

Химия гетероциклических соединений 2019, 55(11), 1098–1103

Синтез новых 6-метил-4-сульфанилфуро[3,4-*c*]пиридин-3(1*H*)-онов

Елена А. Кайгородова¹*, Наталья М. Ганцгорн², Леонид Д. Конюшкин³, Геннадий Д. Крапивин⁴

¹ Кубанский государственный аграрный университет им. И. Т. Трубилина, ул. Калинина, 13, Краснодар 350044, Россия; e-mail: e kaigorodova@mail.ru

² Кубанский государственный университет,

ул. Ставропольская, 149, Краснодар 350040, Россия; e-mail: natalie.gantsgorn@mail.ru

³ Институт органической химии им. Н. Д. Зелинского РАН, Ленинский пр., 47, Москва 119992, Россия; e-mail: leonidk@chemical-block.com

⁴ Кубанский государственный технологический университет, ул. Московская, 2, Краснодар 350072, Россия; e-mail: krapivingd@mail.ru Поступило 14.06.2019 Принято 22.07.2019

Hal = Cl, Br, I; R = CN, CO_2H , CO_2Alk , $CONH_2$, CONHAr, COAr

Алкилирование 6-метил-4-тиоксо-4,5-дигидрофуро[3,4-*c*]пиридин-3(1*H*)-она в щелочной среде протекает региоселективно по атому серы с образованием сульфанилпроизводных.

Ключевые слова: 6-метил-4-тиоксо-4,5-дигидрофуро[3,4-*c*]пиридин-3(1*H*)-он, 6-метил-4-сульфанилфуро[3,4-*c*]пиридин-3(1*H*)-оны, алкилирование.

Интерес к синтетическим серо(кислород)содержащим пиридинам обусловлен широким спектром их биологической и фармакологической активности.¹⁻⁴ Источником для получения таких систем могут служить бициклические структуры, содержащие пиридиновый и фурановый циклы^{1,4} (рис. 1).

Например, 6-метилфуро[3,4-*c*]пиридин-3,4(1*H*,5*H*)дион 1 является предшественником пиридоксина⁵ (витамина В₆) 2 и обладает структурной близостью к природному алкалоиду церпегину⁶ 3. На основе соединения 1 получены разнообразные производные пиридина. Так, подробно изучены реакции электрофильного замещения,⁷ окисления, конденсации по группе CH₂ лактонного цикла с образованием 1-[1-(арил, гетарил)метилиден]-6-метил-1,3,4,5-тетрагидрофуро[3,4-с]пиридин-3,4-дионов,⁷ а также реакции раскрытия лактонного цикла как тетрагидрофуропиридин-3,4-диона,⁷ так и продуктов его конденсации с альдегидами под действием азотсодержащих нуклеофилов (аминов и гидразинов) и последующей гетероциклизации некоторых полученных амидов и гидразидов соответственно в бициклические лактамы и пиридазиноны.7

Серосодержащий аналог соединения 1 - 6-метил-4тиоксо-4,5-дигидрофуро[3,4-*c*]пиридин-3(1*H*)-он (4) – получен из соединения 1 двустадийным синтезом, включающим последовательные реакции: 1) хлорирование диоксофуропиридина 1 с помощью PCl₅ в среде POCl₃⁸ и 2) взаимодействие с тиомочевиной в *i*-PrOH (нуклеофильное замещение атома хлора на атом серы в 6-метил-4-хлорфуро[3,4-*c*]пиридин-3(1*H*)-оне **5**, обра-

Рисунок 1. Бициклы 1, 2, 4, 5, содержащие пиридиновый и фурановый циклы, и природный алкалоид церпегин 3.

зующемся в первой реакции).⁹ Химические свойства соединения 4 менее изучены. Известны реакции конденсации с ароматическими и гетероароматическими альдегидами по метиленовой группе лактонного цикла,^{7,10} позволившие получить ряд 1-[1-(арил,гетарил)метилиден]-6-метил-4-тиоксо-4,5-дигидрофуро[3,4-*c*]пиридин-3(1*H*)-онов. Последние превращены взаимодействием с алифатическими аминами и гидразинами в амиды и гидразиды.^{7,11} Гетероциклизацией гидразидов в кислой среде получены бициклические пиридазиноны.⁷

Ряд 6-метил-4-сульфанилфуро[3,4-с]пиридин-3(1*H*)онов 7 получен в результате тиоалкилирования бициклического 2-хлорпроизводного 5 меркаптанами электрохимическим способом.¹² Мягкие условия проведения реакции (комнатная температура, растворитель – MeCN) способствовали получению соединений с высокими выходами. Однако спектр синтезированных соединений ограничен доступностью меркаптанов. Например, ряд 4-сульфанилгетарилфуро[3,4-с]пиридин-3-онов представлен одним соединением – 6-метил-4-[(пиридин-2-ил)сульфанил]фуро[3,4-с]пиридин-3(1*H*)-оном. Среди продуктов тиоалкилирования соединения 5 обнаружены рострегулирующие препараты.^{13,14} Водорастворимые продукты раскрытия лактонного цикла водным раствором щелочи также оказались эффективными регуляторами роста растений.¹⁵ Отметим, что попыток 6-метил-4-тиоксо-4,5-дигидрофуроалкилирования [3,4-с]пиридин-3(1Н)-она с использованием классической методики с целью получения 4-сульфанилпроизводных до наших работ не предпринималось.

Настоящая работа посвящена синтезу новых 6-метил-4-сульфанилфуро[3,4-*c*]пиридин-3(1*H*)-онов 7, основанному на методике классического нуклеофильного алкилирования тионов различными галогенпроизводными в щелочной среде.

