М. К. Братенко^{1*}, М. М. Барус¹, М. В. Вовк²

ПОЛИФУНКЦИОНАЛЬНЫЕ ПИРАЗОЛЫ

8^{*}. СИНТЕЗ 6-АЛКИЛ-2-АРИЛ-2*H*-ПИРАЗОЛО[4,3-*d*]ПИРИМИДИН-5,7(4*H*,6*H*)-ДИОНОВ НА ОСНОВЕ ЭТИЛОВЫХ ЭФИРОВ 1-АРИЛ-4-ИЗОЦИАНАТОПИРАЗОЛ-3-КАРБОНОВЫХ КИСЛОТ

Предложен метод получения 6-алкил-2-арил-2*H*-пиразоло[4,3-*d*]пиримидин-5,7(4*H*,6*H*)-дионов, заключающийся во взаимодействии этиловых эфиров 1-арил-4-изоцианатопиразол-3-карбоновых кислот с алифатическими аминами и последующей циклизации образующихся эфиров 4-уреидопиразол-3-карбоновых кислот под действием оснований.

Ключевые слова: 6-алкил-2-арилпиразоло[4,3-*d*]пиримидин-5,7-дионы, 1-арил-4-уреидопиразол-3-карбоновые кислоты, 1-арил-3-этоксикарбонилпиразол-4-карбоновые кислоты, этиловые эфиры 1-арил-4-формилпиразол-3-карбоновых кислот, этиловые эфиры 1-арил-4-изоцианатопиразол-3-карбоновых кислот, внутримолекулярная циклизация.

Пиразоло[4,3-*d*]пиримидин-5,7-дионы представляют собой фармакологически перспективные гетероциклические системы. Весомым основанием их системного исследования стало обнаружение среди них С-нуклеозидного антибиотика оксоформицина Б [2], стимуляторов инсулиновой секреции [3], антагонистов кортикотропиносвобождающих рецепторов [4], селективных индукторов кальциотонина [5]. Представители пиразоло[4,3-*d*]пиримидин-5,7-дионов также являются важными синтонами для дизайна антагонистов аденозиновых рецепторов [6, 7] и флуоресцентными зондами в рецепторсвязующих энзиматических системах [8].

Для получения пиразоло[4,3-*d*]пиримидин-5,7-дионов обычно используют два метода. Первый из них базируется на пиразолоаннелировании полифункциональных урацилов [5, 9–11]. В основе второго лежит принцип формирования пиримидинового цикла за счёт внутримолекулярной конденсации амидов [12–15] или эфиров [16] 4-аминопиразол-3-карбоновых кислот. Следует отметить, что в последнем случае в качестве электрофильной составляющей для замыкания пиримидинового кольца используются труднодоступные и токсичные алкилизоцианаты. Кроме этого, синтетическая ценность способа невысока вследствие сложности выделения исходных эфиров 4-аминопиразол-3-карбоновых кислот, которые образуются в смеси с изомерными эфирами 4-аминопиразол-5-карбоновых кислот.

Нами предложена более эффективная и препаративно приемлемая методика дизайна 6-алкил-2-арилпиразоло[4,3-*d*]пиримидин-5,7-дионов, которая предполагает использование в качестве ключевых синтетических интермедиатов этиловых эфиров 4-изоцианатопиразол-3-карбоновой кислоты **За**,**b**.

^{*} Сообщение 7 см. [1].

Последние гладко образуются модифицированной реакцией Курциуса [17] из 3-этоксикарбонилпиразол-4-карбоновых кислот **2а**,**b**, синтезированных в свою очередь окислением доступных [18] эфиров 4-формилпиразол-3-карбоновых кислот **1а**,**b**. Показано, что применение 4-изоцианатопиразолов **3а**,**b** имеет преимущество по сравнению с применением 4-аминопиразолов [16], поскольку позволяет при взаимодействии с первичными аминами получить широкий набор пиразолилмочевин **4а**-**m**, в том числе и содержащих в уреидном фрагменте *N*-алкилфункционализированные заместители. Наличие последних является принципиально важным для дальнейшей разнообразной модификации пиразоло[4,3-*d*]пиримидиндионовой системы.

Исследование возможности внутримолекулярной циклизации соединений **4**а-**m** показало, что существенную роль в таком процессе играет заместитель R в уреидном фрагменте. Так, уреидоэфиры **4**а-**g**,**k**-**m**, содержащие стерически незатруднённые алкильные заместители, при обработке гидроксидом калия (метод A) или *трет*-бутилатом калия (метод Б) претерпевают внутримолекулярную циклизацию с образованием пиразоло[4,3-*d*]пиримидиндионов **5**а-**j** с выходами 57–78% (табл. 1). В свою очередь, в аналогичных условиях *N*-циклогексил- или *N*-арилуреидоэфиры (соединения **4h** или **4i**,**j** соответственно) не склонны к замыканию пиримидинового цикла, а подвергаются гидролизу этоксикарбонильной группы с образованием уреидокислот **6**а-**с**. Обнаруженный факт подтверждает доминирующее влияние стерических и электронных параметров заместителей у атома N-3 уреидной группы на процесс пиримидоаннелирования соединений **4**.

