистрированы на спектрометре Bruker DRX-400 (400 и 101 МГц соответственно) или на спектрометре Bruker Avance NEO 600 (600 и 151 МГц соответственно), укомплектованном широкополосным градиентным криодатчиком Prodig, растворитель ДМСО- d_6 , внутренний стандарт ТМС. Элементный анализ выполнен на элементном анализаторе PerkinElmer PE 2400. Температуры плавления определены в открытых капиллярах на аппарате Stuart SMP3. Для колоночной хроматографии использован силикагель Silica 60 (40– 63 мкм).

Получение соединений За-h (общая методика). Метод I. К смеси 4.4 мл Ру и 3.0 мл АсОН при перемешивании добавляют 0.01 моль 5-аминоазола 1а-h и 1.38 г (0.01 моль) (2*E*)-(3-морфолин-4-ил)акрилонитрила (2). Полученную смесь кипятят при температуре 150 °С в течение 5 ч. После кипячения смесь охлаждают. Выпавший осадок отфильтровывают, промывают небольшим количеством EtOH и сушат.

Метод II. К перемешиваемому при 50 °C раствору (или суспензии) 0.01 моль соответствующего аминоазола **1а–h** в 15 мл растворителя (для соединения **3а** EtOH, для соединений **3b–h** диоксан) добавляют 1.5 мл (0.01 моль) **3**,3-диэтоксипропионитрила **(4)**, затем добавляют 0.86 мл (0.01 моль) 36% раствора HCl. Реакционную смесь кипятят в колбе с обратным холодильником в течение 2.5–3 ч., суспензию (или раствор) охлаждают до комнатной температуры и выделяют целевой продукт одним из способов, указанным для каждого соединения.

[1,2,4]Триазоло[1,5-а]пиримидин-7-амин (За). Выход 1.01 г (75%, метод I), бежевый порошок, т. пл. 276-279 °С (MeCN). Метод II. Полученную суспензию нейтрализуют Et₃N, осадок отфильтровывают, промывают EtOH, CHCl₃ и сушат на воздухе. Сухой осадок растворяют в 20 мл H₂O и добавляют раствор 0.561 г КOH в 10 мл Н₂О, перемешивают при комнатной температуре в течение ночи. Полученную суспензию нейтрализуют АсОН до рН ~7 и полностью упаривают при пониженном давлении, сухой остаток смывают EtOH, фильтруют и промывают EtOH. Выход 0.96 г (71%, метод II), белый порошок, т. пл. 276-278 °С. ИК спектр, v, см⁻¹: 3244, 3298 (NH₂). Спектр ЯМР ¹Н (400 МГц), б, м. д. (*J*, Гц): 6.30 (1Н, д, *J* = 5.5, Н-6); 8.14 (2Н, уш. с, NH₂); 8.26 (1H, д, J = 5.5, H-5); 8.43 (1H, s, H-2). Спектр ЯМР ¹³С (101 МГц), б, м. д. 90.8 (С-6); 149.3 (С-7); 153.5 (С-5); 154.4 (С-2); 155.9 (С-3а). Найдено, %: С 44.29; Н 3.88; N 52.10. C₅H₅N₅. Вычислено, %: С 44.44; Н 3.73; N 51.83.

[1,2,4]Триазоло[4,3-*а*]пиримидин-5-амин (5а). Полученную методом II суспензию соединения **За** нейтрализуют Et₃N, осадок отфильтровывают, промывают EtOH, CHCl₃ и сушат на воздухе. Продукт наносят на силикагель (0.04–0.063 мм), элюируют изомер **За** (CHCl₃–MeOH, 5:1), затем продукт **5а** смывают MeOH. Выход 0.97 г (72%), бежевый порошок, т. пл. 287–289 °C. Спектр ЯМР ¹H (600 МГц), δ , м. д. (*J*, Гц): 6.03 (1H, д, J = 5.1, H-6); 8.18 (2H, уш. с, NH₂); 8.20 (1H, д, J = 5.1, H-7); 9.24 (1H, s, H-3). Спектр ЯМР ¹³С (151 МГц), δ , м. д. 88.1 (C-6); 131.5 (C-3); 148.0 (C-5); 155.1 (C-7); 155.1 (C-8а). Найдено, %: С 44.36; Н 3.56; N 52.08. C₅H₅N₅. Вычислено, %: С 44.44; H 3.73; N 51.83.