Анализируя структуру соединения **4**, можно предположить, что нуклеофильная атака группы ОН щелочи, используемой в классической методике алкилирования, может проходить по крайней мере по трем реакционным центрам: по карбонильной или метиленовой группе лактонного цикла либо связывать протон группы SH тиольной формы соединения **4**. Алкилирование 6-метил-4-тиоксо-4,5-дигидрофуро[3,4-*c*]пиридин-3(1*H*)-она (**4**) галогенидами **6а–о** осуществлялось в присутствии эквимолярного количества КОН.

Отработка общей методики получения 6-метил-4-сульфанилфуро[3,4-с]пиридин-3(1*H*)-онов **7а-о** проводилась на примере синтеза 2-[(6-метил-3-оксо-1,3-дигидрофуро[3,4-с]пиридин-4-ил)сульфанил]-*N*-(2-фуран-2-илметил)ацетамида (**7g**). Реакцию проводили с использованием в качестве растворителей ЕtOH, ДМСО и ДМФА. Применение EtOH при температуре кипения реакционной смеси оказалось менее эффективным ввиду более длительной гомогенизации реакционной смеси и приводило к меньшему выходу (45%) по сравнению с ДМФА и ДМСО. В двух последних случаях реакция также осуществлялась при кипячении. Наибольший выход продукта отмечен при применении ДМФА (66%). Использование в качестве растворителя

ДМСО приводило к выходу 57%. В случае алкилирования соединения 4 иодуксусной кислотой 6а использовалось двукратное количество КОН. При выделении продукта 7а в реакционную смесь добавлялось эквимолярное количество раствора HCl.

Установлено, что реакции протекают высокорегиоселективно по атому серы с образованием единственного продукта 6-метил-4-сульфанилфуро[3,4-*c*]пиридин-3(1*H*)-она 7а-о во всех случаях алкилирования соединения 4 независимо от природы галогенида (схема 1) и условий проведения процесса.

При введении в реакцию алкилирующего агента 4,5-бис(хлорметил)-1-(4-метилфенил)-1*H*-1,2,3-триазола **бр** использовалось мольное соотношение исходного тиона **4** и галогенида **6р** 2:1 в присутствии 2 экв. КОН (схема 2). При этом зафиксировано образование бис-(6-метилфуро[3,4-*c*]пиридин-3(1*H*)-она) **7р** с выходом 57%.

Специфичность исследуемых превращений заключается в сохранении лактонного цикла. В ходе реакции не наблюдалось образования соответствующих гидроксикислот, в то время как в литературе⁷ описывается однозначное раскрытие лактонного цикла в щелочной среде.

Строение синтезированных соединений подтверждено данными спектроскопии ИК, ЯМР ¹Н и ¹³С и массспектрометрии.¹⁶ О сохранении лактонного цикла в соединениях **7а-р** свидетельствует наличие в их ИК спектрах полос поглощения валентных колебаний карбонильной группы лактона при 1750–1720 см⁻¹ и также связей С-О-С лактона при 1150–1020 см⁻¹. Спектры ЯМР ¹Н соединений **7а-р**, наряду с сигналами протонов пирдинового цикла H-7, CH₃ и группы ОСН₂, содержат сигналы протонов соответствующих заместителей при атоме серы.

В корреляционных спектрах ${}^{1}\text{H}{-}{}^{13}\text{C}$ НМВС продуктов **7а–р** наблюдаются кросс-пики атома водорода метиленовой группы алкилирующего агента с атомом углерода С-4, что подтверждает протекание реакции алкилирования по атому серы. Например, в спектре ${}^{1}\text{H}{-}{}^{13}\text{C}$ НМВС соединения **7g** имеется кросс-пик сигналов при 3.96 и 157.2 м. д. (рис. 2, табл. 1).

В масс-спектрах соединений **7а–р** присутствуют пики однозарядных молекулярных ионов [M]⁺ с относительными интенсивностями от 7.5% для 2-[(6-метил-3-оксо-1,3-дигидрофуро[3,4-*c*]пиридин-4-ил)сульфанил]-*N*-(4-метоксифенил)ацетамида (**7e**) и до 100% для 4-[(1*H*-бензимидазол-2-илметил)сульфанил]-6-метилфуро-[3,4-*c*]пиридин-3(1*H*)-она (**7n**).

Для соединений 7d-g, содержащих в заместителе при атоме серы группу CH₂CONHR, выявлено направление первичной фрагментации молекулярных ионов

Рисунок 2. Структурно-значимые корреляции в спектре ¹H–¹³C HMBC соединения **7**g.

Таблица 1. Результаты экспериментов по гетероядерной корреляции ${}^{1}H{-}^{13}C$ HSQC и ${}^{1}H{-}^{13}C$ HMBC для соединения 7g

Группа	Спектр ЯМР ¹ Н,	Спектр ¹ H- ¹³ C HSQC (¹³ C), δ, м. д.	Спектр ¹ Н– ¹³ С НМВС,
CH_3	2.47	24.8	163.0; 116.0; 113.1
SCH_2	3.96	32.4	168.0; 157.2
$\rm NHC\underline{H}_2$	4.25	36.4	168.0; 152.5; 107.4
$1-\mathrm{CH}_2$	5.34	69.8	169.1; 163.0; 158.7; 157.2; 116.0; 113.1
3'-CH	6.19	107.4	152.5; 142.6; 110.9
4'-CH	6.35	110.9	152.5; 142.6; 107.4
7-CH	7.20	113.1	163.0; 116.0; 69.8; 24.8
5'-CH	7.52	142.6	152.5; 110.9; 107.4
NHCO	8.58	_	168.0: 36.4

 $[M]^+$ (схема 3). Начальный распад амидов 7d–f протекает с образованием резонансно стабилизированных характеристических катионов Φ_1 с m/z 222 и Φ_2 с m/z 194. Отмечено, что для соединения 7g, содержащего при атоме азота фурфурильный заместитель, катион Φ_1 не образуется. Вместе с тем, наряду с пиком катиона Φ_2 , в масс-спектре соединения 7g присутствует пик с m/z 81, имеющий максимальную интенсивность и соответствующий резонансно-стабилизированному фурфурильному катиону.