 $\begin{array}{l} 1-3 \ \textbf{a}, \ \textbf{4a-j}, \ \textbf{5a-g}, \ \textbf{6a-c} \ Ar = Ph, \ \textbf{1-3 } \textbf{b}, \ \textbf{4k-m}, \ \textbf{5h-j} \ Ar = 4-BrC_6H_4;\\ \textbf{4}, \ \textbf{5 } \textbf{a} \ R = n-C_4H_9; \ \textbf{b} \ R = (CH_2)_2OH; \ \textbf{c} \ R = (CH_2)_2NMe_2; \ \textbf{e} \ R = 4-ClC_6H_4CH_2; \ \textbf{f} \ R = 4-MeC_6H_4CH_2;\\ \textbf{4d,k, 5d,h} \ R = PhCH_2; \ \textbf{4g,m}, \ \textbf{5g,j} \ R = 4-MeOC_6H_4(CH_2)_2; \ \textbf{4l, 5i} \ R = 4-MeOC_6H_4CH_2;\\ \textbf{4h, 6a} \ R = cyclo-C_6H_{11}; \ \textbf{4i, 6b} \ R = Ph; \ \textbf{4j, 6c} \ R = 4-MeC_6H_4\\ \end{array}$

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено %			Т. пл.,	Выход, %
нение	формула	C	Н	N	°C	(метод)
4a	$C_{17}H_{22}N_4O_3$	<u>61.78</u> 61.80	<u>6.79</u> 6.71	<u>16.88</u> 16.96	90–91	84
4b	$C_{15}H_{18}N_4O_4$	<u>56.72</u> 56.60	<u>5.61</u> 5.70	$\frac{17.35}{17.60}$	155–157	73
4c	$C_{17}H_{23}N_5O_3$	<u>59.31</u> 59.12	<u>6.91</u> 6.71	$\frac{20.38}{20.28}$	103–104	70
4d	$C_{20}H_{20}N_4O_3\\$	<u>65.66</u> 65.92	<u>5.41</u> 5.53	<u>15.29</u> 15.37	160–162	88
4e	$C_{20}H_{19}ClN_4O_3$	<u>59.96</u> 60.23	<u>4.61</u> 4.80	<u>13.85</u> 14.05	178–179	92
4f	$C_{21}H_{22}N_4O_3$	<u>66.87</u> 66.65	<u>5.98</u> 5.86	<u>14.61</u> 14.80	182–183	86
4g	$C_{22}H_{24}N_4O_4$	<u>64.93</u> 64.69	<u>5.86</u> 5.92	<u>13.87</u> 13.72	105–106	77
4h	$C_{19}H_{24}N_4O_3$	<u>64.15</u> 64.03	<u>6.80</u> 6.79	<u>15.68</u> 15.72	100–101	87
4i	$C_{19}H_{18}N_4O_3$	<u>65.08</u> 65.13	<u>5.18</u> 5.18	<u>16.01</u> 15.99	134–135	90
4j	$C_{20}H_{20}N_4O_3$	<u>65.85</u> 65.92	<u>5.60</u> 5.53	<u>15.29</u> 15.37	148–149	87
4k	$C_{20}H_{19}BrN_4O_3$	<u>54.41</u> 54.19	<u>4.19</u> 4.32	<u>12.48</u> 12.64	160–161	81
41	$C_{21}H_{21}BrN_4O_4$	<u>53.53</u> 53.29	<u>4.31</u> 4.47	<u>11.77</u> 11.84	185–187	84
4m	$C_{22}H_{23}BrN_4O_4$	<u>54.03</u> 54.22	<u>4.91</u> 4.76	<u>11.36</u> 11.50	150-151	73
5a	$C_{15}H_{16}N_4O_2$	<u>63.61</u> 63.37	<u>5.53</u> 5.67	<u>19.49</u> 19.71	190–191	63 (А) 68 (Б)
5b	$C_{13}H_{12}N_4O_3$	<u>57.61</u> 57.35	<u>4.59</u> 4.44	<u>20.36</u> 20.58	225-226	70 (A)
5c	$C_{15}H_{17}N_5O_2$	<u>60.47</u> 60.19	<u>5.49</u> 5.72	<u>23.66</u> 23.40	295–298	64 (Б)
5d	$C_{18}H_{14}N_4O_2$	<u>67.68</u> 67.92	<u>4.31</u> 4.43	<u>17.45</u> 17.60	282–284	78 (Б)
5e	$C_{18}H_{13}ClN_4O_2$	<u>61.47</u> 61.28	<u>3.80</u> 3.71	<u>15.51</u> 15.88	>300	74 (A)
5f	$C_{19}H_{16}N_4O_2$	<u>68.71</u> 68.66	<u>5.03</u> 4.85	<u>16.88</u> 16.86	210-212	77 (А) 75 (Б)
5g	$C_{20}H_{18}N_4O_3$	<u>66.07</u> 66.29	<u>5.10</u> 5.01	<u>15.30</u> 15.46	259–262	66 (B)
5h	$C_{18}H_{13}BrN_4O_2$	<u>54.70</u> 54.43	<u>3.16</u> 3.30	<u>14.31</u> 14.10	279–283	67 (A)
5i	$C_{19}H_{15}BrN_4O_3$	<u>53.17</u> 53.41	<u>3.62</u> 3.54	<u>12.81</u> 13.11	268–271	61 (Б)
5j	$\mathrm{C_{20}H_{17}BrN_4O_3}$	<u>54.19</u> 54.44	<u>3.70</u> 3.88	<u>12.85</u> 12.70	259–261	57 (Б)

Таблица 1 Физико-химические характеристики синтезированных соединений 4а-m, 5а-j

Исходные изоцианаты **За,b** представляют собой светло-жёлтые кристаллы, чувствительные к влаге воздуха и требующие применения сухих растворителей. Их строение согласуется с результатами спектроскопии ЯМР ¹H, а также с данными ИК спектров, в которых наблюдаются интенсивные полосы поглощения групп C=O (1730 см⁻¹) и N=C=O (2250 см⁻¹). Структура

и состав промежуточных уреидокарбоксилатов **4a**–**m**, а также конечных продуктов **5a**–**j**, **6a**–**c** подтверждены комплексным физико-химическим исследованием с применением методов элементного анализа, хромато-масс-спектрометрии, ИК и ЯМР спектроскопии (табл. 1–4).

