X. Шпис, Т. Фитц, А. Заблоцкая,С. Беляков, Э. Лукевиц

СИЛИЛЬНАЯ МОДИФИКАЦИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ СОЕДИНЕНИЙ

6^{*}. КРЕМНИЙОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ КОМПЛЕКСОВ РЕНИЯ(V) СО СМЕШАННЫМИ ЛИГАНДАМИ

Синтезирована серия нейтральных кремнийорганических комплексов рения со смешанными лигандами общей формулы ReO (SSS) (S—OSiRR¹₂). Проведено рентгеноструктурное исследование (2-трифенилсилоксиэтантиолято) (3-тиапентан-1,5-дитиолято) оксорения и изучены его нейротропные свойства.

Возможность использования координационных соединений технеция и рения в радионуклидной диагностике (^{99m}Tc) и терапии (¹⁸⁶Re) [2,3] стимулирует поиск новых хелатных систем, а также подходов, позволяющих влиять на аккумулирование и распределение радиоактивных соединений внутри организма. Существенным моментом в решении этого вопроса, особенно для соединений, воздействующих на центральную нервную систему, является повышение их липофильности, способствующее проникновению через гематоэнцефалический барьер.

В результате многочисленных исследований [4—9] показано, что силилирование существенно повышает липофильность биологически активных соединений и таким образом способствует их транспорту внутри организма. Так, силилирование гидроксильной группы алифатических и гетероциклических аминоалканолов вызывает положительные физиологические эффекты. Это справедливо не только по отношению к обратимо силилированным (гидролитически неустойчивым) соединениям, но и к соединениям, содержащим устойчивую к гидролизу в физиологических условиях триорганилсилил(окси) группу.

Мы предлагаем применить этот принцип к комплексным соединениям рения с целью повлиять на их физико-химические и биологические свойства. Нами синтезирована серия нейтральных кремнийсодержащих комплексов рения со смешанными лигандами общей формулы [ReO(SSS) (S—OSiRR¹₂)], где оксорениевый остов ReO³⁺ координирован тридентатным дитиолятным лигандом SSS (HS—CH₂—CH₂—S—CH₂—CH₂—SH), а также монодентатным тиолятом (S—OSiRR¹₂, где S—O — остаток 2-меркаптоэтанола, 3-меркаптопропанола, 4-окситиофенола), содержащим силилированную гидроксильную функцию с различными кремнийорганическими заместителями.

Хлоро (3-тиапентан-1,5-дитиолято) оксорений (V) 1 был синтезирован по методике, предложенной в работе [10].

(2-Оксиэтантиолято) (3-тиапентан-1,5-дитиолято) оксорений (V) 2 получен в результате взаимодействия соединения 1 с меркаптоэтанолом в кипящем ацетонитриле. Аналогично получены (3-оксипропантиолято) - 3 и (4-оксифенилтиолято) (3-тиапентан-1,5-дитиолято) оксорений (V) 4.

Синтез силилированных комплексов проводили двумя методами. По методу А силилирование у-гидроксильной группы лиганда осуществлялось в

^{*} Сообщение 5 см. [1].

синтезированном предварительно по принципу 3+1 комплексе со смешанными лигандами, где монодентатный лиганд содержал свободную оксигруппу. По методу Б был синтезирован кремнийорганический лиганд, а затем проведена реакция с оксорениевым(V) предшественником 1. Силилирование по методам А и Б осуществляли различными триорганилхлорсиланами в присутствии амина. Синтезированные трифенилсилокси- (5, 7 и 8) и *трет*-бутилдиметилсилоксисоединения (6 и 9) являются устойчивыми по отношению к кислороду и влаге воздуха, а также в условиях выделения (силикагель).

В результате рентгеноструктурного исследования (рис. 1) соединения 5 обнаружено, что лиганды связаны с Re=O остовом, образуя искаженную тетрагональную пирамиду за счет атомов серы тридентатного и монодентатного лигандов координированных центральным атомом Re (V). Расстояние Re=O 1,688(11) Å. Атом Re выведен из основной плоскости S(2)S(5)S(8)S(9) на -0,734(2) Å. Валентные углы S(2)-Re(1)-S(8) и

117

Рис. 2. Стереоскопическое изображение координационного полиэдра соединения 5

 $S_{(5)}$ —Re₍₁₎—S₍₉₎ (130,3(1) и 153,2(1)° соответственно) существенно различаются, поэтому координационный полиэдр атома рения скорее не пирамида, а искаженная бипирамида. На рис. 2 представлено стереоскопическое изображение координационного полиэдра. В табл. 1 даны нормальные уравнения среднеквадратичных плоскостей двух фрагментов полиэдра и выходы атомов из них. Как видно, атом Re находится практически в плоскости. Двугранный угол между треугольниками $S_{(5)}S_{(2)}S_{(8)}$ и $S_{(9)}S_{(2)}S_{(8)}$ равен 158,8(2)°. Для атома кремния установлена тетраэдрическая конфигурация без всякого расширения координации. Координаты неводородных атомов, значения межатомных расстояний и валентных и торсионных углов в соединении 5 приведены в таблицах 2—5.

Таблица 1

ţ.