Таким образом, показано, что реакция алкилирования 6-метил-4-тиоксо-4,5-дигидрофуро[3,4-*c*]пиридин-3(1*H*)-она в щелочной среде протекает без раскрытия фармакофорного лактонного цикла с участием нуклеофильного атома серы с образованием 6-метил-4-сульфанилфуро[3,4-*c*]пиридин-3(1*H*)-онов.

Экспериментальная часть

ИК спектры записаны на спектрометре Bruker Vertex 70 с использованием приставки нарушенного полного внутреннего отражения на кристалле алмаза без дополнительной пробоподготовки (спектральный диапазон 4000-400 см⁻¹). Спектры ЯМР ¹Н и ¹³С зарегистрированы на приборах Agilent 400/54 (400 и 100 МГц соответственно, соединения 7а-е,і) и Bruker AV600 (600 и 150 МГц соответственно, соединения 7f-h,k-p) в ДМСО-*d*₆, внутренний стандарт ТМС. Спектры ¹H-¹³C HSQC и ¹H-¹³C HMBC соединения 7g записаны на приборе Agilent 400/54. Масс-спектры записаны на приборе Varian CH-6 с прямым вводом образца в ионный источник при 50-180 °С, ионизация ЭУ (70 эВ). Элементный анализ выполнен на CHNанализаторе Hewlett Packard HP-185B. Температуры плавления определены на нагревательном аппарате Stuart SMO 30. Контроль за ходом реакций осуществлен методом TCX на пластинах Silufol UV-254, элюент гексан -Ме₂СО, 1:2, проявитель - пары иода.

Исходный 6-метил-4-тиоксо-4,5-дигидрофуро[3,4-*c*]пиридин-3(1*H*)-он (**4**) получен по литературной методике.^{8,9} Алкилирующие реагенты **6а–о** фирм Merck, Fluka, Aldrich перед использованием очищены методами дистилляции и перекристаллизации.

Синтез 6-метил-4-сульфанилфуро[3,4-с]пиридин-3(1*H*)-онов 7а-р (общая методика). К 1.0 г (5.6 ммоль) 6-метил-4-тиоксо-4,5-дигидрофуро[3,4-с]пиридин-3-она (4) в 20 мл ДМФА добавляют 3.1 мл (5.6 ммоль) 10% водного раствора КОН. Реакционную смесь подогревают (40–60 °C) до гомогенизации и добавляют эквивалентное количество соответствующего алкилирующего агента. Смесь перемешивают при кипячении в течение 3–8 ч, контролируя ход реакции методом ТСХ. После охлаждения на ледяной бане кристаллический продукт отфильтровывают, промывают H₂O и перекристаллизовывают из EtOH.

[(6-Метил-3-оксо-1,3-дигидрофуро[3,4-с]пиридин-4-ил)сульфанил]уксусную кислоту (7а) получают по общей методике, но с использованием двукратного количества КОН. По окончании реакции к смеси добавляют эквимолярное количество водного раствора HCl, 1:1. Выпавший осадок промывают H₂O, сушат и перекристаллизовывают из EtOH. Выход 1.30 г (87%), бесцветные кристаллы, т. пл. 199-200 °С, Rf 0.61. ИК спектр, v, см⁻¹: 1041, 1205 (СОС); 1700 (С=О СООН), 1730 (C=O). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.50 (3Н, с, CH₃); 4.06 (2H, c, SCH₂); 5.37 (2H, c, 1-CH₂); 7.25 (1H, c, H-7); 12.70 (1H, уш. с, СООН). Спектр ЯМР ¹³С, б, м. д.: 25.2 (CH₃); 31.5 (SCH₂); 70.1 (C-1); 113.4 (C-7); 116.3 (C-3a); 157.1 (C-4); 159.0 (C-7a); 163.1 (C-6); 168.9 (C-3); 170.8 (COOH). Macc-спектр, m/z ($I_{\text{отн}}$, %): 239 [M]⁺ (26), 221 (13), 196 (12), 195 (100), 194 (63), 193 (47), 166 (26), 165 (47), 161 (25), 150 (17), 149 (21), 148 (10), 136 (11), 120 (22), 109 (17), 107 (51), 93 (17), 92 (28), 91 (10), 90 (12), 82 (15), 81 (15), 77 (16). Найдено, %: С 50.26; Н 3.80; N 5.90. С₁₀Н₉NO₄S. Вычислено, %: С 50.20; Н 3.79; N 5.85.