Таким образом, установлено, что этиловые эфиры 1-арил-4-изоцианатопиразол-3-карбоновых кислот являются новыми удобными исходными соединениями в препаративном синтезе 6-алкил-2-арил-2*H*-пиразоло[4,3-*d*]пиримидин-5,7(4*H*,6*H*)-дионов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на спектрометре UR-20 в CH₂Cl₂ (соединения **3a,b**) и в таблетках KBr (остальные соединения). Спектры ЯМР ¹H и ¹³C записаны на приборе Bruket Avance DRX-500 (500 и 125 МГц соответственно) в CDCl₃ (соединения **3a,b**) и в ДМСО-d₆ (остальные соединения), внутренний стандарт ТМС. Массспектры записаны на хромато-масс-спектрометре Agilent LC/MSD SL; колонка Zorbax SB-C18, 4.6 × 15 мм, 1.8 мкм (PN 82(с)75-932); растворители: A – MeCN–H₂O, 95:5, 0.1% трифторуксусная кислота, Б – 0.1% водная трифторуксусная кислота; поток элюента 3 мл/мин; объём впрыскивания – 1 мкл; УФ детекторы: 215, 254, 285 нм; метод ионизации XИ при атмосферном давлении, диапазон сканирования *m/z* 80–1000. Элементный анализ выполнен на приборе Perkin Elmer CHN Analyzer в аналитической лаборатории Института органической химии НАН Украины. Температуры плавления определены на столике Кофлера и не исправлены. Соединения **1a,b** синтезированы по методу [18].

1-Арил-3-(этоксикарбонил)-1*H*-пиразол-4-карбоновые кислоты 2а,b (общая методика). К суспензии 7.90 г (0.05 моль) KMnO₄ в 50 мл ацетона и 10 мл H₂O добавляют при перемешивании 0.05 моль эфира **1а**,b в 50 мл ацетона с такой скоростью, чтобы температура реакционной смеси не превышала 20 °C. Реакционную смесь перемешивают при комнатной температуре в течение 12 ч, выливают в 200 мл ледяной воды, твёрдый осадок отфильтровывают, промывают 100 мл H₂O, фильтрат подкисляют 10 мл 20% HCl. Образовавшийся твёрдый осадок отфильтровывают, промывают из EtOH.

Соединение 2а. Выход 9.44 г (73%). Белые кристаллы. Т. пл. 139–140 °С. ИК спектр, v, см⁻¹: 1730 (С=О), 2540–2850 (СООН). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.39 (3H, т, *J* = 7.2, ОСН₂С<u>Н</u>₃); 4.34 (2H, к, *J* = 7.2, ОС<u>Н</u>₂СН₃); 7.39–7.42 (1H, м, H Ph); 7.50–7.55 (2H, м, H Ph); 7.92 (2H, д, *J* = 7.8, H Ph); 9.18 (1H, с, H-5); 11.98 (1H, с, COOH). Найдено, %: С 60.23; H 4.76; N 10.90. С₁₃H₁₂N₂O₄. Вычислено, %: С 60.00; H 4.65; N 10.76.

Соединение 2b. Выход 10.30 г (61%). Светло-жёлтые кристаллы. Т. пл. 168–170 °С. ИК спектр, v, см⁻¹: 1730 (С=О), 2520–2860 (СООН). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.43 (3H, т, *J* = 7.0, ОСН₂С<u>Н</u>₃); 4.28 (2H, к, *J* = 7.0, ОС<u>Н</u>₂СН₃); 7.63 (2H, д, *J* = 8.2, H Ar); 7.97 (2H, д, *J* = 8.2, H Ar); 9.16 (1H, с, H-5); 12.11 (1H, с, СООН). Найдено, %: С 45.80; H 3.10; N 8.08. С₁₃H₁₁BrN₂O₄. Вычислено, %: С 46.04; H 3.27; N 8.26.

Этиловые эфиры 1-арил-4-изоцианато-1*H*-пиразол-3-карбоновой кислоты 3а,b (общая методика). К раствору 0.010 моль кислоты 2а,b и 2.7 мл (0.020 моль) Et₃N в 30 мл ТГФ при перемешивании и охлаждении до -10 °C добавляют 1.65 г (0.015 моль) этилхлорформиата, перемешивают при этой температуре в течение 0.5 ч, а затем добавляют 1.62 г (0.025 моль) NaN₃ в 10 мл H₂O и перемешивают при -10 °C ещё в течение 1 ч. Реакционную смесь выливают в 100 мл ледяной воды, экстрагируют PhMe (3 × 25 мл), сушат над безводным MgSO₄, фильтруют и кипятят до окончания выделения азота (~2 ч). Толуол упаривают в вакууме, твёрдый остаток перекристаллизовывают из смеси бензол–гексан, 3:1.