2-(Метилсульфанил)[1,2,4]триазоло[1,5-а]пиримидин-7-амин (3b). Выход 1.08 г (60%, метод I), бежевый порошок, т. пл. 230-233 °С (MeCN). Метод II. Осадок отфильтровывают и сушат на воздухе. Сухой осадок растворяют в 50 мл смеси H₂O-EtOH, 1:1 и добавляют раствор 1.122 г КОН в 10 мл H₂O, перемешивают при 40 °С в течение ночи, после охлаждают до комнатной температуры и нейтрализуют AcOH до pH ~7, упаривают EtOH при пониженном давлении, осадок отфильтровывают и сушат при пониженном давлении при 110 °C над Р₂О₅. Выход 1.56 г (86%, метод II), белый порошок, т. пл. 231–233 °С. ИК спектр, v, см⁻¹: 3274, 3308 (NH₂). Спектр ЯМР ¹Н (400 МГц), δ, м. д. (*J*, Гц): 2.64 (3H, с, СН₃); 6.24 (1Н, д, J = 5.7, Н-6); 8.05 (2Н, уш. с, NH₂); 8.17 (1Н, д, J = 5.7, Н-5). Спектр ЯМР ¹³С (101 МГц), δ, м. д. 13.3 (СН₃); 91.1 (С-6); 148.2 (С-7); 152.9 (С-5); 156.4 (С-3а); 165.6 (С-2). Найдено, %: С 39.96; Н 3.93; N 38.68; S 17.54. C₆H₇N₅S. Вычислено, %: С 39.77; H 3.89; N 38.65; S 17.69.

2-(Трифторметил)[1,2,4]триазоло[1,5-а]пиримидин-7-амин (3c). Выход 1.28 г (63%, метод I), белый порошок, т. пл. 233–235 °С (*i*-PrOH). Метод II. Полученный раствор нейтрализуют Et₃N, после реакционную смесь упаривают при пониженном давлении, сухой остаток смывают CHCl₃, осадок отфильтровывают. Полученный продукт кристаллизуют из *i*-PrOH. Выход 1.31 г (65%, метод II), белый порошок, т. пл. 233–235 °С. ИК спектр v, см⁻¹: 1180 (СF), 3312, 3331 (NH₂). Спектр ЯМР ¹H (600 МГц), δ , м. д. (*J*, Гц): 6.45 (1H, д, J = 5.7, H-6); 8.37 (1H, д, J = 5.7, H-5); 8.51 (2H, уш. с, NH₂). Спектр ЯМР ¹³С (151 МГц), δ , м. д. (*J*, Гц): 92.8 (C-6); 119.6 (к, $J_{CF} = 271.0$, CF₃); 150.3 (C-7); 154.4 (к, $J_{CF} = 38.0$, C-2); 155.1 (C-5); 156.2 (C-3a). Найдено, %: C 35.26; H 1.81; N 34.28. C₆H₄F₃N₅. Вычислено, %: C 35.48; H 1.98; N 34.48.

Тетразоло[1,5-*а*]пиримидин-7-амин (3d). Выход 0.98 г (72%, метод I), бежевый порошок, т. пл. 270–275 °С (ДМФА). Метод II. Осадок отфильтровывают, сушат на воздухе. Сухой осадок растворяют в 15 мл H₂O и, перемешивая, приливают NH₄OH до pH ~8, осадок отфильтровывают, сушат в вакуумном эксикаторе над P₂O₅. Выход 0.91 г (67%, метод II), бледно-желтый порошок, т. пл. 274–276 °С. ИК спектр, v, см⁻¹: 3274, 3296 (NH₂). Спектр ЯМР ¹H (600 МГц), δ , м. д. (*J*, Гц): 6.58 (1H, д, *J* = 7.5, H-6); 7.84 (2H, уш. с, NH₂); 8.98 (1H, д, *J* = 7.5, H-5). Спектр ЯМР ¹³С (151 МГц), δ , м. д. 104.4 (C-6); 132.9 (C-5); 155.5 (C-3a); 162.3 (C-7). Найдено, %: C 35.16; H 2.92; N 61.92. С4H₄N₆. Вычислено, %: C 35.30; H 2.96; N 61.74.

Этил-7-аминопиразоло[1,5-*а*]пиримидин-3-карбоксилат (3е). Выход 1.38 г (67%, метод I), белый порошок, т. пл. 164–167 °С (*i*-PrOH). Метод II. Выделение и очистку проводят аналогично методике для соединения **3с**. Выход 1.82 г (88%, метод II), белый порошок, т. пл. 165–167 °С. ИК спектр, v, см⁻¹: 1666 (С=О), 3320, 3430 (NH₂). Спектр ЯМР ¹H (400 МГц), δ , м. д. (*J*, Гц): 1.28 (3H, т, *J* = 7.1, CH₃); 4.25 (2H, к, *J* = 7.1, CH₂); 6.31 (1H, д, *J* = 5.4, H-6); 8.08 (2H, уш. с, NH₂); 8.25 (1H, д, *J* = 5.4, H-5); 8.47 (1H, с, H-2). Спектр ЯМР ¹³С (101 МГц), δ , м. д. 14.5 (CH₂CH₃); 59.0 (<u>CH₂CH₃</u>); 90.8 (C-6); 99.8 (C-3); 146.3 (C-2); 148.5 (C-3a); 148.7 (C-7); 151.9 (C-5); 162.2 (<u>COOCH₂</u>). Найдено, %: C 52.41; H 4.88; N 27.16. C₉H₁₀N₄O₂. Вычислено, %: C 52.42; H 4.89; N 27.17.