Этил[(6-метил-3-оксо-1,3-дигидрофуро[3,4-с]пиридин-4-ил)сульфанил]ацетат (7b). Выход 0.70 г (46%), бесцветные кристаллы, т. пл. 115–116 °С, R_f 0.52. ИК спектр, v, см⁻¹: 1050, 1210 (СОС); 1725 (С=О СООЕt), 1755 (С=О). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.19 (3H, т, *J* = 7.1 СН₂С<u>Н</u>₃); 2.49 (3H, с, СН₃); 4.06 (2H, с, SCH₂); 4.12 (2H, кв, *J* = 7.1, С<u>Н</u>₂СН₃); 5.38 (2H, с, 1-СН₂); 7.26 (1H, с, H-7). Спектр ЯМР ¹³С, δ , м. д.: 14.8 (СН₂<u>С</u>H₃); 25.1 (СН₃); 32.5 (SCH₂); 61.6 (<u>С</u>H₂CH₃); 70.2 (С-1); 113.6 (С-7); 116.3 (С-3а); 156.8 (С-4); 159.0 (С-7а); 163.1 (С-6); 169.3 (С-3); 169.6 (СН₂<u>С</u>ОО). Массспектр, *m*/*z* (*I*_{отн}, %): 267 [M]⁺ (17), 222 (13), 221 (23), 195 (22), 194 (100), 193 (35), 165 (26), 150 (12), 109 (11), 92 (14), 82 (13), 77 (14). Найдено, %: С 53.97; H 4.96; N 5.29. С₁₂H₁₃NO₄S. Вычислено, %: С 53.92; H 4.90; N 5.24.

2-[(6-Метил-3-оксо-1,3-дигидрофуро[3,4-с]пиридин-4-ил)сульфанил]ацетамид (7с). Выход 0.79 г (55%), бесцветные кристаллы, т. пл. 226–227 °С. $R_{\rm f}$ 0.80. ИК спектр, v, см⁻¹: 1040, 1200 (СОС); 1675 (С=О амид), 1765 (С=О), 3380 (NH). Спектр ЯМР ¹H, δ , м. д.: 2.50 (3H, с, CH₃); 3.88 (2H, с, SCH₂); 5.32 (2H, с, 1-CH₂); 7.24 (1H, с, H-7); 7.12 (1H, уш. с, NH₂); 7.56 (1H, уш. с, NH₂). Спектр ЯМР ¹³С, δ , м. д.: 24.6 (CH₃); 32.1 (SCH₂); 69.3 (С-1); 112.7 (С-7); 115.5 (С-3а); 157.0 (С-4); 158.3 (С-7а); 162.5 (С-6); 168.6 (СОNH₂); 169.4 (С-3). Массспектр, *m/z* ($I_{отн}$, %): 167 [М–71]⁺ (14), 166 (79), 165 (95), 152 (18), 151 (38), 150 (37), 149 (35), 148 (19), 138 (14), 137 (16), 136 (17), 133 (12), 122 (15), 120 (28), 119 (12), 110 (14), 109 (31), 107 (90), 105 (12), 104 (16), 97 (16), 96 (11), 95 (15), 94 (13), 93 (31), 92 (46), 91 (18), 90 (26), 83 (16), 82 (33), 81 (38), 79 (10), 78 (16), 77 (37). Найдено, %: С 50.47; Н 4.26; N 11.86. $C_{10}H_{10}N_2O_3S$. Вычислено, %: С 50.41; Н 4.23; N 11.76.

2-[(6-Метил-3-оксо-1,3-дигидрофуро[3,4-с]пиридин-4-ил)сульфанил]-*N*-фенилацетамид (7d). Выход 1.60 г (87%), бесцветные кристаллы, т. пл. 232-233 °С, Rf 0.54. ИК спектр, v, см⁻¹: 1043, 1216 (СОС); 1630 (С=О амид), 1735 (C=O), 3150 (NH). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 2.50 (3H, c, CH₃); 4.16 (2H, c, SCH₂); 5.36 (2H, c, 1-CH₂); 7.05 (1H, T, J = 7.4, H-4 Ph); 7.21 (1H, c, H-7); 7.31 (2H, д. д, *J* = 7.8, *J* = 7.4, H-3,5 Ph); 7.59 (2H, д, *J* = 7.8, H-2,6 Ph); 10.26 (1H, c, CONH). Спектр ЯМР ¹³С, δ, м. д.: 24.5 (CH₃); 33.5 (SCH₂); 69.4 (C-1); 112.8 (C-7); 115.6 (C-3a); 119.2 (C-2',6'); 123.3 (C-4'); 128.8 (C-3',5'); 139.1 (C-1'); 156.9 (C-4); 158.3 (C-7a); 162.4 (C-6); 166.5 (CONH); 168.6 (С-3). Масс-спектр, m/z ($I_{\text{отн}}$, %): 314 [M]⁺ (10), 223 (13), 222 (100), 221 (58), 195 (48), 194 (98), 182 (18), 181 (11), 166 (14), 165 (17), 151 (16), 150 (13), 149 (13), 107 (22), 106 (18), 104 (12), 93 (51), 92 (27), 91 (12), 82 (12), 77 (45). Найдено, %: С 61.20; Н 4.52; N 8.98. С₁₆Н₁₄N₂O₃S. Вычислено, %: С 61.13; Н 4.49; N 8.91.

2-[(6-Метил-3-оксо-1,3-дигидрофуро[3,4-с]пиридин-4-ил)сульфанил]-*N*-(4-метоксифенил)ацетамид (7е). Выход 1.20 г (61%), бесцветные кристаллы, т. пл. 221-222 °C, $R_{\rm f}$ 0.61. ИК спектр, v, см⁻¹: 1042, 1211 (COC); 1678 (С=О амид), 1748 (С=О). Спектр ЯМР ¹Н, б, м. д. (Ј, Гц): 2.51 (3Н, с, СН₃); 3.72 (3Н, с, ОСН₃); 4.13 (2Н, с, SCH₂); 5.37 (2H, c, 1-CH₂); 6.88 (2H, д, J = 9.0, H-3,5 Ar); 7.22 (1Н, с, Н-7); 7.48 (2Н, д, J = 9.0, Н-2,6 Аг); 10.13 (1H, с, CONH). Спектр ЯМР ¹³С, б, м. д.: 24.6 (CH₃); 33.4 (SCH₂); 55.2 (OCH₃); 69.4 (C-1); 112.8 (C-7); 113.9 (C-3',5'); 115.6 (C-3a); 120.7 (C-2',6'); 132.3 (C-1'); 155.3 (C-4'); 157.0 (C-4); 158.3 (C-7a); 162.4 (C-6); 165.9 (CONH); 168.6 (С-3). Масс-спектр, *m/z* (*I*_{отн}, %): 344 [M]⁺ (7), 222 (51), 221 (34), 195 (15), 194 (52), 123 (100), 108 (26), 95 (13), 77 (10). Найдено, %: С 59.37; Н 4.73; N 8.19. С₁₇Н₁₆N₂O₄S. Вычислено, %: С 59.29; Н 4.68; N 8.13.

