

Химия гетероциклических соединений 2020, 56(1), 108–111

КРАТКИЕ СООБЩЕНИЯ

(3+2)-Циклоприсоединение *N*-бензилазометинметилида к 4-арилиден-1*H*-имидазол-5(4*H*)-онам

Андрей В. Кулешов^{1,2}, Павел Н. Сольев³, Александр Д. Володин⁴, Александр А. Корлюков⁴, Михаил С. Баранов¹, Андрей А. Михайлов¹*

¹ Институт биоорганической химии им. академиков М. М. Шемякина и Ю. А. Овчинникова РАН, ул. Миклухо-Маклая, 16/10, Москва 117997, Россия; e-mail: mikhaylov_andrey@yahoo.com

² Московский государственный университет им. М. В. Ломоносова, Ленинские горы, д. 1, стр. 3, Москва 119991, Россия

³ Институт молекулярной биологии им. В. А. Энгельгардта РАН, ул. Вавилова, 32, Москва 119991, Россия

⁴ Институт элементоорганических соединений им. А. Н. Несмеянова, ул. Вавилова, 28, Москва 119991, Россия Поступило 21.10.2019 Принято 9.11.2019

4-Арилиден-1*H*-имидазол-5(4*H*)-оны взаимодействуют с *N*-бензилазометинметилидом в условиях катализа трифторуксусной кислотой с образованием 9-арил-1,3,7-триазаспиро[4.4]нон-1-ен-4-онов в виде одного диастереомера с 66–95% выходами.

Ключевые слова: азометинилиды, имидазол, пирролидин, спироциклические соединения, (3+2)-циклоприсоединение.

Спироциклические соединения, в которых два цикла среднего размера связаны через единственный четвертичный атом углерода, представляют собой структуры небольшого объема с ограниченным числом степеней свободы.¹ Особенно востребованными эти молекулы оказываются в медицинской химии, когда для воздействия на биологические мишени требуется одновременное сочетание липофильности, геометрической жесткости, а также фиксированного положения заместителей.² Выгодными отличиями спиросоединений от родственных каркасных структур являются большая гибкость, а также разнообразие и относительная простота методов синтеза.³

Среди перспективных спироциклических соединений стоит выделить антагонисты интегрина $\alpha_L \beta_2$ **1**а,b (BMS-587101 и BMS-688521, рис. 1).⁴ Высокая аффинность этих соединений позволяет нарушить взаимодействие этого антигена с фактором межклеточной адгезии 1-го типа и тем самым уменьшить иммунный ответ, что делает их перспективными препаратами для лечения псориаза, ревматоидного артрита и при трансплантации органов.⁵ Для их получения, как и для синтеза многих других спироциклических соединений, удобным методом является циклоприсоединение по экзоциклической двойной связи различных циклических субстратов.³ Для синтеза соединений **1а,b** использовалась реакция незамещенного азометинилида с 5-арилиден-1,3-имидазолидин-2,4-дионом (рис. 1). Помимо

Рисунок 1. Спироциклические антагонисты интегрина $\alpha_L \beta_2$ **1***a*,**b** и способ их получения.

простейшего представителя этого семейства, для получения спироциклических имидазолдионов и их тиоаналогов изучены азометинилиды на основе изатина.⁶

К нашему удивлению, циклоприсоединение с участием родственных 4-арилиден-1H-имидазол-5(4H)онов 2^7 не было изучено. Характерной особенностью данных соединений является существование их в виде Z-изомеров, что в перспективе открывает доступ к структурно близким диастереомерным соединениям. Целью настоящей работы стало изучение основных закономерностей (3+2)-циклоприсоединения соединений 2 к N-бензилазометинметилиду.

В качестве модельного субстрата нами был выбран 4-(4-бромбензилиден)-1,2-диметил-1H-имидазол-5(4H)он (**2a**). В ходе небольшой оптимизации было найдено, что оптимальными условиями реакции является использование каталитических количеств CF₃CO₂H⁸ в CH₂Cl₂ и небольшой избыток *N*-бензил-1-метокси-*N*-(триметилсилилметил)метиламина (**3**) – предшественника азометинилида. В таких условиях реакция протекала полностью за полчаса, и целевой продукт **4a** был выделен с 92% выходом (схема 1, табл. 1).