2-(Тиофен-2-ил)[1,2,4]триазоло[1,5-а]пиримидин-7-амин (3f). Выход 1.49 г (69%, метод I), бежевый порошок, т. пл. >300 °С (MeCN). Метод II. Осадок отфильтровывают и сушат на воздухе. Сухой осадок растворяют в 40 мл EtOH и добавляют Et₃N до pH 8-9, осадок отфильтровывают, промывают СНСl3 и сушат на воздухе. Выход 1.80 г (83%, метод II), белый порошок, т. пл. >300 °С. ИК спектр v, см⁻¹: 3288, 3427 (NH₂). Спектр ЯМР ¹Н (600 МГц), δ, м. д. (*J*, Гц): 6.31 (1Н, д, J = 5.5, Н-6); 7.22 (1Н, д. д, J = 5.0, J = 3.6, Н-4'); 7.72 (1Н, д, J = 5.0, Н-3'); 7.83 (1Н, д, J = 3.6, Н-5'); 8.17 (2H, уш. с, NH₂); 8.25 (1H, д, J = 5.5, H-5). Спектр ЯМР ¹³С (151 МГц), б, м. д. 91.4 (С-6); 127.9 (С-3'); 128.2 (С-4'); 128.9 (C-5'); 133.8 (C-2'); 149.0 (C-7); 153.6 (C-5); 156.5 (C-3a); 159.5 (C-2). Найдено, %: С 49.62; Н 3.17; N 32.24. С₉H₇N₅S. Вычислено, %: С 49.76; Н 3.25; N 32.24.

2-(Фуран-2-ил)[1,2,4]триазоло[1,5-а]пиримидин-7-амин (3g). Выход 1.31 г (65%, метод I), коричневый порошок, т. пл. 275-277 °С (с разл., MeCN). Метод II. Осадок отфильтровывают и сушат на воздухе. Сухой осадок растворяют в 15 мл H₂O и вносят раствор 0.561 г КОН в 5 мл H₂O, осадок отфильтровывают, сушат при пониженном давлении при 110 °C над Р₂О₅. Выход 1.37 г (68%, метод II), светло-бежевый порошок, т. пл. 276-278 °С. ИК спектр v, см⁻¹: 3368, 3426 (NH₂). Спектр ЯМР ¹Н (600 МГц), δ, м. д. (*J*, Гц): 6.33 (1Н, д, *J* = 5.5, Н-6); 6.66 (1Н, д. д. J = 3.5, J = 1.8, Н-4'); 7.17 (1Н, д. J = 3.5, H-3'); 7.89 (1H, д, J = 1.8, H-5'); 8.25 (2H, уш. с, NH₂); 8.26 (1H, д, J = 5.5, H-5). Спектр ЯМР ¹³С (151 МГц), δ, м. д. 91.5 (С-6); 111.9 (С-3'); 112.1 (С-4'); 144.9 (С-5'); 146.3 (C-2'); 149.3 (C-7); 153.7 (C-5); 156.4 (C-2); 156.5 (С-3а). Найдено, %: С 53.75; Н 3.58; N 34.75. С₉H₇N₅O. Вычислено, %: С 53.73; Н 3.51; N 34.81.

2-Метил[1,2,4]триазоло[1,5-а]пиримидин-7-амин (3h). Выход 0.92 г (62%, метод I), бежевый порошок, т. пл. 208-210 °С (MeCN). Метод II. Осадок отфильтровывают и сушат на воздухе. Сухой осадок растворяют в 20 мл H₂O и добавляют раствор 1.122 г КОН в 10 мл H₂O, выдерживают при комнатной температуре в течение ночи. Полученный раствор нейтрализуют АсОН до рН ~7, охлаждают на ледяной бане. Суспензию фильтруют холодной, осадок сушат при пониженном давлении при 110 °С над Р₂О₅. Выход 0.90 г (60%, метод II), бежевый порошок, т. пл. 209-211°С. ИК спектр, v, см⁻¹: 3210, 3342 (NH₂). Спектр ЯМР ¹Н (600 МГц), б, м. д. (Ј, Гц): 2.42 (3Н, с, СН₃); 6.23 (1Н, д, J = 5.5, H-6); 8.05 (2H, уш. с, NH₂); 8.17 (1H, д, J = 5.5, H-5). Спектр ЯМР ¹³С (151 МГц), δ, м. д. 14.8 (СН₃); 90.6 (C-6); 148.7 (C-7); 153.0 (C-5); 156.4 (C-3a); 163.5 (С-2). Найдено, %: С 48.37; Н 4.70; N 46.88. С₆H₇N₅. Вычислено, %: С 48.32; Н 4.73; N 46.95.