Т	а	б	Л	И	Ц	а	2
---	---	---	---	---	---	---	---

Соели-	ИК спектр, v, см ⁻¹		Macc-	Соели-	ИК спект	тр, ν, см ⁻¹	Macc-
нение	C=O	NH	спектр, $m/z [M+H]^+$	нение	C=O	NH	спектр, <i>m/z</i> [M+H] ⁺
4 a	1690, 1725	3255,	331	4m	1700,	3255,	488
		3340			1725	3345	
4b*	1690, 1725	3260,	319	5a	1675,	3345	285
		3345			1715		
4c	1695, 1720	3240,	346	5b**	1675,	3360	273
		3335			1720		
4d	1700, 1730	3255,	365	5c	1670,	3365	300
		3365			1715		
4 e	1690, 1730	3250,	399	5d	1670,	3350	319
		3360			1715		
4f	1685, 1730	3270,	379	5e	1675,	3360	353
		3355			1720		
4g	1700, 1725	3270,	409	5f	1675,	3370	333
		3350			1720		
4h	1695, 1720	3245,	357	5g	1680,	3375	363
		3345		_	1720		
4i	1695, 1725	3250,	351	5h	1675,	3365	398
		3360			1715		
4j	1700, 1730	3245,	365	5i	1670,	3355	428
		3355			1715		
4k	1695, 1730	3245,	444	5j	1675,	3360	442
		3365		-	1720		
41	1700, 1725	3250,	474				
		3360					

ИК и масс-спектры соединений 4а-т, 5а-ј

* v(OH) 3430.

** v(OH) 3405.

Соединение За. Выход 2.10 г (82%). Светло-жёлтые кристаллы. Т. пл. 93–95 °С. ИК спектр, v, см⁻¹: 1730 (С=О), 2250 (N=C=O). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.44 (3H, т, *J* = 7.4, OCH₂CH₃); 4.47 (2H, к, *J* = 7.4, OCH₂CH₃); 7.34 (1H, т, *J* = 7.6, H Ph); 7.46 (2H, т, *J* = 7.8, H Ph); 7.66 (2H, д, *J* = 7.8, H Ph); 7.77 (1H, с, H-5). Найдено, %: С 60.30; H 4.35; N 16.16. С₁₃H₁₁N₃O₃. Вычислено, %: С 60.70; H 4.31; N 16.33.

Соединение 3b. Выход 2.57 г (77%). Жёлтые кристаллы. Т. пл. 118–120 °С. ИК спектр, v, см⁻¹: 1730 (С=О), 2250 (N=C=O). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.41 (3H, т, *J* = 7.2, OCH₂C<u>H₃</u>); 4.30 (2H, к, *J* = 7.2, OC<u>H₂CH₃</u>); 7.61 (2H, д, *J* = 8.4, H Ar); 7.80 (1H, с, H-5); 7.95 (2H, д, *J* = 8.4, H Ar). Найдено, %: С 46.22; H 2.90; N 12.35. С₁₃H₁₀BrN₃O₃. Вычислено, %: С 46.45; H 3.00; N 12.50.

Этиловые эфиры 4-({[алкил(арил)амино]карбонил}амино)-1-арил-1*H*-пиразол-3-карбоновой кислоты 4а-m (общая методика). К раствору 0.002 моль изоцианата 3а,b в 5 мл PhMe добавляют 0.002 моль соответствующего амина и оставляют при комнатной температуре на 3 ч (в случае алифатических аминов) или кипятят в течение 1 ч (в случае ароматических аминов). К реакционной смеси добавляют 5 мл гексана, через 1 ч образовавшийся осадок отфильтровывают, промывают гексаном, сушат и перекристаллизовывают из EtOH.

6-Алкил-2-арил-2*H***-пиразоло[4,3-***d***]пиримидин-5,7(4***H***,6***H***)-дионы 5а–ј и 4-уреидо-1-фенил-1***H***-пиразол-3-карбоновые кислоты 6а–с** (общая методика). К раствору 0.12 г (0.002 моль) КОН в 10 мл ЕtOH (метод А) или 0.12 г (0.001 моль) *t*-ВиОК в 10 мл ТГФ (метод Б) добавляют 0.001 моль уреидоэфира **4а–m** и кипятят в течение 3 ч. Реакционную смесь подкисляют 10% HCl до pH 2, образовавшийся осадок отфильтровывают, промывают водой, сушат и перекристаллизовывают из AcOH.