Схема 1

Таблица 1. Выходы 1,3,7-триазаспиро[4.4]нон-1-ен-4-онов 4а-д

Соеди- нение	Ar	\mathbf{R}^1	\mathbb{R}^2	Выход, %
4 a	$4\text{-BrC}_6\text{H}_4$	Me	Me	92
4b	3-ClC ₆ H ₄	Me	Me	87
4c	$4-O_2NC_6H_4$	Me	Me	95
4d	$4-(NC)C_6H_4$	Me	Me	75
4e	$4-MeOC_6H_4$	Me	Me	66
4f	$4-MeOC_6H_4$	CF ₃	Me	81
4g	2-Тиенил	Me	Bn	79

Для установления основных закономерностей нами было изучено влияние заместителей на ход реакции. 3-Хлорфенилпроизводное **2b** и арилиденимидазолоны **2c,d**, содержащие акцепторные 4-нитро- и 4-цианогруппы соответственно, вступали в реакцию с высокими выходами продуктов (табл. 1). Однако в присутствии донорной группы (соединение **2e**) реакция значительно замедлялась и для достижения полной конверсии потребовалось добавить 0.5 экв. предшественника – соединения **3**, а также 0.1 экв. катализатора. Замена метильной группы в положении 2 имидазолона на трифторметильную ($R^1 = CF_3$) позволило даже в случае донорного ароматического заместителя (Ar = 4-MeOC₆H₄) в соединении **2f** получить продукт **4f** с высоким выходом (81%) при использо-

Рисунок 2. Молекулярная структура соединения 4f в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью.

вании каталитического количества CF_3CO_2H . Было показано, что с помощью предложенного подхода могут быть эффективно получены производные, содержащие дополнительные гетероциклические фрагменты, а также соединения с другими заместителями при атоме азота (соединение **2**g).

Во всех случаях в ходе реакций образовывался один диастереомер продукта 4. Имея в виду согласованный характер реакции циклоприсоединения с азометинилидами⁹ и изомерную чистоту всех исходных соединений 2а-д, которые были введены в реакцию в виде индивидуальных Z-изомеров, было вполне логично предположить для них иис-ориентацию заместителей в пирролидиновом цикле, как представлено на схеме 1. Так как оба заместителя, содержащие группы, связанные с протонами в имилазольном шикле, ориентированы удаленно от основного пирролидинового цикла, методы ЯМР, основанные на ядерном эффекте Оверхаузера, оказались не применимы для подтверждения информации о стереохимии. Поэтому нами был получен монокристалл соединения 4f и проведен его рентгеноструктурный анализ (рис. 2), подтверждающий приведенные выше соображения.

Таким образом, нами было изучено (3+2)-циклоприсоединение *N*-бензилазометинметилида к 4-арилиден-1*H*-имидазол-5(4*H*)-онам при катализе трифторуксусной кислотой. Было показано, что реакция протекает диастереоселективно с образованием одного диастереомера 1,3,7-триазаспиро[4.4]нон-1-ен-4-она. Было исследовано влияние заместителей на ход реакции и обнаружено, что наибольшее влияние оказывает арильный заместитель, и в случае ароматических субстратов с электронодонорными группами реакция протекает медленнее и требует использования избытка предшественника азометинилида. Предложенный метод синтеза может быть использован для создания библиотек спироимидазолинпирролидинов для дальнейшего скрининга.

Экспериментальная часть

Спектры ЯМР ¹Н и ¹³С зарегистрированы на приборе Bruker Fourier 300 (300 и 76 МГц соответственно) в CDCl₃. В качестве стандарта использованы остаточные сигналы растворителя (7.26 м. д. для ядер ¹Н и 77.2 м. д. для ядер ¹³С). Отнесения в спектрах ЯМР ¹³С сделаны на основании экспериментов COSY и ¹H–¹³С HSQC. Масс-спектры высокого разрешения зарегистрированы на масс-спектрометре Bruker micrOTOF-Q II в условиях ионизации электрораспылением (ESI–TOF). Температуры плавления определены на столике Кофлера и не исправлены. Тонкослойная хроматография (TCX) проведена на пластинах с силикагелем Merck 60 с флуоресцентным индикатором F254. Визуализация в УФ свете (λ_{max} 254 нм), в спиртовом растворе ванилина с H₂SO₄ и последующим нагреванием либо в водном растворе КМпO₄. Колоночная хроматография осуществлена на силикагеле Merck 60 (размер частиц 40–63 мкм) в качестве стационарной фазы.