2-[(6-Метил-3-оксо-1,3-дигидрофуро[3,4-с]пиридин-4-ил)сульфанил]-N-(4-фторфенил)ацетамид (7f). Выход 1.40 г (72%), бесцветные кристаллы, т. пл. 248-249 °С, $R_{\rm f}$ 0.48. ИК спектр, v, см⁻¹: 1039, 1208 (СОС); 1665 (C=O амид), 1744 (C=O), 3306 (NH). Спектр ЯМР ¹Н, δ, м. д. (J, Гц): 2.46 (3H, с, CH₃); 4.12 (2H, с, SCH₂); 5.33 (2H, c, 1-CH₂); 7.12 (2H, μ , J, J_{HH} = 8.9, J_{HF} = 8.9, H-3,5 Ar); 7.19 (1H, c, H-7); 7.56 (2H, д. д, J_{HH} = 8.9, $J_{\rm HF} = 4.9$, H-2,6 Ar); 10.35 (1H, c, CONH). Cnektp SMP ¹³C, δ, м. д. (*J*, Гц): 24.9 (CH₃); 32.8 (SCH₂); 69.9 (С-1); 113.2 (С-7); 115.8 (д, *J*_{CF} = 22.3, С-3',5'); 115.9 (С-3а); 121.4 (д, *J*_{CF} = 8.0, C-2',6'); 135.8 (д, *J*_{CF} = 2.4, C-1'); 157.2 (C-4); 158.5 (д, J_{CF} = 243.4, С-4'); 158.7 (С-7а); 162.8 (С-6); 166.9 (CONH); 169.1 (С-3). Масс-спектр, *m/z* (*I*_{отн}, %): 332 $[M]^+(9), 223(12), 222(100), 221(34), 195(39), 194(96);$ 166 (13); 165 (13); 151 (12); 150 (13); 111 (26); 110 (15); 109 (14); 107 (15); 95 (10); 92 (11); 83 (27); 82 (14); 77 (12). Найдено, %: С 57.89; Н 3.96; N 8.48. С₁₆Н₁₃FN₂O₃S. Вычислено, %: С 57.82; Н 3.94; N 8.43.

2-[(6-Метил-3-оксо-1,3-дигидрофуро[3,4-с]пиридин-4-ил)сульфанил]-*N*-(2-фуран-2-илметил)ацетамид (7g) получают по общей методике, но с применением различных растворителей. Выход 1.27 г (66%, ДМФА), 1.10 г (57%, ДМСО), 0.87 г (45%, EtOH), бесцветные кристаллы, т. пл. 169–170 °С, R_f 0.66. ИК спектр, v, см⁻¹: 1043, 1206 (СОС); 1660 (С=О амид), 1750 (С=О), 3274 (NH). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 2.47 (3H, с, CH₃); 3.96 (2H, c, SCH₂); 4.25 (2H, д, J = 5.9, NCH₂); 5.34 (2H, с, 1-СН₂); 6.19 (1Н, д, J = 3.0, Н-3'); 6.35 (1Н, д. д, J = 3.0, *J* = 1.8, H-4'); 7.20 (1H, c, H-7), 7.52 (1H, д, *J* = 1.8, H-5'); 8.58 (1H, т, J = 5.9, NH). Спектр ЯМР ¹³С, δ, м. д.: 24.8 (CH₃); 32.4 (SCH₂); 36.4 (NCH₂); 69.8 (C-1); 107.4 (C-3'); 110.9 (C-4'); 113.1 (C-7); 116.0 (C-3a); 142.6 (C-5'); 152.5 (C-2'); 157.2 (C-4); 158.7 (C-7a); 163.0 (C-6); 168.0 (CONH); 169.1 (C-3). Macc-спектр, m/z ($I_{\text{отн}}$, %): 318 [M]⁺ (31), 194 (20), 182 (59), 181 (34), 152 (18), 138 (18), 137 (58), 120 (10), 109 (46), 97 (16), 96 (43), 95 (25), 94 (22), 93 (11), 92 (15), 82 (19), 81 (100), 77 (13). Найдено, %: С 56.65; Н 4.46; N 8.88. С₁₅Н₁₄N₂O₄S. Вычислено, %: C 56.59; H 4.43; N 8.80.

[(6-Метил-3-оксо-1,3-дигидрофуро[3,4-с]пиридин-4-ил)сульфанил]ацетонитрил (7h). Выход 0.92 г (76%), бесцветные кристаллы, т. пл. 160–161 °С, *R*_f 0.57. ИК спектр, v, см⁻¹: 1035, 1244 (СОС); 1755 (С=О), 2247 (СN). Спектр ЯМР ¹H, δ, м. д.: 2.61 (3H, с, СН₃); 4.30 (2H, с, SCH₂); 5.36 (2H, с, 1-CH₂); 7.35 (1H, с, H-7). Спектр ЯМР ¹³С, δ, м. д.: 14.1 (SCH₂); 25.0 (СН₃); 70.3 (С-1); 114.2 (С-7); 116.5 (С-3а); 118.3 (СN); 154.0 (С-4); 159.0 (С-7а); 163.4 (С-6); 169.0 (С-3). Масс-спектр, *m/z* (*I*_{отн}, %): 220 [М]⁺ (100), 194 (13), 193 (97), 165 (25), 149 (27), 133 (16), 120 (19), 109 (11), 92 (16), 82 (7), 81 (15). Найдено, %: С 54.60; Н 3.67; N 12.59. С₁₀Н₈N₂O₂S. Вычислено, %: С 54.53; Н 3.66; N 12.72.