-	Chekipsi niti ii coldinenni ta m, sa j
Соеди-	Химические сдвиги, б, м. д. (Ј, Гц)
нение	
4 a	0.89 (3H, τ , $J = 6.8$, (CH ₂) ₃ C <u>H</u> ₃); 1.32–1.43 (7H, M, CH ₂ C <u>H₂CH₂CH₃</u> , OCH ₂ C <u>H₃</u>); 3.11 (2H, τ , $J = 6.6$, NHCH ₂); 4.38 (2H, κ , $J = 6.8$, OC <u>H₂CH₃</u>); 7.37–7.55 (4H, M, H Ph, NH); 7.83 (2H, π , $J = 6.6$, NHCH ₂); 4.38 (2H, κ , $J = 6.8$, OC <u>H₂CH₃</u>); 7.37–7.55 (4H, M, H Ph, NH); 7.83 (2H, π , $J = 6.8$, OCH ₂ CH ₃); 7.37–7.55 (4H, κ , $J = 6.8$, OCH ₂ CH ₃); 7.83 (2H, κ , $J = 6.8$, OCH ₂ CH ₃); 7.83 (2H, κ , $J = 6.8$, OCH ₂ CH ₃); 7.37–7.55 (4H, κ , μ Ph, NH); 7.83 (2H, π , $J = 6.8$, OCH ₂ CH ₃); 7.37–7.55 (4H, κ , μ , μ Ph, NH); 7.83 (2H, π , μ
4	J = 8.2, H Ph); 8.39 (1H, c, H-5); 8.68 (1H, c, NH)
4b	$[1.35 (3H, T, J = 6.8, OCH_2CH_3); 3.19 (2H, T, J = 5.8, NHCH_2CH_2OH); 3.57 (2H, T, J = 5.8, NHCH_2CH_2CH_2OH); 3.57 (2$
	NHCH ₂ CH ₂ OH); 4.38 (2H, K, $J = 6.8$, OCH ₂ CH ₃); 4.75 (1H, YIII, c, OH); 7.18–7.38 (4H, M,
	$(H Pn, NH); /.83 (2H, \pi, J = /.6, H Pn); 8.40 (1H, c, H-5); 8.82 (1H, c, NH)$
4c	$[1.37 (3H, T, J = 6.8, OCH_2CH_3); 2.17 (6H, c, N(CH_3)_2); 2.32 (2H, T, J = 6.0, NHCH_2CH_2NMe_2); (2H, CH_3)_2 (2H, CH$
	$(3.21 (2H, T, J = 6.0, NHCH_2CH_2NMe_2); 4.39 (2H, K, J = 7.2, OCH_2CH_3); 7.39-7.55 (4H, M, H Pn, 1), 7.94 (2H, -1), 0.49 (1H, -1), 0.49 (1H, -1), 0.40 (1H, -1)), 0.40 (1H, -1), 0.40 (1H, -1)), 0.40 (1H, -1), 0.40$
4.1	[NH]; 7.84 (2H, π , $J = 8.0$, H Ph); 8.48 (1H, c, H-5); 8.69 (1H, c, NH) 1.2((2H, π , $L = 6.8$, OCH CH); 4.20 (2H, π , $L = 5.4$, CH Ph); 4.41 (2H, π , $L = 6.8$, OCH CH);
40	$(1.30 (3H, T, J = 0.8, OCH_2CH_3); 4.39 (2H, J, J = 5.4, CH_2PH); 4.41 (2H, K, J = 0.8, OCH_2CH_3);$
10	(7.20-7.90 (1111, M, H FII, MI), 0.32 (111, 0, H-5), 0.70 (111, 0, MI) 1 26 (24 m $I = 7.2 \text{ OCH CH}$): A 22 (24 m $I = 5.2 \text{ CH}$ Ar): A 20 (24 m $I = 7.2 \text{ OCH CH}$):
40	1.50 (5 Π , T, $J = 7.2$, $U \subset \Pi_2 \cup \Pi_3$), 4.52 (2 Π , H , $J = 5.2$, $\cup \Pi_2 \cap \Pi_3$), 4.59 (2 Π , K, $J = 7.2$, $U \subset \Pi_2 \cup \Pi_3$), 7.21 (2 Π m $I = 7.6$ H Ar), 7.22 7.44 (5 Π m H Db); 7.94 7.02 (2 Π m H Ar NH); 9.52 (1 Π
	(1.51 (211, 1, 5 - 7.0, 11 AI), (1.55 - 7.44 (511, M, 11 1 II), (7.04 - 7.52 (511, M, 11 AI, 101)), (0.55 (111, 0.45)), (0.45), (0.4
4 f	$136(3H \pm I = 68)$ OCH ₂ CH ₂): 2.29 (3H c Δr CH ₂): 4.28 (2H $\pm I = 54$ CH ₂ Δr): 4.39 (2H π
-11	$J=6.8$ OCH ₂ CH ₃); 7.15 (2H π $J=7.6$ H Ar); 7.20 (2H π $J=7.6$ H Ar); 7.38 (1H π $J=7.6$ H Ph);
	$7.53 (2H \pm J = 7.6 \text{ H Ph}); 7.84-7.88 (3H \text{ M H Ph NH}); 8.49 (1H \text{ c} H-5); 8.70 (1H \text{ c} NH)$
4σ	$1.36 (3H + J = 7.2 \text{ OCH}_{2}\text{CH}_{2}) : 2.70 (2H + J = 6.8 \text{ NHCH}_{2}\text{CH}_{2}\text{Ar}) : 3.31 (2H + J = 6.8 \text{ NHCH}_{2}\text{CH}_{2}\text$
-8	NHCH ₂ CH ₂ Ar): 3.73 (3H. c. OCH ₂): 4.38 (2H. K. $J = 7.2$. OCH ₂ CH ₂): 6.87 (2H. π . $J = 8.0$. H
	Ar); 7.16 (2H, д, J = 8.0, H Ar); 7.37–7.56 (4H, м, H Ph, NH); 7.85 (2H, д, J = 8.0, H Ph); 8.42
	(1H, c, H-5); 8.70 (1H, c, NH)
4h	1.06–1.08 (13H, м, 5CH ₂ , OCH ₂ C <u>H</u> ₃); 3.48–3.53 (1H, м, NHC <u>H</u>); 4.39 (2H, к, <i>J</i> = 7.2, OC <u>H₂</u> CH ₃);
	7.28–7.55 (4H, м, H Ph, NH); 7.83 (2H, д, <i>J</i> = 7.2, H Ph); 8.38 (1H, c, H-5); 8.67 (1H, c, NH)
4i	1.38 (3H, T, $J = 6.8$, OCH ₂ CH ₃); 4.41 (2H, κ , $J = 6.8$, OCH ₂ CH ₃); 6.99 (1H, T, $J = 7.2$, H Ph); 7.29–7.42
	(7H, м, H Ph); 7.87 (2H, д, <i>J</i> = 7.6, H Ph); 8.76 (1H, c, H-5); 8.82 (1H, c, NH); 9.84 (1H, c, NH)