СН₂Сl₂ перегнан над СаН₂, гексан и EtOAc для хроматографии перегнаны над K₂CO₃. СF₃CO₂H (ABCR) и N,N,N',N'-тетраметилгуанидин (Merck) использованы без дополнительной очистки. *N*-Бензил-1-метокси-*N*-(триметилсилилметил)метиламин (**3**)^{8b} и 4-арилиден-1*H*-имидазол-5(4*H*)-оны **2а**–**g**^{7b,c} получены по литературным методикам.

Синтез 1,3,7-триазаспиро[4.4]нон-1-ен-4-онов 4а–g (общая методика). При комнатной температуре к перемешиваемому раствору 0.50 ммоль (1 экв.) арилиденимидазолона 2а–g и 178 мг (0.75 ммоль, 1.50 экв.) *N*-бензил-1-метокси-*N*-(триметилсилилметил)метиламина (3) в 3.0 мл безводного CH₂Cl₂ добавляют 3.8 мкл (5.7 мг, 0.05 ммоль, 0.10 экв.) CF₃CO₂H. Реакционную смесь перемешивают в течение 0.5–2 ч и при достижении полной конверсии (контроль методом TCX) нейтрализуют добавлением 8 мкл (7 мг, 0.06 ммол, 0.12 экв.) *N*,*N*,*N*'.тетраметилгуанидина. Полученный раствор наносят непосредственно на колонку с силикагелем и очищают методом колоночной хроматографии, элюент EtOAc.

(5*S**,9*S**)-7-Бензил-9-(4-бромфенил)-2,3-диметил-1,3,7-триазаспиро[4.4]нон-1-ен-4-он (4а). Выход 0.19 г (92%), бесцветное масло, *R*_f 0.14 (ЕtOAc). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 7.49–7.13 (7H, м, H Ph, H Ar); 7.00 (2H, д, *J* = 8.2, H Ar); 3.90 (1H, д, *J* = 13.0, CH₂Ph); 3.81 (1H, д, *J* = 13.0, CH₂Ph); 3.72 (1H, д. д, *J* = 9.8, *J* = 7.6, 9-CH); 3.35–3.20 (3H, м, 6,8-CH₂); 2.88 (3H, с, CH₃); 2.81 (1H, д, *J* = 10.2, 6-CH₂); 1.92 (3H, с, CH₃). Спектр ЯМР ¹³C, δ, м. д.: 183.2 (C=O); 159.8 (C=N); 139.0 (C Ar); 135.2 (C Ar); 130.9 (2CH Ar); 130.6 (2CH Ar); 128.8 (2CH Ar); 128.4 (2CH Ar); 127.1 (CH Ar); 121.0 (C Ar); 78.0 (C); 62.1 (CH₂); 60.5 (CH₂); 58.2 (CH₂); 53.9 (CH); 26.7 (CH₃); 15.3 (CH₃). Найдено, *m/z*: 412.1011 [M+H]⁺. C₂₁H₂₃⁷⁹BrN₃O. Вычислено, *m/z*: 412.1019. Найдено, *m/z*: 414.0993 [M+H]⁺. C₂₁H₂₃⁸¹BrN₃O. Вычислено, *m/z*: 414.1001.