Файл сопроводительной информации, содержащий спектры ЯМР ¹H, ¹³C и ¹H–¹³C HSQC, ¹H–¹³C HMBC соединений **3а–h**, **5а**, доступен на сайте журнала http:// hgs.osi.lv.

Результаты получены в рамках выполнения государственного задания Министерства образования и науки Российской Федерации (№ 4.6351.2017/8.9).

Список литературы

- Oukoloff, K.; Lucero, B.; Francisco, K. R.; Brunden, K. R.; Ballatore, C. *Eur. J. Med. Chem.* 2019, 165, 332.
- Rusinov, V. L.; Charushin, V. N.; Chupakhin, O. N. Russ. Chem. Bull., Int. Ed. 2018, 67, 573. [Изв. АН, Сер. хим. 2018, 573.]
- 3. Wiśniewska, J.; Fandzloch, M.; Lakomska, I. Inorg. Chim. Acta 2019, 484, 305.
- Łakomska, I.; Jakubowski, M.; Barwiołek, M.; Muzioł, T. Polyhedron 2019, 160, 123.
- Jakubowski, M.; Łakomska, I.; Sitkowski, J.; Wiśniewska, J. New J. Chem. 2018, 42, 8113.
- 6. Fischer, G. Adv. Heterocycl. Chem. 2019, 128, 1.
- Bhatt, A.; Singh, K. R.; Kant, R. Chem. Heterocycl. Compd. 2018, 54, 1111. [Химия гетероцикл. соединений 2018, 54, 1111.]

- 8. Tokumaru, K.; Bera, K.; Johnston, J. N. Synthesis 2017, 4670.
- El Khadem, H.; Kawai, J.; Swartz, D. L. *Heterocycles* 1989, 28, 239.
- Coteron, J. M.; Marco, M.; Esquivias, J.; Deng, X.; White, K. L.; White, J.; Koltun, M.; El Mazouni, F.; Kokkonda, S.; Katneni, K.; Bhamidipati, R.; Shackleford, D. M.; Angulo-Barturen, I.; Ferrer, S. B.; Jimenez-Diaz, M. B.; Gamo, F.-J.; Goldsmith, E. J.; Charman, W. N.; Bathurst, I.; Floyd, D.; Matthews, D.; Burrows, J. N.; Rathod, P. K.; Charman, S. A.; Phillips, M. A. J. Med. Chem. 2011, 54, 5540.
- Nekrasov, D. D.; Shurov, S. N.; Ivanenko, O. I.; Andreichikov, Yu. S. *Russ. J. Org. Chem.* **1994**, *30*, 136. [Журн. орган. химии **1994**, *30*, 126.]
- 12. Song, L.; Tian, X.; Lv, Z.; Li, E.; Wu, J.; Liu, Y.; Yu, W.; Chang, J. J. Org. Chem. 2015, 80, 7219.

- Bartels, B.; Bolas, C. G.; Cueni, P.; Fantasia, S.; Gaeng, N.; Trita, A. S. J. Org. Chem. 2015, 80, 1249.
- Alnajjar, A.; Abdelkhalik, M. M.; Raslan, M. A.; Ibraheem, S. M.; Sadek, K. U. J. *Heterocycl. Chem.* **2018**, *55*, 1804.
- Hassaneen, H. M. E.; Hassaneen, H. M.; Khiry, S. F. M.; Pagni, R. M. Z. Naturforsch., B 2008, 63, 217.
- 16. Salaheldin, A. M.; Khairou, K. S. Z. Naturforsch., B 2013, 68, 175.
- Savateev, K. V.; Ulomsky, E. N.; Rusinov, V. L.; Isenov, M. L.; Chupakhin, O. N. *Russ. Chem. Bull.*, *Int. Ed.* **2015**, *64*, 1378. [*U38. AH, Cep. xum.* **2015**, *64*, 1378.]
- 18. Rene, L.; Poncet, J.; Auzou, G. Synthesis 1986, 419.
- 19. Guerret, P.; Jacquier, R.; Maury, G. J. Heterocycl. Chem. 1971, 8, 643.
- Chatzopoulou, M.; Martínez, R. F.; Willis, N. J.; Claridge, T. D. W.; Wilson, F. X.; Wynne, G. M.; Davies, S. G.; Russell, A. J. *Tetrahedron* 2018, 74, 5280.