Плоскость	Α	В	С	D	Атомы и их выходы из плоскости (Å)
S(2) S(5) S(8) S(9)	-0.875	-0.413	-0.252	-2.216	$S(2) 0.211(4), \\S(5) -0.201(4) \\S(8) 0.249(4), \\S(9) -0.192(3),$
S(2) S(8)O(32)	-0.327	-0.902	-0.283	0.388	$Re_{(1)} -0.734(2),$ $O_{(32)} -2.42(1)$ $Re_{(1)} 0.031(1),$ $S_{(5)} -2.294(3),$ $S_{(9)} 2.256(3)$

Уравнения плоскостей Ax + By + Cz - D = 0 и выходы атомов

Таблица 2

Атом	x/a	y/b	z/c
1	2	3	4
Re(1)	0.2115(1)	0.1363(1)	0.0097(1)
S(2)	0.2381(3)	0.0694(3)	-0.1708(2)
C(3)	0.3602(15)	-0.0874(13)	-0.1705(11)
C(4)	0.3280(15)	-0.1656(11)	-0.0733(12)
Sisi	0.3139(3)	0.0787(3)	0.0533(2)
Cíó	0.1868(14)	-0.1242(12)	0.1434(11)
Cm	0.1205(15)	-0.0222(13)	0.2232(11)
5(8)	0.0504(3)	0.1267(3)	0.1500(3)
S(9)	0.0315(3)	0.3052(3)	-0.0437(2)

Координаты неводородных атомов в молекуле соединения 5

Окончание табл. 2

1	2	3	4
C(10)	0.0507(11)	0.3494(10)	-0.1897(9)
C(11)	-0.0527(12)	0.4740(11)	-0.2134(10)
O(12)	-0.1889(8)	0.4689(8)	-0.2067(6)
Si(13)	-0.2909(3)	0.4860(3)	-0.3111(2)
C(14)	-0.4649(10)	0.5024(9)	-0.2434(9)
C(15)	-0.5827(11)	0.5776(11)	-0.2894(11)
C(16)	-0.7111(14)	0.5909(14)	-0.2380(13)
C(17)	-0.7241(17)	0.5281(16)	-0.1411(16)
C(18)	-0.6087(19)	0.4512(16)	-0.09442(15)
C(19)	-0.4810(15)	0.4406(13)	-0.1432(13)
C(20)	-0.2375(11)	0.3470(10)	-0.4044(9)
C(21)	-0.3246(12)	0.2796(10)	-0.4200(10)
C(22)	-0.2922(16)	0.1788(13)	-0.4882(12)
C(23)	-0.1625(18)	0.1362(15)	-0.5402(13)
C(24)	-0.0693(15)	0.1997(14)	-0.5261(12)
C(25)	-0.1076(13)	0.3034(13)	-0.4583(11)
C(26)	-0.2939(10)	0.6274(10)	-0.3951 (9)
C(27)	-0.2948(12)	0.6295(11)	-0.5115(10)
C(28)	-0.3138(15)	0.7428(14)	-0.5715(11)
C(29)	-0.3322(16)	0.8492(13)	-0.5192(12)
C(30)	-0.3323(16)	0.8511(13)	-0.4054(13)
C(31)	-0.3133(13)	0.7418(11)	-0.3428(10)
O(32)	0.3320(9)	0.1968(8)	0.0506(7)

Таблица З

í

.....

÷

L

÷

				ċ	ŝ	

n a la falta : Principa d'una Parlactura	Длины связей (d) в м	олекуле соединения	Таблица 5
Связь	d_r Å	Связь	d, Å
Bér kizel 🖉 🚦	an an an the extra	A MARK BURNES	
S(2)-Re(1)	2.285(3)	C(15)-C(14)	1.375(14)
S(5)—Re(1)	2:378(3)	C(19)-C(14)	1.394(18)
S(8)-Re(1)	2.298(3)	C(16)-C(15)	1.379(18)
S(9)—Re(1)	2.304(3)	C(17)-C(16)	1.360(25)
O(32)—Re(1)	1.688(11)	C(18)—C(17)	1.369(24)
C(3)—S(2)	1.819(13)	C(19)—C(18)	1.367(25)
S(5)-C(4)	1.807(15)	C(21)—C(20)	1.362(19)
C(6)-S(5)	1.819(15)	C(25)—C(20)	1.387(16)
S(8)—C(7)	1.827(14)	C(22)_C(21)	1.365(19)
C(10)-S(9)	1.818(11)	C(23)C(22)	1.375(23)
Si(13)—O(12)	1.647(8)	C(24)—C(23)	1.380(27)
C(14)—Si(13)	1.863(11)	C(25)—C(24)	1.385(21)
C(20)—Si(13)	1.875(11)	C(27)—C(26)	1.395(16)
C(26)—Si(13)	1.849(12)	C(31)C(26)	1.306(17)
C(4)—C(3)	1.518(20)	C(28)-C(27)	1.409(19)
C(7)—C(6)	1.484(18)	C(29)—C(28)	1.428(21)
C(11)-C(10)	1.502(14)	C(30)C(29)	1.364(22)
O(12)—C(11)	1.408(15)	H(30)-C(30)	1.930(21)