4j	1.35 (3H, T, $J = 7.0$, OCH ₂ CH ₃); 2.38 (3H, c, ArCH ₃); 4.42 (2H, κ , $J = 7.0$, OCH ₂ CH ₃); 7.09
	(2H, d, J = 7.6, H Ar); 7.39-7.56 (5H, M, H Ph); 7.87 (2H, d, J = 7.6, H Ar); 8.76 (1H, c, H-5);
41	8.81 (1H, c, NH); 9.74 (1H, c, NH) 1.25 (2H = 1.72, OCH CH), 4.24 (2H = 1.55 (CH Pb), 4.40 (2H = 1.72, OCH CH))
4K	$[1.35 (3H, T, J = 7.2, 0CH_2CH_3); 4.34 (2H, J, J = 5.6, CH_2Pn); 4.40 (2H, K, J = 7.2, 0CH_2CH_3); 7.24 (7.20) (5H, 11, 11, 12, 11, 14, 11, 14, 11, 14, 14, 14, 14, 14$
	(7.24-7.39) (51, M, H FII), (7.72) (211, $(2, 3)$, $(3, 5)$, $(3, 6)$, $(3, 6)$, $(3, 6)$, $(3, 6)$, $(1, 6)$,
41	$135(3H \pm I = 6.8 \text{ OCH}_{2}\text{CH}_{2})$; $3.74(3H \pm \text{OCH}_{2})$; $4.25(2H \pm I = 5.6 \text{ CH}_{2}\text{Ar})$; $4.38(2H \pm I = 5.6 \text{ CH}_{2}\text{Ar})$; 4
	$J = 6.8$ OCH ₂ CH ₂): 6.86 (2H. π . $J = 8.2$. H Ar): 7.23 (2H. π . $J = 8.2$. H Ar): 7.70 (2H. π .
	J = 8.4, H Ar): 8.81–8.86 (3H, M, H Ar, NH): 8.47 (1H, c, NH): 8.74 (1H, c, H-5)
4m	1.35 (3H, T, $J = 7.2$, OCH ₂ CH ₃); 2.70 (2H, T, $J = 6.6$, NHCH ₂ CH ₂ Ar); 3.31–3.38 (2H, M,
	NHC <u>H</u> ₂ CH ₂ Ar); 4.38 (2H, к, <i>J</i> = 7.2, OC <u>H</u> ₂ CH ₃); 6.86 (2H, д, <i>J</i> = 8.4, H Ar); 7.16 (2H, д, <i>J</i> = 8.4, H
	Ar); 7.44 (1H, c, NH); 7.71 (2H, д, <i>J</i> = 8.4, H Ar); 7.84 (2H, д, <i>J</i> = 8.4, H Ar); 8.41 (1H, c, NH);
	8.72 (1H, c, H-5)
5a	$0.93 (3H, T, J = 7.0, NH(CH_2)_3CH_3); 1.40-1.47 (4H, M, CH_2CH_2CH_3); 3.62 (2H, J = 6.2, NHCH_2);$
-	7.38-7.54 (3H, M, H Ph); 7.88 (2H, d, $J = 8.0$, H Ph); 8.42 (1H, c, H-3); 11.22 (1H, c, NH)
50	(3.55) (2H, T, $J = 6.0$, NCH ₂ CH ₂ CH ₂ OH); (3.99) (2H, T, $J = 6.0$, NCH ₂ CH ₂ OH); (4.80) (1H, YIII. C, OH); (7.42) (2H, T, $J = 6.0$, NCH ₂ CH ₂ OH); (4.80) (1H, YIII. C, OH);
50	$(7.42-7.51 (3\Pi, M, \Pi PH), 7.95 (2\Pi, A, J - 7.8, \Pi PH), 8.59 (1\Pi, C, \Pi - 5), 11.52 (1\Pi, C, N\Pi)$ 2.20 (6H, a N(CH)): 2.42 (2H, π , $I = 60$ NCH CH NMa): 4.00 (2H, π , $I = 60$ NCH CH NMa):
50	$72.7 - 7.43$ (3H M H Pb): 7.94 (2H, $1, 5 = 0.0$, NCH ₂ CH ₂ (NO(2), 4.00 (2H, $1, 5 = 0.0$, NCH ₂ (NO(2)), $7.7 - 7.43$ (3H M H Pb): 7.94 (2H π $I = 7.6$ H Pb): 8.37 (1H α H-3): 11.38 (1H MH α NH)
5d	5 10 (2H с. CH,Ph): 7 25–7 84 (10H м H Ph): 8 41 (1H с. H-3): 11 46 (1H с. NH)
5e	5.07 (2H, c, CH ₂ Ar); 7.36–7.57 (7H, M, H Ar); 7.95 (2H, π , $J = 7.6$, H Ar); 8.41 (1H, c, H-3);
	11.49 (1H, c, NH)
5f	5.05 (2H, c, CH ₂ Ar); 7.10–7.56 (7H, м, H Ar); 7.96 (2H, д, <i>J</i> = 7.8, H Ar); 8.39 (1H, c, H-3);
	11.46 (1H, c, NH)
5g	2.81 (2H, T, $J = 6.8$, NHCH ₂ CH ₂ Ar); 3.73 (3H, c, OCH ₃); 4.07 (2H, T, $J = 6.8$, NHCH ₂ CH ₂ Ar); 6.84
	$(2H, \pi, J = 8.4, H Ar); 7.15 (2H, \pi, J = 7.6, H Ph); 7.44 (1H, T, J = 7.8, H Ph); 7.57 (2H, \pi, J = 7.$
	$J = 8.0, \text{H Ph}$; 7.96 (2H, π , $J = 8.4, \text{H Ar}$); 8.38 (1H, c, H-3); 11.35 (1H, c, NH)
5h	$(5.09 (2H, c, CH_2Ph); 7.25-7.35 (5H, M, H Ph); 7.72 (2H, d, J = 8.0, H Ar); 7.94 (2H, d, J = 8.0, H $
E :	[II AI]; 5.44 (III, C, II-5); II.49 (III, C, NH) 2.72 (21) a (CU); 5.02 (21) a (CU Ar); 6.96 (21) a $I = 7.9$ [I Ar); 7.20 (21) a $I = 7.9$ [I Ar);
51	(3.73) (311, 0, 00(13), 3.03 (211, 0, 0(12)A1), 0.00 (211, μ , $J = 7.8$, fl AI); 7.29 (211, μ , $J = 7.8$, fl AI); 7.73 (211, π , $J = 9.0$ H Ar); 7.01 (211, π , $J = 9.0$ H Ar); 9.24 (111, μ , 112); 11.20 (111, μ , NII);
51	(2.13, 2.14, 3.14, 3.15, 2.14, 2.1
J	$E_{1,2} = 10, 1, 0, 10, 10, 10, 10, 10, 10, 10, 1$
	π , $J = 8.4$, H Ar); 8.40 (1H, c, H-3); 11.37 (1H c NH)
	(1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