6-Метил-4-[(2-оксо-2-фенилэтил)сульфанил]фуро-[3,4-с]пиридин-3(1*H***)-он (7і). Выход 1.39 г (77%), бесцветные кристаллы, т. пл. 169–170 °С, R_{\rm f} 0.47. ИК спектр, v, см⁻¹: 1040, 1200 (СОС); 1685 (С=О СОРh), 1740 (С=О). Спектр ЯМР ¹Н, δ, м. д. (***J***, Гц): 2.22 (3H, с, CH₃); 4.79 (2H, с, SCH₂); 5.36 (2H, с, 1-CH₂); 7.18 (1H, с, H-7); 7.57 (2H, д. д,** *J* **= 7.7,** *J* **= 7.4, H-3,5 Ph); 7.67 (1H, т,** *J* **= 7.4, H-4 Ph); 8.08 (2H, д,** *J* **= 7.7, H-2,6 Ph). Спектр ЯМР ¹³С, δ, м. д.: 24.7 (CH₃); 36.1 (SCH₂); 70.1 (C-1); 113.9 (C-7); 116.3 (C-3a); 128.9 (C-3',5'); 129.4 (C-2',6'); 133.9 (C-4'); 137.4 (C-1'); 156.9 (C-4); 159.0 (C-7a); 162.9 (C-6); 169.4 (C-3); 194.9 (COPh). Массспектр,** *m/z* **(I_{\rm OTH}, %): 299 [M][†] (60), 266 (9), 194 (100), 105 (74), 77 (29). Найдено, %: С 64.20; H 4.38; N 4.68.**

4-{[2-(4-Бромфенил)-2-оксоэтил]сульфанил}-6-метилфуро[3,4-*с***]пиридин-3(1***H***)-он (7k). Выход 1.47 г (74%), бесцветные кристаллы, т. пл. 181–182 °С, R_{\rm f} 0.62. ИК спектр, v, см⁻¹: 1029, 1238 (СОС); 1690 (С=О СОРh), 1755 (С=О). Спектр ЯМР ¹H, δ, м. д. (***J***, Гц): 2.22 (3H, с, СН₃); 4.75 (2H, с, SCH₂); 5.36 (2H, с, 1-СH₂); 7.18 (1H, с, H-7); 7.78 (2H, д,** *J* **= 8.5, H-3,5 Ar); 8.02 (2H, д,** *J* **= 8.5, H-2,6 Ar). Спектр ЯМР ¹³С, δ, м. д.: 24.0 (СН₃); 35.4 (SCH₂); 69.5 (С-1); 112.8 (С-7); 115.6 (С-3а); 127.3 (С-4'); 130.2 (С-3',5'); 131.8 (С-2',6'); 135.7 (С-1'); 156.1 (С-4); 158.3 (С-7а); 162.3 (С-6); 168.7 (С-3); 193.6 (СОРh). Масс-спектр,** *m/z* **(***I***_{отн}, %): 379 [M+H]⁺ (19), 377 [M–H]⁺ (19), 195 (10), 194 (100), 185 (65), 183 (60), 157** (15), 155 (14). Найдено, %: С 50.88; Н 3.23; N 3.65. С₁₆Н₁₂ВгNO₃S. Вычислено, %: С 50.81; Н 3.20; N 3.70.

6-Бром-2-{[(6-метил-3-оксо-1,3-дигидрофуро[3,4-с]пиридин-4-ил)сульфанил]метил}хиназолин-4(3H)-он (71). Выход 0.80 г (64%), бесцветные кристаллы, т. пл. 261-262 °С, Rf 0.56. ИК спектр, v, см⁻¹: 1051, 1246 (COC); 1683 (С=О амид), 1762 (С=О), 2922 (NH). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 2.51 (3H, с, CH₃); 4.43 (2H, c, SCH₂); 5.33 (2H, c, 1-CH₂); 7.21 (1H, c, H-7); 7.52 (1H, J, J = 6.5, H-7'); 7.87 (1H, J, J = 6.5, H-8'); 8.12 (1H, J)с, H-5'). Спектр ЯМР ¹³С, б, м. д.: 24.8 (СН₃); 31.9 (SCH₂); 69.9 (C-1); 113.5 (C-7); 116.1 (C-3a); 119.3 (C-6'); 122.9 (C-4'a); 128.4 (C-8'); 129.7 (C-5'); 137.8 (C-7'); 148.0 (C-8'a); 155.4 (C-2'); 156.7 (C-4); 158.8 (C-7a); 162.3 (C-6); 162.9 (C-4'); 168.9 (C-3). Maccспектр, m/z ($I_{\text{отн}}$, %): 419 [M+H]⁺ (100), 417 (95), 386 (30), 384 (32), 271 (39), 269 (38), 227 (12), 212 (14), 210 (23), 182 (13), 181 (20), 170 (18), 168 (17), 152 (22), 148 (17), 109 (13), 93 (12), 92 (24), 89 (12), 88 (13), 82 (11), 81 (20), 77 (18). Найдено, %: C 48.89; H 2.92; N 10.11. С₁₇Н₁₂BrN₃O₃S. Вычислено, %: С 48.82; Н 2.89; N 10.05.