119

ţ

I

Валентные углы (ω) в молекуле соединения 5

Угол	ω, град.	Угол	ω, град.
1	2	3	4
		G., G., O.,	112 251 (1.057)
$Re_{(1)}-S_{(2)}-C_{(3)}$	106.475 (0.444)	$C_{(10)} - C_{(11)} - O_{(12)}$	112.251(1.057)
$S_{(2)} - Re_{(1)} - S_{(5)}$	84.074(0.106)	$H_{(11a)} - C_{(11)} - H_{(11b)}$	107.872(1.081)
$S_{(2)}$ Re(1)S(8)	130.261 (0.135)	$H_{(11a)} - C_{(11)} - O_{(12)}$	109.152(1.160)
$S_{(2)}$ —Re(1)— $S_{(9)}$	88.220(0.104)	$H_{(11)}-C_{(11)}-O_{(12)}$	109.157(1.300)
$S_{(2)}$ —Re(1)—O(32)	116.140(0.302)	$C_{(14)}-C_{(15)}-H_{(15)}$	119.484(1.308)
$Re_{(1)}-S_{(5)}-C_{(4)}$	107.823(0.409)	$C_{(14)}-C_{(15)}-C_{(16)}$	121.026(1.211)
Re(1)-S(5)-C(6)	106.032(0.392)	$C_{(15)}-C_{(14)}-C_{(19)}$	117.218(1.085)
S(5)—Re(1)—S(8)	84.290(0.111)	$C_{(14)}-C_{(19)}-C_{(18)}$	121.544(1.309)
S(5)_Re(1)-S(9)	153.176(0.121)	$C_{(14)}-C_{(19)}-H_{(19)}$	119.229(1.728)
S(5)-Re(1)-O(32)	101.093(0.282)	$H_{(15)}-C_{(15)}-C_{(16)}$	119.490(1.325)
$Re_{(1)}-S_{(8)}-C_{(7)}$	106.614(0.459)	$C_{(15)}-C_{(16)}-H_{(16)}$	119.709(1.801)
$S_{(8)} - Re_{(1)} - S_{(9)}$	81.226(0.109)	$C_{(15)} - C_{(16)} - C_{(17)}$	120.577(1.283)
$S_{(8)}$ —Re(1)—O(32)	113.533(0.303)	$H_{(16)}-C_{(16)}-C_{(17)}$	119.714(1.764)
$Re_{(1)}-S_{(9)}-C_{(10)}$	112.707(0.328)	C(16)-C(17)-H(17)	120.160(1.919)
$S_{(9)}$ —Re(1)—O(32)	105.363(0.280)	$C_{(16)}-C_{(17)}-C_{(18)}$	119.666(1.615)
$S_{(2)} - C_{(3)} - C_{(4)}$	111.558(0.885)	$H_{(17)}-C_{(17)}-C_{(18)}$	120.175(2.165)
$C_{(3)} - C_{(4)} - S_{(5)}$	107.814(0.972)	$C_{(17)} - C_{(18)} - H_{(18)}$	120.040(2.225)
$C_{(4)} - S_{(5)} - C_{(6)}$	104.382(0.705)	$C_{(17)} - C_{(18)} - C_{(19)}$	119.916(1.679)
S(5) - C(6) - C(7)	108.578(1.099)	$H_{(15)}-C_{(18)}-C_{(19)}$	120.044(2.029)
S(3) = C(0) = S(3)	111.225(0.921)	$C_{(18)} - C_{(19)} - H_{(19)}$	119.227(1.841)
C(0) = C(1) = C(1)	110 114(0 739)	$C_{(20)} - C_{(21)} - H_{(21)}$	118.171(1.404)
S(9) = C(10) = C(11)	126 674(0 719)	$C_{(20)} - C_{(21)} - C_{(22)}$	123.660(1.194)
C(11) = O(12) = O(13)	105 008 (0 447)	C(23) = C(23) = C(23)	115.839(1.111)
O(12) - SI(13) - C(14)	112 081 (0 432)	$C_{(21)} = C_{(25)} = C_{(25)}$	122.332(1.444)
O(12) = Si(13) = C(20)	112.001 (0.432)	$C_{(20)} = C_{(25)} = H_{(25)}$	118.834(1.519)
$C_{(12)} = S_1(13) = C_{(20)}$	121 301 (0.850)	$H_{(21)} - C_{(21)} - C_{(22)}$	118,169(1,663)
SI(13) - C(14) - C(15)	150 810(0.658)	$C_{(21)} = C_{(22)} = H_{(22)}$	120 174(1.624)
SI(13) - C(14) - C(16)	101 472 (0 842)	$C_{(21)} - C_{(22)} - C_{(22)}$	119 653(1.640)
SI(13) - C(14) - C(19)	121.473(0.042)	$C_{(21)} - C_{(22)} - C_{(23)}$	120 173(1 694)
$C_{(14)} - S_{(13)} - C_{(20)}$	109.542(0.555)	$\Gamma(22) = C(22) = C(23)$	120.173 (1.031)
$C_{(14)} - S_{1(13)} - C_{(26)}$	110.380(0.434)	$C_{(22)} - C_{(23)} - \Pi_{(23)}$	110 100(1 476)
$S_{1(13)} - C_{(20)} - C_{(21)}$	121.079(0.792)	$C_{(22)} - C_{(23)} - C_{(24)}$	120 440 (2.076)
$Si_{(13)} - C_{(20)} - C_{(25)}$	123.045(0.067)	$H_{(23)} - C_{(23)} - C_{(24)}$	120.440(2.070)
$C_{(20)}$ —Si(13)C(26)	109.308(0.495)	$C_{(23)} - C_{(24)} - H_{(24)}$	110 208 (1 330)
$Si_{(13)} - C_{(26)} - C_{(27)}$	121.930(0.908)	$C_{(23)} - C_{(24)} - C_{(25)}$	120 346(2 022)
$Si_{(13)}-C_{(26)}-C_{(31)}$	120.628(0.858)	$H_{(24)} - C_{(24)} - C_{(25)}$	110 924(1 478)
$H_{(3a)} - C_{(3)} - H_{(3b)}$	107.962(1.753)	$C_{(24)} - C_{(25)} - H_{(25)}$	110.054(1.470)
$H_{(3a)}-C_{(3)}-C_{(4)}$	109.310(1.654)	$C_{(26)} - C_{(27)} - H_{(27)}$	119.955(1.550)
$H_{(3b)}-C_{(3)}-C_{(4)}$	109.317(1.438)	$C_{(26)} - C_{(27)} - C_{(28)}$	120.090(1.139)
C(3)-C(4)-H(4a)	110.141(1.533)	$C_{(27)} - C_{(26)} - C_{(31)}$	116.956(1.037)
C(3)-C(4)-H(4b)	110.143(1.534)	$C_{(26)}-C_{(31)}-C_{(30)}$	120.852(1.182)
$H_{(4a)}-C_{(4)}-H_{(4b)}$	108.466(1.795)	C(26)-C(31)-H(31)	119.568(1.383)
H(6a)-C(6)-H(6b)	108.352(1.911)	H(27)-C(27)-C(28)	119.955(1.381)
$H_{(6a)} - C_{(6)} - C_{(7)}$	109.977(1.378)	C(27)—C(28)—H(28)	119.360(1.754)
H(6b)-C(6)-C(7)	109.982(1.417)	$C_{(27)}-C_{(28)}-C_{(29)}$	121.283(1.245)
$C_{(6)}-C_{(7)}-H_{(7a)}$	109.379(1.416)	H(28)—C(28)—C(29)	119.358(1.786)
C(6)-C(7)-H(7b)	109.384(1.712)	C(28)-C(29)-H(29)	119.793(1.761)
$H_{(7a)}-C_{(7)}-H_{(7b)}$	108.010(1.761)	C(28)-C(29)-C(30)	120.414(1.343)
$H_{(10a)} - C_{(10)} - H_{(10b)}$	108.152(1.337)	H(29)-C(29)-C(30)	119.793(1.742)
$H_{(10_2)} - C_{(10)} - C_{(11)}$	109.640(1.266)	C(29)-C(30)-H(30)	119,803(1.702)