(5*S**,9*S**)-7-Бензил-2,3-диметил-9-(3-хлорфенил)-1,3,7-триазаспиро[4.4]нон-1-ен-4-он (4b). Выход 0.18 г (87%), желтоватое масло, *R*_f 0.16 (ЕtOAc). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 7.39 (2H, д, *J* = 7.4, H Ar); 7.35–7.20 (3H, м, H Ar); 7.17–7.08 (3H, м, H Ar); 7.04–6.98 (1H, м, H Ar); 3.91 (1H, д, *J* = 13.0, CH₂Ph); 3.82 (1H, д, *J* = 13.0, CH₂Ph); 3.74 (1H, д. д, *J* = 9.8, *J* = 7.6, 9-CH); 3.34–3.19 (3H, м, 6,8-CH₂); 2.90 (3H, с, CH₃); 2.82 (1H, д, *J* = 10.3, 6-CH₂); 1.93 (3H, с, CH₃). Спектр ЯМР ¹³С, δ , м. д.: 183.5 (C=O); 159.8 (C=N); 138.9 (C Ar); 138.3 (C Ar); 133.6 (C Ar); 129.0 (C Ar); 128.8 (3CH Ar); 128.3 (2CH Ar); 127.2 (CH Ar); 127.1 (CH Ar); 127.0 (CH Ar); 78.0 (C); 62.0 (CH₂); 60.5 (CH₂); 58.0 (CH₂); 53.9 (CH); 26.6 (CH₃); 15.2 (CH₃). Найдено, *m*/*z*: 368.1524 [M+H]⁺. C₂₁H₂₃³⁵ClN₃O. Вычислено, *m*/*z*: 368.1524. Найдено, *m*/*z*: 370.1504 [M+H]⁺. C₂₁H₂₃³⁷ClN₃O. Вычислено, *m*/*z*: 370.1502.

(5*S**,9*S**)-7-Бензил-2,3-диметил-9-(4-нитрофенил)-1,3,7-триазаспиро[4.4]нон-1-ен-4-он (4с). Выход 0.19 г (95%), желтые кристаллы, т. пл. 173–175 °С (гексан– ЕtOAc), *R*_f 0.10 (EtOAc). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 8.05 (2H, д, *J* = 8.8, H Ar); 7.30–7.21 (7H, м, H Ar, H Ph); 3.95–3.77 (3H, м, CH₂Ph, 9-CH); 3.39–3.18 (3H, м, 6,8-CH₂); 2.92 (3H, с, CH₃); 2.87 (1H, д, *J* = 10.2, 6-CH₂); 1.93 (3H, с, CH₃). Спектр ЯМР ¹³С, δ, м. д.: 183.1 (C=O); 160.2 (C=N); 147.1 (C Ar); 144.6 (C Ar); 138.8 (C Ar); 129.7 (2CH Ar); 128.8 (2CH Ar); 128.4 (2CH Ar); 127.3 (CH Ar); 123.0 (2CH Ar); 78.0 (C); 62.4 (CH₂); 60.3 (CH₂); 58.4 (CH₂); 53.7 (CH); 26.8 (CH₃); 15.3 (CH₃). Найдено, *m/z*: 379.1764 [M+H]⁺. C₂₁H₂₃N₄O₃. Вычислено, *m/z*: 379.1765.

4-[(5*S****,9***S****)-7-Бензил-2,3-диметил-1,3,7-триазаспиро-[4.4]нон-1-ен-9-ил]бензонитрил (4d)**. Выход 135 мг (75%), бесцветное масло, R_f 0.10 (ЕtOAc). Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 7.50 (2H, д, J = 8.4, H Ar); 7.41 (2H, д, J = 6.8, H Ph); 7.36–7.21 (5H, м, H Ar, H Ph); 3.92 (1H, д, J = 13.0, CH₂Ph); 3.89–3.73 (2H, м, CH₂Ph, 9-CH); 3.34–3.21 (3H, м, 6,8-CH₂); 2.93 (3H, с, CH₃); 2.87 (1H, д, J = 10.2, 6-CH₂); 1.94 (3H, с, CH₃). Спектр ЯМР ¹³С, δ , м. д.: 183.1 (C=O); 160.1 (C=N); 139.0 (C Ar); 135.2 (C Ar); 131.6 (2CH Ar); 129.6 (2CH Ar); 128.8 (2CH Ar); 128.4 (2CH Ar); 127.1 (CH Ar); 120.0 (C Ar); 110.9 (C=N); 78.0 (C); 62.3 (CH₂); 60.4 (CH₂); 58.2 (CH₂); 54.0 (CH); 26.8 (CH₃); 15.3 (CH₃). Найдено, *m/z*: 359.1868 [M+H]⁺. C₂₂H₂₃N₄O. Вычислено, *m/z*: 359.1866.