Таблица 4

Спектры ЯМР ¹³С соединений 5а-ј

Соеди-	Химические сдвиги, δ, м. д.								
нение	C-3	C-3a	C-5	C-7	C-7a	R, Ar			
5a	112.8	132.1	150.2	157.3	138.7	17.8; 20.8; 31.4; 46.5; 119.3; 126.6; 127.4; 129.4			
5b	112.7	132.2	150.1	157.4	138.9	44.4; 60.3; 119.9; 125.4; 127.0; 128.8			
5c	112.6	132.0	150.5	157.3	139.1	37.8; 45.0; 56.4; 119.4; 127.0; 127.6; 129.2			
5d	113.0	131.9	150.6	157.3	139.1	41.1; 119.4; 126.9; 127.1; 127.3; 127.8; 128.2; 129.5; 137.5			
5e	113.1	131.9	150.5	157.4	139.1	42.5; 119.5; 127.1; 128.2; 129.3; 129.6; 129.9; 131.6; 136.5			
5f	113.0	132.0	150.6	157.3	139.1	20.6; 45.8; 119.4; 127.1; 127.4; 127.8; 128.7; 129.6; 134.5; 136.0			
5g	112.7	132.0	150.4	157.1	139.1	32.6; 41.7; 54.7; 113.7; 119.3; 127.0; 127.8; 129.4; 129.5; 130.4; 157.7			
5h	113.1	132.4	150.5	157.3	138.3	43.1; 120.4; 126.7; 126.9; 127.1; 127.2; 127.3			
5i	113.1	132.4	150.5	157.2	138.4	42.5; 55.0; 113.6; 120.4; 121.4; 127.1; 129.1; 129.5; 132.3; 158.3			
5j	112.8	132.1	150.4	157.3	139.0	32.7; 42.0; 54.4; 113.8; 120.3; 121.5; 127.3; 129.1; 130.0; 132.4; 158.6			

1-Фенил-4-{[(циклогексиламино)карбонил]амино}-1*H*-пиразол-3-карбоновая кислота (6а). Выход 0.21 г (63%, метод А). Белые кристаллы. Т. пл. 235–237 °С. ИК спектр, v, см⁻¹: 1665, 1710 (С=О), 2520–2830 (СООН), 3230–3300 (NH). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.18–1.95 (10H, м, 5CH₂); 3.48–3.52 (1H, м, NHC<u>H</u>); 7.37–7.53 (4H, м, H Ph, NH); 7.83 (2H, д, *J* = 7.8, H Ph); 8.38 (1H, с, H-5); 8.65 (1H, с, NH); 13.11 (1H, с, СООН). Масс-спектр, *m/z*: 329 [M+H]⁺. Найдено,%: С 62.18; H 6.25; N 17.38. С₁₇H₂₀N₄O₃. Вычислено, %: С 62.18; H 6.14; N 17.06.