120

Окончание табл. 4

1	2	3	4
H(10b)-C(10)-C(11)	109.636(1.181)	C(29)-C(30)-C(31)	120.403(1.338)
$C_{(10)}-C_{(11)}-H_{(11a)}$	109.157(1.241)	$H_{(30)} - C_{(30)} - C_{(31)}$	119.794(1.730)
C(10)-C(11)-H(11b)	109.153(1.121)	C(30)-C(31)-H(31)	119.580(1.488)
C(10)—H(11)—O(12)	112.251 (1.057)		
$H_{(11a)}-C_{(11)}-H_{(11b)}$	107.872(1.681)		
			Таблица

таблица

ł

ŗ

ł.

ł

Торсионные углы (7) в молекуле соединения 5

Угол	\mathcal{T} , град.
1	2
$H_{(4a)} - C_{(4)} - C_{(3)} - H_{(3a)}$	66.604(2.243)
$H_{(4b)}-C_{(4)}-C_{(3)}-H_{(3a)}$	-52.992(1.901)
$H_{(4a)} - C_{(4)} - C_{(3)} - H_{(3b)}$	-51.371 (2.215)
$H_{(4b)}$ — $C_{(4)}$ — $C_{(3)}$ — $H_{(3b)}$	-170.967(1.589)
$H_{(7a)} - C_{(7)} - C_{(6)} - H_{(6a)}$	172.656(1.846)
$H_{(7b)}-C_{(7)}-C_{(6)}-H_{(6a)}$	54.543(2.025)
$H_{(7a)} - C_{(7)} - C_{(6)} - H_{(6b)}$	53.404(2.384)
$H_{(7b)}-C_{(7)}-C_{(6)}-H_{(6b)}$	-64.709(2.199)
$H_{(11a)} - C_{(11)} - C_{(10)} - H_{(10a)}$	-67.628(1.729)
$H_{(11b)} - C_{(11)} - C_{(10)} - H_{(10a)}$	50.055(1.905)
$O_{(12)} - C_{(11)} - C_{(10)} - H_{(10a)}$	171.216(1.180)
$H_{(11b)}-C_{(11)}-C_{(10)}-H_{(10a)}$	173.783(1.525)
$H_{(11b)} - C_{(11)} - C_{(10)} - H_{(10b)}$	-68.534(1.890)
$O_{(12)} - C_{(11)} - C_{(10)} - H_{(10b)}$	52.626(1.502)
$H_{(15)}-C_{(15)}-C_{(14)}-C_{(19)}$	-179.897(1.350)
$C_{(16)} - C_{(15)} - C_{(14)} - C_{(19)}$	0.103(1.683)
$C_{(18)} - C_{(19)} - C_{(14)} - C_{(15)}$	1.840(2.164)
$H_{(19)}-C_{(19)}-C_{(14)}-C_{(15)}$	-178.167(1.779)
$H_{(16)} - C_{(16)} - C_{(15)} - C_{(14)}$	178.923(1.889)
$C_{(17)} - C_{(16)} - C_{(15)} - C_{(14)}$	-1.085(2.407)
$H_{(16)}-C_{(16)}-C_{(15)}-H_{(15)}$	-1.081 (2.589)
$C_{(17)} - C_{(16)} - C_{(15)} - C_{(15)}$	178.911(1.870)
$H_{(17)} - C_{(17)} - C_{(16)} - C_{(15)}$	-179.859(1.906)
$C_{(18)} - C_{(17)} - C_{(16)} - C_{(15)}$	0.147(2.408)
$H_{(17)}-C_{(17)}-C_{(16)}-C_{(16)}$	0.131 (3.255)
$C_{(18)} - C_{(17)} - C_{(16)} - H_{(16)}$	-179.863(1.801)
$H_{(18)}-C_{(18)}-C_{(17)}-C_{(16)}$	-178.236(2.378)
$C_{(19)} - C_{(18)} - C_{(17)} - C_{(16)}$	1.766(2.941)
$H_{(18)} - C_{(18)} - C_{(17)} - H_{(17)}$	1.771 (3.877)
$C_{(19)} - C_{(18)} - C_{(17)} - H_{(17)}$	-178.227 (2.349)
$C_{(14)} - C_{(19)} - C_{(18)} - C_{(17)}$	-2.803(2.725)
$H_{(19)}-C_{(19)}-C_{(18)}-C_{(17)}$	177.204(2.072)