(5S*,9S*)-7-Бензил-2,3-диметил-9-(4-метоксифенил)-1,3,7-триазаспиро[4.4]нон-1-ен-4-он (4е). Суммарное время реакции 2 ч. После 1 ч добавляют 59 мг (0.25 ммоль, 0.50 экв.) соединения 3 и 3.8 мкл (5.7 мг, 0.05 ммоль, 0.10 экв.) CF₃CO₂H, после чего реакционную смесь перемешивают дополнительно в течение 1 ч. Выход 0.12 г (66%), желтоватое масло, R_f 0.09 (EtOAc). Спектр ЯМР ¹Н, δ , м. д. (*J*, Γ ц): 7.40 (2H, д, *J* = 7.4, H Ph); 7.34–7.20 (3H, м, H Ph); 7.06 (2H, д, J = 8.7, Н Ar); 6.72 (2Н, д, J = 8.6, Н Ar); 3.93 (1Н, д, J = 13.0, CH₂Ph); 3.84 (1H, д, J = 13.0, CH₂Ph); 3.79–3.70 (4H, м, ОСН₃, 9-СН); 3.40-3.21 (3Н, м, 6,8-СН₂); 2.87 (3Н, с, CH₃); 2.82 (1H, д, J = 10.3, 6-CH₂); 1.93 (3H, с, CH₃). Спектр ЯМР ¹³С, б, м. д.: 183.5 (С=О); 159.4 и 158.6 (C=N и <u>С</u>ОСН₃); 139.2 (С Аг); 129.9 (2СН Аг); 128.9 (2CH Ar); 128.4 (2CH Ar); 127.9 (C Ar); 127.1 (CH Ar); 113.1 (2CH Ar); 78.4 (C); 61.8 (CH₂); 60.7 (CH₂); 58.4 (CH₂); 55.3 (OCH₃); 54.2 (CH); 26.7 (CH₃); 15.2 (CH₃). Найдено, *m/z*: 364.2018 [M+H]⁺. С₂₂H₂₆N₃O₂. Вычислено, *m/z*: 364.2020.

(5*S**,9*S**)-7-Бензил-3-метил-9-(4-метоксифенил)-2-(трифторметил)-1,3,7-триазаспиро[4.4]нон-1-ен-4-он (4f). Выход 0.17 г (81%), бежевые кристаллы, т. пл. 118– 120 °С (гексан–ЕtOAc), $R_{\rm f}$ 0.19 (гексан–ЕtOAc, 1:1). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 7.41 (2H, д, *J* = 7.4, H Ph); 7.36–7.22 (3H, м, H Ph); 7.05 (2H, д, *J* = 8.2, H Ar); 6.95 (2H, д, *J* = 8.4, H Ar); 3.97 (1H, д, *J* = 13.0, CH₂Ph); 3.92–3.81 (2H, м, CH₂Ph, 9-CH); 3.74 (3H, с, OCH₃); 3.49–3.25 (3H, м, 6,8-CH₂); 2.99 (3H, с, CH₃); 2.92 (1H, д, *J* = 10.7, 6-CH₂). Спектр ЯМР ¹³С, δ , м. д. (*J*, Гц): 182.2 (C=O); 159.1 (C–O); 150.7 (к, *J* = 39.0, C=N); 138.9 (C Ar); 129.7 (2CH Ar); 128.7 (2CH Ar); 128.4 (2CH Ar); 127.2 (CH Ar); 126.0 (C Ar); 116.8 (к, *J* = 274.9, CF₃); 113.3 (2CH Ar); 79.6 (C); 60.9 (CH₂); 60.5 (CH₂); 58.1 (CH₂); 55.9 (CH); 55.2 (CH₃); 27.1 (к, *J* = 2.4, CH₃). Найдено, *m/z*: 418.1737 [M+H]⁺. C₂₂H₂₃F₃N₃O₂. Вычислено, *m/z*: 418.1737.