4-[(Изоксазол-3-илметил)сульфанил]-6-метилфуро-[3,4-с]пиридин-3(1*H*)-он (7m). Выход 1.25 г (87%), бесцветные кристаллы, т. пл. 155-156 °С, Rf 0.64. ИК спектр, v, см⁻¹: 1038, 1248 (СОС); 1746 (С=О). Спектр ЯМР ¹Н, б, м. д.: 2.57 (3Н, с, СН₃); 4.57 (2Н, с, SCH₂); 5.35 (2H, c, 1-CH₂); 6.52 (1H, c, H-4'); 7.35 (1H, c, H-7); 8.77 (1H, с, H-5'). Спектр ЯМР ¹³С, δ, м. д.: 22.2 (SCH₂); 25.0 (CH₃); 69.9 (C-1); 105.4 (C-4'); 113.5 (C-7); 116.1 (C-3a); 156.1 (C-4); 158.9 (C-7a); 160.7 (C-3',5'); 163.1 (С-6); 169.0 (С-3). Масс-спектр, *m/z* (*I*_{отн}, %): 262 $[M]^+$ (29), 234 (39), 233 (41), 229 (35), 202 (17), 201 (19), 194 (27), 193 (17), 190 (22), 189 (15), 182 (14), 181 (11), 165 (21), 152 (22), 150 (16), 149 (21), 148 (23), 136 (15), 120 (18), 114 (22), 109 (25), 104 (12), 95 (12), 93 (21), 92 (32), 91 (13), 90 (17), 82 (43), 81 (31), 78 (13), 77 (29). Найдено, %: С 54.90; Н 3.82; N 10.75. С₁₂Н₁₀N₂O₃S. Вычислено, %: С 54.95; Н 3.84; N 10.68.

4-[(1*Н***-Бензимидазол-2-илметил)сульфанил]-6-метилфуро[3,4-***с***]пиридин-3(1***Н***)-он (7n). Выход 0.80 г (62%), бесцветные кристаллы, т. пл. 252–253 °С,** *R***_f 0.41. ИК спектр, v, см⁻¹: 1040, 1273 (СОС); 1749 (С=О), 3150 (NH). Спектр ЯМР ¹H, δ, м. д. (***J***, Гц): 2.53 (3H, с, СН₃); 4.76 (2H, с, SCH₂); 5.32 (2H, с, 1-CH₂); 7.23 (1H, с, H-7); 7.09–7.16 (2H, м, H-5',6'); 7.44–7.50 (2H, м, H-4',7'). Спектр ЯМР ¹³С, δ, м. д.: 25.0 (СН₃); 25.7 (SCH₂); 69.9 (C-1); 113.5 (С-7); 116.0 (С-3а,4',7'); 122.3 (С-5',6'); 140.4 (С-7'а,3'а); 151.3 (С-2'); 156.5 (С-4); 158.8 (С-7а); 163.2 (С-6); 169.0 (С-3). Масс-спектр,** *m/z* **(***I***_{отн}, %): 311 [М]⁺ (100), 278 (21), 234 (11), 181 (19), 163 (75), 152 (17), 132 (11), 131 (49), 119 (33), 104 (21), 81 (11), 77 (40). Найдено, %: С 61.81; H 4.23; N 13.56. С₁₆Н₁₃N₃O₂S. Вычислено, %: С 61.72; H 4.21; N 13.50.**

Метил-5-{[(6-метил-3-оксо-1,3-дигидрофуро[3,4-*c***]пиридин-4-ил)сульфанил]метил}тиофен-2-карбоксилат (70)**. Выход 1.10 г (85%), бесцветные кристаллы, т. пл. 188–189 °С, *R*_f 0.58. ИК спектр, v, см⁻¹: 1030, 1236 (СОС); 1691 (С=О СООМе), 1761 (С=О). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.63 (3H, с, CH₃); 3.77 (3H, с, OCH₃); 4.78 (2H, c, SCH₂); 5.38 (2H, c, 1-CH₂); 7.18 (1H, д, J = 3.7, H-4'); 7.28 (1H, c, H-7); 7.59 (1H, д, J = 3.7, H-3'). Спектр ЯМР ¹³С, δ , м. д.: 24.9 (CH₃); 26.5 (SCH₂); 52.6 (OCH₃); 69.9 (C-1); 113.6 (C-7); 116.2 (C-3a); 128.6 (C-4'); 131.9 (C-2'); 133.7 (C-3'); 150.3 (C-5'); 156.2 (C-4); 159.1 (C-7a); 162.2 (<u>C</u>OOCH₃); 162.9 (C-6); 168.9 (C-3). Масс-спектр, m/z ($I_{\text{отн}}$, %): 335 [M]⁺ (42), 303 (11), 302 (55), 243 (10), 155 (100), 127 (57), 124 (12), 112 (11), 109 (18), 97 (19), 96 (47), 95 (49), 81 (18), 77 (11), 70 (35). Найдено, %: C 53.77; H 3.92; N 4.12. C₁₅H₁₃NO₄S₂. Вычислено, %: C 53.72; H 3.91; N 4.18.