$C_{(14)} - C_{(19)} - C_{(18)} - H_{(18)}$	177.199(2.208)
$H_{(19)}-C_{(19)}-C_{(18)}-H_{(18)}$	-2.794(3.514)
$H_{(21)}-C_{(21)}-C_{(20)}-C_{(25)}$	176.829(1.352)
$C_{(22)} - C_{(21)} - C_{(20)} - C_{(25)}$	-3.173(1.726)
$C_{(24)} - C_{(25)} - C_{(20)} - C_{(21)}$	1.478(1.793)
$H_{(25)} - C_{(25)} - C_{(20)} - C_{(21)}$	-178.527(1.499)
$H_{(22)} - C_{(22)} - C_{(21)} - C_{(20)}$	-176.127(1.561)
$C_{(23)} - C_{(22)} - C_{(21)} - C_{(20)}$	3.885(2.000)

Окончание табл. 5

1	2
$H_{(22)}-C_{(22)}-H_{(21)}$	3.871 (2.418)
$C_{(23)}-C_{(22)}-C_{(21)}-H_{(21)}$	-176.117(1.448)
$H_{(23)}-C_{(23)}-C_{(22)}-C_{(21)}$	177.308(1.708)
$C_{(24)} - C_{(23)} - C_{(22)} - C_{(21)}$	-2.703(2.168)
$H_{(23)}-C_{(23)}-C_{(22)}-H_{(22)}$	-2.688(2.890)
$C_{(24)}$ — $C_{(23)}$ — $C_{(22)}$ — $H_{(22)}$	177.308(1.708)
$H_{(24)}-C_{(24)}-C_{(23)}-C_{(22)}$	-178.871(1.768)
$C_{(25)} - C_{(24)} - C_{(23)} - C_{(22)}$	1.127 (2.212)
$H_{(24)}-C_{(24)}-C_{(23)}-H_{(23)}$	1.125(2.638)
$C_{(25)}-C_{(24)}-C_{(23)}-H_{(23)}$	-178.877(1.842)
$C_{(20)} - C_{(25)} - C_{(24)} - C_{(23)}$	-0.547(1.666)
$H_{(25)}-C_{(25)}-C_{(24)}-C_{(23)}$	179.458(1.494)
$C_{(20)}-C_{(25)}-C_{(24)}-H_{(24)}$	179.451(1.462)
$H_{(25)}-C_{(25)}-C_{(24)}-H_{(24)}$	-0.544(2.062)
$H_{(25)}-C_{(27)}-C_{(26)}-H_{(31)}$	-179.683(1.021)
$C_{(28)} - C_{(27)} - C_{(26)} - C_{(31)}$	0.320(1.264)
$C_{(30)}$ - $C_{(31)}$ - $C_{(26)}$ - $C_{(27)}$	0.020(1.796)
H(31)—C(31)—C(26)—C(27)	-179.980(1.518)
$H_{(28)}-C_{(28)}-C_{(27)}-C_{(26)}$	179.496(1.259)
$C_{(29)} - C_{(28)} - C_{(27)} - C_{(26)}$	-0.506(1.587)
$H_{(28)}-C_{(28)}-C_{(27)}-H_{(27)}$	-0.501 (1.934)
$C_{(29)}-C_{(28)}-C_{(27)}-H_{(27)}$	179.496(1.178)
$H_{(29)}-C_{(29)}-C_{(28)}-C_{(27)}$	-179.665(1.457)
$C_{(30)} - C_{(29)} - C_{(28)} - C_{(27)}$	0.334(1.950)
$H_{(29)}-C_{(29)}-C_{(28)}-H_{(28)}$	0.332(2.566)
$C_{(30)} - C_{(29)} - C_{(28)} - H_{(28)}$	-179.670(1.385)
$H_{(30)}-C_{(30)}-C_{(29)}-C_{(28)}$	180.000(1.941)
$C_{(31)} - C_{(30)} - C_{(29)} - C_{(28)}$	0.000(2.451)
$H_{(30)}-C_{(30)}-C_{(29)}-H_{(29)}$	0.020(3.131)
$C_{(20)} - C_{(31)} - C_{(30)} - C_{(29)}$	-0.181 (1.940)
$H_{(31)}-C_{(31)}-C_{(30)}-C_{(29)}$	179.813(1.446)
$C_{(26)} - C_{(31)} - C_{(30)} - H_{(30)}$	179.822(1.512)
$H_{(31)}-C_{(31)}-C_{(30)}-H_{(30)}$	-0.183(2.558)