(55*,95*)-3,7-Дибензил-2-метил-9-(тиофен-2-ил)-1,3,7-триазаспиро[4.4]нон-1-ен-4-он (4g). Выход 163 мг (79%), бесцветные кристаллы, т. пл. 153-154 °С (гексан-EtOAc), R_f 0.07 (гексан–EtOAc, 1:1). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 7.43 (2H, д, *J* = 7.4, H Ph); 7.39–7.15 (7H, м, H Ph); 6.94–6.87 (2H, м, Н тиофен); 6.81–6.75 (2H, м, Н тиофен); 4.77 (1Н, д, J = 16.2, CH₂Ph); 4.43 (1Н, д, *J* = 16.2, CH₂Ph); 4.24 (1Н, д. д, *J* = 11.2, *J* = 6.8, 9-CH); 3.98 (1H, μ , J = 13.1, CH₂Ph); 3.91 (1H, μ , J = 13.1, CH₂Ph); 3.49 (1H, μ , J = 10.3, 6-CH₂); 3.43 (1H, μ , μ , J = 9.1, J = 6.8, 8-CH₂); 3.31 (1H, д. д, J = 11.2, J = 9.1,8-СН₂); 2.93 (1Н, д, J = 10.3, 6-СН₂); 1.96 (3Н, с, СН₃). Спектр ЯМР ¹³С, б, м. д.: 182.6 (С=О); 160.6 (С=N); 139.2 (C Ar); 138.0 (C Ar); 135.7 (C Ar); 128.9 (2CH Ar); 128.8 (2CH Ar); 128.4 (2CH Ar); 127.7 (CH Ar); 127.1 (CH Ar); 126.8 (CH Ar); 126.4 (2CH Ar); 126.0 (CH Ar); 125.3 (CHAr) 78.0 (C); 61.8 (CH₂); 60.7 (CH₂); 60.6 (CH2); 50.5 (CH) 43.8 (CH₂); 15.9 (CH₃). Найдено, *m/z*: 416.1791 [M+H]⁺. С₂₅H₂₆N₃OS. Вычислено, m/z: 416.1791.

Рентгеноструктурный анализ соединения 4f проведен на дифрактометре APEX DUO (Мо $K\alpha$ -излучение, графитовый монохроматор, ω -сканирование). Структура расшифрована с помощью алгоритма сопряженного пространства и уточнена МНК в анизотропном полноматричном приближении по F_{hkl}^2 . Положения атомов водорода рассчитаны геометрически. Все расчеты проведены с использованием комплекса программ SHELXT, SHELXL и OLEX2.^{10–12} Координаты атомов, тепловые параметры и информация о рентгеноструктурном эксперименте депонированы в Кембриджском банке структурных данных (депонент CCDC 1960553).

Файл сопроводительных материалов, содержащий спектры ЯМР ¹Н и ¹³С всех синтезированных соединений, данные экспериментов COSY и ¹H–¹³C HSQC для соединения **4a**, а также основные кристаллографические данные и параметры уточнения для соединения **4f**, доступен на сайте журнала http://hgs.osi.lv.

Работа выполнена при финансовой поддержке Российского научного фонда (грант 19-73-00319).