4,4'-{[1-(4-Метилфенил)-1*H*-1,2,3-триазол-4,5-диил]бис(метиленсульфанил) бис(6-метилфуро[3,4-с]пиридин-3(1*H*)-он) (7р). Выход 1.86 г (57%), бесцветные кристаллы, т. пл. 257–262 °С, R_f0.51. ИК спектр, v, см⁻¹: 1052, 1234 (СОС); 1747 (С=О). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.37 (3H, с, CH₃ Ph); 2.44 (3H, с, CH₃ Py); 2.54 (3H, c, CH₃ Py'); 4.81 (2H, c, SCH₂'); 4.82 (2H, c, SCH₂); 5.29 (2H, c, 1-CH₂); 5.32 (2H, c, 1'-CH₂); 7.18 (1H, с, Н-7'); 7.20 (1Н, с, Н-7); 7.36 (2Н, д, *J* = 7.4, Н-3,5 Аг); 7.46 (2H, д, J = 7.4, H-2,6 Ar). Спектр ЯМР ¹³С, δ, м. д.: 19.5 (SCH₂); 21.1 (CH₃ Ph); 22.4 (SCH₂'); 24.8 (CH₃ Py); 25.0 (CH₃ Py'); 69.7 (C-1); 69.9 (C-1'); 113.2 (C-7'); 113.6 (C-7); 115.8 (C-3a); 116.0 (C-3a'); 125.6 (C-2,6 Ar); 130.5 (C-3,5 Ar); 132.5 (С-5 триазол); 133.8 (С-1 Рh); 140.2 (C-4 Ph); 142.1 (С-4 триазол); 155.6 (С-4); 157.2 (С-4'); 158.7 (C-7a); 158.8 (C-7a'); 162.9 (C-6); 163.0 (C-6'); 168.6 (C-3); 168.8 (C-3'). Масс-спектр, *m/z* (*I*_{опн}, %): 545 [M]⁺ (1.6), 337 (39), 336 (15), 335 (17), 304 (15), 303 (49), 220 (22), 206 (12), 194 (19), 188 (20), 182 (38), 181 (51), 180 (12), 173 (12), 157 (25), 156 (57), 154 (17), 152 (62), 150 (17), 149 (14), 148 (12), 144 (12), 143 (17), 142 (66), 124 (14), 118 (13), 117 (22), 116 (20), 115 (12), 109 (26), 92 (26), 91 (100), 89 (18), 82 (15), 81 (15), 77 (26). Найдено, %: С 59.50; Н 4.28; N 12.91. С₂₇Н₂₃N₅O₄S₂. Вычислено, %: C 59.43; H 4.25; N 12.84.

Исследование выполнено при финансовой поддержке Министерства сельского хозяйства РФ (тема АААА-A16-116021110069-8) и Министерства образования и науки РФ (грант 4.6087.2017/БЧ).

Список литературы

- Литвинов, В. П.; Доценко, В. В.; Кривоколыско, С. Г. Химия тиенопиридинов и родственных систем; Беленький, Л. И., Ред.; Наука: Москва, 2006.
- Dotsenko, V. V.; Krivokolysko, S. G.; Semenova, A. M. *Chem. Heterocycl. Compd.* 2018, 54, 989. [Химия гетероцикл. соединений 2018, 989.]
- Hovhannisyan, A.; Pham, T. H.; Bouvier, D.; Qin, L.; Melikyan, G.; Reboud-Ravaux, M.; Bouvier-Durand, M. *Bioorg. Med. Chem. Lett.* 2013, 23, 2696.
- Hovhannisyan, A.; Pham, T. H.; Bouvier, D.; Piroyan, A.; Dufau, L.; Qin, L.; Cheng, Y.; Melikyan, G.; Reboud-Ravaux, M.; Bouvier-Durand, M. *Biorg. Med. Chem. Lett.* 2014, 24, 1571.
- Джилкрист, Т. Химия гетероциклических соединений; Мир: Москва, 1996, с. 153.
- 6. Hong, H.; Comins, D. L. J. Org. Chem. 1996, 61, 391.
- Кайгородова, Е. А. Изв. вузов. Химия и хим. технология 2003, 46(8), 3.
- 8. Bruce, W. F.; Coover H. W., Jr. J. Am. Chem. Soc. 1944, 66, 2092.
- Кайгородова, Е. А.; Квак, С. Н.; Уграк, Б. И.; Заплишный, В. Н.; Кульневич, В. Г. Журн. орган. химии 1995, 31, 1860.
- Jang, Y. J.; Achary, R.; Lee, H. W.; Lee, H. J.; Lee, C.-K.; Han, S. B.; Jung, Y.-S.; Kang, N. S.; Kim, P.; Kim, M. *Antiviral Res.* 2014, 107, 66.
- Кайгородова, Е. А.; Арустамова, И. С.; Квак, С. Н.; Кульневич, В. Г. Химия и технология фурановых соединений: Межвуз. сб. науч. тр.; Краснодар, 1997.
- Kaigorodova, E. A.; Konyushkin, L. D.; Niyazymbetov, M. E.; Kvak, S. N.; Zaplishny, V. N.; Litvinov, V. P. Russ. Chem. Bull. 1994, 43, 2095. [*U36. AH, Cep. xum.* 1994, 2215.]
- Кайгородова, Е. А.; Конюшкин, Л. Д.; Костенко, Е. С.; Пестунова, С. А.; Барчукова, А. Я.; Чернышева, Н. В. Патент РФ 2497359; Бюл. изобрет 2013, (31).
- Кайгородова, Е. А.; Конюшкин, Л. Д.; Костенко, Е. С.; Барчукова, А. Я.; Чернышева, Н. В. Патент РФ 2495569; Бюл. изобрет 2013, (29).
- Кайгородова, Е. А.; Конюшкин, Л. Д.; Костенко, Е. С.; Барчукова, А. Я.; Чернышева, Н. В. Патент РФ 2491816; Бюл. изобрет 2013, (25).
- Преч, Э.; Бюльман, Ф. Определение строения органических соединений. Таблицы спектральных данных; Аффольтер, К., Ред.; Мир: Москва, 2006.