В результате исследования нейротропных свойств соединения 5 установлено, что оно проявляет антиконвульсивную активность, обладая защитными свойствами по отношению к коразолу. При введении вещества 5 доза коразола, вызывающая клонические судороги, увеличивается в 1,3 раза, а летальный исход наблюдается при дозе в 1,8 раз большей. Однако оно оказалось неэффективным при максимальном электрошоке. Соединение 5 существенно не влияло на тонус скелетной мускулатуры и координацию движений.

Соединение 5 обладает транквилизирующими свойствами, увеличивает продолжительность гексеналового наркоза на 50%, усиливает действие фенамина, увеличивая двигательную активность животных за 30 мин приблизительно в 2 раза и за 60 мин — в 1,6 раза. Соединение 5 понижает температуру тела животных на $2,1^{\circ}C/30$ и обладает низкой острой токсичностью (LD50 > 500 мг/кг).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все соединения идентифицированы методами элементного анализа и ¹Н ЯМР спектроскопии. Данные элементного анализа соответствовали вычисленным. Спектры ЯМР ¹Н сняты на приборе Bruker WH-90, спектры ЯМР ²⁹Si — Bruker AC-360 в CDCl₃ с использованием Me₄Si в качестве внутреннего стандарта. Для всех соединений ЯМР ¹Н, м.д.: 1.91...4.29 (8H, м, -SCH₂CH₂SCH₂CH₂S-). Разделение веществ проводили с помощью колоночной хроматографии на силикагеле Kieselgel 60 (Merck).

Монокристаллы соединения 5 (C₂₄H₂₇O₂ReS4Si), выращенные из системы растворителей CHCl₃ — MeOH, триклинные; пространственная группа P1. Параметры элементарной ячейки: *a* = 10,218(3), *b* = 11,281(3), *c* = 11,980(3) Å, *α* = 88,04(2), *β* = 86,25(2), *γ* = 71,82(2)°; *V* = 1309,1(6) Å³, *Z* = 2, *F*(000) = 680, *D*_{ВЫЧ} = 1,750(1) г/см⁻³. Интенсивности 3437 независимых отражений измерены на автоматическом четырехкружном дифрактометре Syntex P2₁ (*MoKα* излучение, графитовый монохроматор, $\theta/2\theta$ -сканирование, $2\theta_{max} = 45^{\circ}$). В расчетах использовано 3120 отражений с $|F| > 4,0 \sigma |F|$. Положение атома рения найдено из функции Паттерсона. Остальные неводородные атомы локализованы последующими синтезами Фурье. Структура уточнена полноматричным МНК с анизотропными температурными факторами. Координаты атомов водорода определены геометрически. В связи со значительной абсорбцией кристаллом рентгеновских лучей (размеры кристалла 0,10×0,30×0,50 мм³, $\mu = 5,03$ мм⁻¹) была введена поправка на поглощение по методу азимутального сканирования [11]. Окончательное значение фактора расходимости равно 0,0556. При проведении расчетов использован комплекс программ AREN [12]. Координаты атомов структуры 5 даны в табл. 2.

Хлоро(3-тиапентан-1,5-дитиолято) оксорений (V) (1) приготовлен как описано в работе [10].

(2-Оксоэтантиолято) (3-тиапентан-1,5-дитиолято) оксорений (V) (2). 2-Меркаптоэтанол (156 мг, 2 ммоль) добавляют при перемешивании к кипящему раствору соединения 1 (408.4 мг, 1.047 ммоль) в 10 мл ацетонитрила. Через 20 мин растворитель упаривают, остаток растворяют в горячем хлороформе и очищают с помощью колоночной хроматографии, используя в качестве элюента смесь хлороформ-метанол (соотношение 19:1 по объему). К элюенту, содержащему продукт, добавляют 2 мл этанола и оставляют для кристаллизации. Кристаллический осадок промывают диэтиловым эфиром и сушат. Выход продукта 426 мг (94%). $T_{\rm HII}$ 130...133 °C. Найдено, %: С 17,03; Н 3,77; S 29,26. С6H₁₃O₂ReS4. Вычислено, %: С 16,70; Н 3,04; S 29,71. Спектр ¹Н ЯМР, м. д.: 4,82 (1H, т, OH, J = 5,2 Гц); 3,72 (2H, т, SCH₂, J = 7,55 Гц); 3,66 (2H, м, CH₂O).