Список литературы

- 1. Undheim, K. Synthesis 2014, 1957.
- (a) Zheng, Y.; Tice, C. M.; Singh, S. B. *Bioorg. Med. Chem. Lett.* 2014, 24, 3673. (b) Burkhard, J.; Wagner, B.; Fischer, H.; Schuler, F.; Müller, K.; Carreira, E. *Angew. Chem., Int. Ed.* 2010, 49, 3524.
- Kotha, S.; Panguluri, N. R.; Ali, R. Eur. J. Org. Chem. 2017, 5316.
- 4. (a) Potin, D.; Launay, M.; Monatlik, F.; Malabre, P.; Fabreguettes, M.; Fouquet, A.; Maillet, M.; Nicolai, E.; Dorgeret, L.; Chevallier, F.; Besse, D.; Dufort, M.; Caussade, F.; Ahmad, S. Z.; Stetsko, D. K.; Skala, S.; Davis, P. M.; Balimane, P.; Patel, K.; Yang, Z.; Marathe, P.; Postelneck, J.; Townsend, R. M.; Goldfarb, V.; Sheriff, S.; Einspahr, H.; Kish, K.; Malley, M. F.; DiMarco, J. D.; Gougoutas, J. Z.; Kadiyala, P.; Cheney, D. L.; Tejwani, R. W.; Murphy, D. K.; Mcintyre, K.W.; Yang, X.; Chao, S.; Leith, L.; Xiao, Z.; Mathur, A.; Chen, B.-C.; Wu, D.-R.; Traeger, S. C.; McKinnon, M.; Barrish, J. C.; Robl, J. A.; Iwanowicz, E. J.; Suchard, S. J.; Dhar, T. G. M. J. Med. Chem. 2006, 49, 6946. (b) Watterson, S. H.; Xiao, Z.; Dodd, D. S.; Tortolani, D. R.; Vaccaro, W.; Potin, D.; Launay, M.; Stetsko, D. K.; Skala, S.; Davis, P. M.; Lee, D.; Yang, X.; McIntyre, K. W.; Balimane, P.; Patel, K.; Yang, Z.; Marathe, P.; Kadiyala, P.; Tebben, A. J.; Sheriff, S.; Chang, C. Y.; Ziemba, T.; Zhang, H.; Chen, B.-C.; DelMonte, A. J.; Aranibar, N.; McKinnon, M.; Barrish, J. C.; Suchard, S. J.; Dhar, T. G. M. J. Med. Chem. 2010, 53, 3814. (c) DelMonte, A. J.; Fan, Y.; Girard, K. P.; Jones, G. S.; Waltermire, R. E.; Rosso, V.; Wang, X. Org. Process Res. Dev. 2011, 15, 64.
- Lebwohl, M.; Tyring, S. K.; Hamilton, T. K.; Toth, D.; Glazer, S.; Tawfik, N. H.; Walicke, P.; Dummer, W.; Wang, X.; Garovoy, M. R.; Pariser, D. N. Engl. J. Med. 2003, 349, 2004.
- (a) He, J.; Ouyang, G.; Yuan, Z.; Tong, R.; Shi, J.; Ouyang, L. Molecules 2013, 18, 5142. (b) Ivanenkov, Y. A.; Vasilevski, S. V.; Beloglazkina, E. K.; Kukushkin, M. E.; Machulkin, A. E.; Veselov, M. S.; Chufarova, N. V.; Chernyagina, E. S.; Vanzcool, A. S.; Zyk, N. V.; Skvortsov, D. A.; Khutornenko, A. A.; Rusanov, A. L.; Tonevitsky, A. G.; Dontsova, O. A.; Majouga, A. G. Bioorg. Med. Chem. Lett. 2015, 25, 404. (c) Beloglazkina, A. A.; Karpov, N. A.; Mefedova, S. R.; Polyakov, V. S.; Skvortsov, D. A.; Kalinina, M. A.; Tafeenko, V. A.; Majouga, A. G.; Zyk, N. V.; Beloglazkina, E. K. Russ. Chem. Bull., Int. Ed. 2019, 68, 1006. [U36. AH, Cep. xum. 2019, 1006.]
- (a) Ivashkin, P. E.; Yampolsky, I. V.; Lukyanov, K. A. Russ. J. Bioorg. Chem. 2009, 35, 652. [Биоорган. химия 2009, 35, 726.] (b) Baranov, M. S.; Solntsev, K. M.; Lukyanov, K. A.; Yampolsky, I. V. Chem. Commun. 2013, 49, 5778.
 (c) Povarova, N. V.; Zaitseva, S. O.; Baleeva, N. S.; Smirnov, A. Yu.; Myasnyanko, I. N.; Zagudaylova, M. B.; Bozhanova, N. G.; Gorbachev, D. A.; Malyshevskaya, K. K.; Gavrikov, A. S.; Mishin, A. S.; Baranov, M. S. Chem.-Eur. J. 2019, 25, 9592.
- (a) Terao, Y.; Imai, N.; Achiwa, K. Chem. Pharm. Bull. 1987, 35, 1596. (b) Hosomi, A.; Sakata, Y.; Sakurai, H. Chem. Lett. 1984, 1117.
- 9. Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765.
- Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.
- 11. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Adv. 2015, A71, 3.
- 12. Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3.