1-Фенил-4-(3-фенилуреидо)-1*Н*-пиразол-3-карбоновая кислота (6b). Выход 0.24 г (75%, метод Б). Белые кристаллы. Т. пл. 231–233 °С. ИК спектр, v, см⁻¹: 1670, 1705 (С=О), 2530–2870 (СООН), 3315–3345 (NH). Спектр ЯМР ¹H, δ, м. д.: 6.99–7.88 (10H, м, H Ph); 8.78 (1H, с, H-5); 8.86 (1H, с, NH); 9.88 (1H, с, NH); 13.27 (1H, уш. с, СООН). Спектр ЯМР ¹³С, δ, м. д.: 117.5 (С-5); 118.0, 118.9, 121.9, 127.0, 127.2, 128.8, 129.7, 135.2, 139.8 (С Ph); 132.2 (С-4); 139.3 (С-3); 151.7 (СОNН); 164.5 (СООН). Масс-спектр, *m/z*: 323 [М+Н]⁺. Найдено, %: С 63.57; Н 4.50; N 17.16. С₁₇Н₁₄N₄O₃. Вычислено, %: С 63.55; H 4.38; N 17.38.

4-[3-(4-Метилфенилуреидо)]-1-фенил-1*H*-пиразол-3-карбоновая кислота (6с). Выход 0.27 г (81%, метод А). Белые кристаллы. Т. пл. 239–241 °С. ИК спектр, v, см⁻¹: 1665, 1705 (С=О), 2560–2880 (СООН), 3310–3340 (NH). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 2.25 (3H, с, СН₃); 7.09 (2H, д, *J* = 7.8, H Ar); 7.39–7.54 (5H, м, H Ph); 7.87 (2H, д, *J* = 7.8, H Ar); 8.75 (1H, с, H-5); 8.82 (1H, с, NH); 9.76 (1H, с, NH). Спектр ЯМР ¹³С, δ, м. д.: 20.4 (СН₃); 117.4 (С-5); 118.1, 118.9, 127.1, 127.2, 129.2, 129.7, 130.7, 137.2 (С Ar); 132.3 (С-4); 139.3 (С-3); 151.8 (СОNН); 164.5 (СООН). Масс-спектр, *m*/*z*: 337 [M+H]⁺. Найдено, %: С 64.03; H 4.66; N 16.47. С₁₈H₁₆N₄O₃. Вычислено, %: С 64.28; H 4.79; N 16.66.

СПИСОК ЛИТЕРАТУРЫ

- 1. М. К. Братенко, М. М. Барус, М. В. Вовк, *ХГС*, 1657 (2012). [*Chem. Heterocycl. Compd.*, **48**, 1545 (2013).]
- T. Sawa, Y. Fukagawa, J. Homma, T. Wakashiro, T. Takeuchi, M. Hori, J. Antibiot., 20, 227 (1967).

- T. Nakajima, K. Ueno, Y. Nomoto, Y. Matsumoto, H. Yano, S. Nakanishi, K. Takasaki, H. Kusaka, EU Pat. Appl. 1637532.
- 4. T. Kashiwagi, I. Takamuro, Y. Watanabe, M. Yato, EU Pat. Appl. 1903045.
- A. M. Gilbert, S. Caltabiano, F. E. Koehn, Z.-j. Chen, G. D. Francisco, J. W. Ellingboe, Y. Kharode, A. Mangine, R. Francis, H. Trailsmith, D. Gralnick, *J. Med. Chem.*, 45, 2342 (2002).
- O. Lenzi, V. Colotta, D. Catarzi, F. Varano, D. Poli, G. Filacchioni, K. Varani, F. Vincenzi, P. A. Borea, S. Paoletta, E. Morizzo, S. Moro, *J. Med. Chem.*, **52**, 7640 (2009).
- P. G. Baraldi, G. Saponaro, M. A. Tabrizi, S. Baraldi, R. Romagnoli, A. R. Moorman, K. Varani, P. A. Borea, D. Preti, *Bioorg. Med. Chem.*, 20, 1046 (2012).
- G. Medza, J. Wierzchowski, B. Kierdaszuk, D. Shugar, *Bioorg. Med. Chem.*, 17, 2585 (2009).
- K. Hirota, Y. Yamada, T. Asao, Y. Kitade, S. Senda, *Chem. Pharm. Bull.*, 29, 3060 (1981).
- 10. F. Zhang, A. Kulesza, S. Rani, B. Bernet, A. Vasella, *Helv. Chim. Acta*, **91**, 1201 (2008).
- 11. K. Hirota, Y. Yamada, T. Asso, S. Senda, J. Chem. Soc., Perkin Trans. 1, 277 (1982).
- 12. R. K. Robins, F. W. Furcht, A. D. Grauer, J. W. Jones, J. Am. Chem. Soc., 78, 2418 (1956).
- 13. V. Papesh, R. M. Dodson, J. Org. Chem., 30, 199 (1965).
- K. S. Ramasamy, R. B. Amador, Q. Habib, F. Rong, X. Han, D. Y. Li, J. Huang, Z. Hong, H. An, *Nucliosides, Nucleotides Nucleic Acids*, 24, 1947 (2005).
- 15. R. A. Long, J. F. Gerster, L. B. Townsend, J. Heterocycl. Chem., 7, 863 (1970).
- 16. T. Brady, K. Vu, J. R. Barber, S. C. Ng, Y. Zhou, Tetrahedron Lett., 50, 6223 (2009).
- 17. J. Weinstock, J. Org. Chem., 26, 3511 (1961).
- 18. М. К. Братенко, М. М. Барус, М. В. Вовк, *ХГС*, 1817 (2009). [*Chem. Heterocycl. Compd.*, **45**, 1464 (2009).]

Поступило 24.04.2013

¹ Буковинский государственный медицинский университет, пл. Театральная, 2, Черновцы 58002, Украина e-mail: bratenko@gmail.com

² Институт органической химии НАН Украины, ул. Мурманская, 5, Киев 02094, Украина e-mail: mvovk@i.com.ua