(2-Оксипропантиолято) (3-тиапентан-1,5-дитиолято) оксорений (V) (3) получают из 1 и 3-меркаптопропанола по описанной выше методике с выходом 81%. *Т*_{пл} 120...123 °C. Найдено, %: С 19,10; Н 3,58; S 28,49. С7Н₁₅O₂ReS4. Вычислено, %: С 18,87; Н 3,39; S 28,78. Спектр ЯМР ¹Н, м. д.: 4,48 (1H, т, OH, *J* = 5,2 Гц); 3,66 (2H, т, CH₂S, *J* = 7,4 Гц); 3,52 (2H, м, CH₂O); 1,89 (2H, м, CH₂).

(4-Оксифенилтиолято) (3-тиапентан-1,5-дитиолято) оксорений (V) (4) получают из 1 и 4-окситиофенола по описанной выше методике с выходом 75%. *Т*_{ПЛ} 200...202°С. Найдено, %: C 24,31; H 3,03; S 26,25. C₁₀H₁₃O₂ReS₄. Вычислено, %: C 25,04; H 2,73; S 26,74. Спектр ЯМР ¹Н, м. д.: 7,27 (2H, д, *o*-CH, *J* = 8,5 Гц); 6,76 (2H, д, *м*-CH, *J* = 8,5 Гц).

Получение силилированных комплексов. А. (2-Трифенилсилоксиэтантиолято) (3-тиапентан-1,5-дитиолято) оксорений (V) (5). К раствору соединения 2 (43,1 мг, 100 мкмоль) в 4 мл абсолютного тетрагидрофурана добавляют 200 мкл трифенилхлорсилана и 200 мкл триэтиламина. Смесь реагентов перемешивают 30 мин, фильтруют, растворитель упаривают и очищают колоночной хроматографией, используя в качестве мобильной фазы хлороформ. К элюату добавляют 2 мл этанола и кристаллизуют. Выход продукта 82%. $T_{III,I}$ 123...130 °C. Найдено, %: C 41,53; H 4,06; S 18,49. C₂₄H₂₇O₂ReS4Si. Вычислено, %: C 41,78; H 3,94; S 18,59. Спектр ЯМР ¹H, м. д.: 7,66 (6H, д. *о*-CH, *J* = 7,5 Гц); 7,41 (3H, т, *n*-CH, *J* = 7,5 Гц); 7,36 (6H, т, *м*-CH, *J* = 7,5 Гц); 4,16 (2H, т, SCH₂); 4,08 (2H, т, OCH₂). Спектр ЯМР ²⁹Si м. д.: –13,12.

(3-Трифенилсилоксипропантиолято) (3-тиапентан-1,5-дитиолято) оксорений (V) (7) получают по методу А из соединения 3 и трифенилхлорсилана. Выход 80%. *Т*_{ПЛ} 244...247 °С. Найдено, %: С 42,39; Н 4,25; S 18,02. С₂₅Н₂₉О₂ReS4Si. Вычислено, %: С 42,65; Н 4,15; S 18,21. Спектр ЯМР ¹Н, м. д.: 7,3...7,7 (15Н, м, Аг); 3,98 (2Н, т, СН₂S, *J* = 6,5 Гц); 3,85 (2Н, т, CH₂O, *J* = 6,5 Гц); 2,18 (2Н, квинтет, СН₂S, *J* = 6,5 Гц).

(4-Трифенилсилоксифенилтиолято) (3-тиапентан-1,5-дитиолято) оксорений (V) (8) получают по методу А из соединения 4 и трифенилхлорсилана. Выход 80%. *Т*_{пл} 237...240 °С. Найдено, %: С 45,00; Н 3,75; S 17,24. С₂₈Н₂₇O₂ReS4Si. Вычислено, %: С 45,57; Н 3,69; S 17,38. Спектр ЯМР ¹Н, м. д.: 7,66 (6Н, д, *o*-CH, *J* = 7,4 Гп); 7,43 (3Н, т, *n*-CH, *J* = 7,4 Гп); 7,42 (2Н, д, 2-CH, *J* = 8,4 Гп); 7,37 (6Н, т, *м*-CH, *J* = 7,4 Гп); 6,88 (2Н, д, 3-CH, *J* = 8,4 Гп).

Б. Силилирование лиганда. Смесь 2-меркаптоэтанола или 4-окситиофенола (10 ммоль), *трет*-бутилдиметилхлорсилана (1,66 г, 12 ммоль) и имидазола (1,08 г, 15 ммоль) в 10 мл диметилформамида перемешивают при комнатной температуре 24 ч. Осадок отфильтровывают, растворитель упаривают, остаток используют далее без дополнительной очистки в реакции конденсации.

Получение кремнийорганического комплекса. К комплексу 1 (86,2 мг, 221 мкмоль) в 5 мл ацетонитрила добавляют *О-трет*-бутилдиметилсилоксиэтантиол или 4-*трет*-бутилдиметилсилокситиофенол (230 мкмоль). Смесь кипятят до появления темно-коричневого окрашивания. Растворитель упаривают, остаток растворяют в хлороформе. Продукт выделяют с помощью колоночной хроматографии на силикагеле. Элюент хлороформ. К объединенным фракциям, содержащим продукт, добавляют несколько миллилитров этанола и оставляют для кристаллизации.

(2-трет-Бутилдиметилсилоксиэтантиолято) (3-тиапентан-1,5-дитиолято) оксорений (V) (6) получают по методу Б. Выход 79%. *Т*пл 224 °С. Найдено, %: С 26,67; Н 5,06; S 23,32. С₁₂H₂₇O₂ReS₄Si. Вычислено, %: С 26,40; Н 4,99; S 23,49. Спектр ЯМР ¹Н, м. д.: 3,99 (4H, м, SCH₂CH₂O); 0,91 (9H, с, CMe₃); 0,10 (6H, с, SiMe₂).

(4-*трет*-Бутилдиметилсилоксифенилтиолято) (3-тиапентан-1,5-дитиолято) оксорений (V) (9) получают по методу Б. Выход 80%. *Т*пл 212 °С. Найдено, %: С 32,22; Н 4,48; S 21,42. С₁₆H₂₇O₂ReS4Si. Вычислено, %: С 32,36; Н 4,58; S 21,59. Спектр ЯМР ¹Н, м. д.: 7,53 (2H, д, *о*-CH, *J* = 8,5 Гц); 6,86 (2H, д, *м*-CH, *J* = 8,5 Гц); 0,98 (9H, с, CMe₃); 0,21 (6H, с, SiMe₂).

БИОЛОГИЧЕСКАЯ ЧАСТЬ

Нейротропную активность изучали на мышах линии BALB/с и беспородных крысах-самцах. Масляный раствор исследуемого вещества вводили внутрибрюшинно за 30 мин до постановки опыта [13].

Действие вещества на центральную нервную систему оценивали 1) по его влиянию на координацию движений и мышечный тонус (тесты "вращающегося стержня", "трубы", "подтягивания на перекладине"); 2) по температуре тела; 3) по анальгезирующему эффекту (тест "горячей пластинки"); 4) по противосудорожной активности (тест максимального электрошока и коразоловых судорог); 5) по продолжительности гексеналового и этанолового наркоза; 6) по продолжительности жизни в условиях гипоксической гипоксии; 7) по локомоторной активности и температуре тела при совместном воздействии с фенамином; 8) по неизбежной стрессовой ситуации и воздействию на процессы памяти и ретроградную амнезию.

Экспериментальные данные обработаны статистически. Для нахождения средних значений LD₅₀ и ED₅₀ по 12...20 наблюдениям использовали экспресс-метод [14]. Оценка значимости различий между средними величинами (М±m) произведена на основе критерия Стьюдента. Различия считали достоверными при уровне вероятности P ≤ 0,05.

Авторы выражают благодарность д-ру мед. наук С. К. Германе за проведение фармакологических экспериментов, а также International Buro BMBF (Germany) за финансовую поддержку.

СПИСОК ЛИТЕРАТУРЫ

- 1 Лукевиц Э., Сегал И., Биргеле И., Заблоцкая А.. // ХГС. 1998. № 9. С. 1253.
- Dunitz J. D. // Technetium and Rhenium. Their Chemistry and its Applications. Topics Curr. Chem., Ed. J.D.Dunitz. - N.Y., 1996. - P. 176.
- 3. Johannsen B., Spies H. // Transition Met. Chem. 1997. Vol. 22. P. 318.
- Lukevics E., Segal I., Zablotskaya A., Germane S. // Chem. Heterocycl. Compds. 1996. Vol. 32. — P. 682.
- Lukevics E., Segal I., Zablotskaya A. // AFMC Intern. Med. Chem. Symp. Tokyo, 3-8 September 1995. Abstract P1M055.
- 6. Beckett A. H., Taylor D. C., Garrod J.W. // J.Pharm. Pharmacol. 1975. Vol. 27. P. 588.
- 7. Lalonde M., Chan T. H. // Synthesis. 1985. P. 817.
- 8. Grzybowska J., Teodorczyk J., Piekos R., Put A. // Sci. Pharm. 1982. Vol.51. P.301.

- 9. Gerlach M., Jutzi P., Stasch J. P., Przuntek Z. // Z. Naturforsch. B. 1983. Bd. 38. S. 237.
- Fietz Th., Spies H., Pietzsch H.-J., Leibnitz P. // Inorg. chim. acta. 1995. Vol. 231. P. 233.
- 11. Flack H. D. // Acta crystallogr. 1977. Vol. A33. P. 890.
- 12. Андрианов В. И. // Кристаллография. 1987. Т. 32. С. 228.
- 13. Lukevics E., Segal I., Zablotskaya A., Germane S. // Molecules. 1997. Vol. 2. P. 180.
- 14. Прозоровский В. В., Прозоровская М. П., Демченко В. М. // Фармакология и токсикология. — М.: Химия, 1978. — С. 497.

Латвийский институт органического синтеза, Рига LV-1006 e-mail: aez@osi.lanet.lv Поступило в редакцию 04.08.1998

Forschungszentrum Rossendorf, Dresden, Germany