

Химия гетероциклических соединений 2020, 56(10), 1366–1369

Реакция Неницеску в синтезе новых дитерпеновых индолов абиетанового ряда

Елена В. Третьякова¹*, Ляйсан Р. Ярмухаметова², Елена В. Салимова¹, Ольга С. Куковинец², Людмила В. Парфёнова¹

¹ Институт нефтехимии и катализа Уфимского федерального исследовательского центра РАН, пр. Октября, 141, Уфа 450075, Россия; e-mail: tretyakovaelv@gmail.com

² Башкирский государственный университет,

ул. Заки Валиди, 32, Уфа 450076, Россия

Поступило 5.02.2020 Принято после доработки 10.06.2020

В результате взаимодействия 1а,4а-дегидрохинопимаровой кислоты или ее метилового эфира с метил-3-аминокротонатом по реакции Неницеску синтезированы новые дитерпеновые индолы абиетанового ряда.

Ключевые слова: абиетановые дитерпеноиды, индолы, хинопимаровая кислота, реакция Неницеску.

Соединения с индольным фрагментом традиционно являются объектом интенсивных исследований в химии гетероциклов, что связано с наличием уникальных биологических свойств и значительными синтетическими возможностями данного класса соединений.¹

Индол входит в состав белковой аминокислоты триптофана и продуктов его метаболизма – триптамина и серотонина (5-гидрокситриптамина), относящихся к биогенным аминам, а также (индол-3-ил)уксусной кислоты (гетероауксина).² В организме животных серотонин осуществляет функцию нейромедиатора в центральной нервной системе, а гетероауксин в растительном мире является гормоном роста и применяется в сельском хозяйстве для стимуляции роста растений.³

Благодаря своим физиологическим свойствам, производные индола нашли широкое применение в медицинской практике как эффективные препараты с разнообразной фармакологической активностью (действие на периферические нейромедиаторные процессы, проявление геморрагических, седативных и радиозащитных свойств).⁴ Примерами таких соединений могут служить нестероидный противовоспалительный агент индометацин, β-адреноблокатор пиндолол, антидепрессант карбидин и др.⁵ Некоторые встречающиеся в природе индолы также имеют клиническое значение. Например, митомицины,⁶ производные эллиптицина⁷ и нортопсентины⁸ обладают высокой противоопухолевой активностью.

Реакция Неницеску – удобный синтетический путь получения производных 5-гидроксииндолов из β -енаминокарбонильных соединений и хинонов.⁹ Как правило, направление реакции и выходы продуктов зависят от структурных особенностей исходных енаминов или хинонов, причем из хинонов в этой реакции преимущественно использовались производные бензо- и нафтохинона.¹⁰

В настоящей работе в качестве нового хинонового компонента нами выбраны la,4a-дегидрохинопимаровая кислота (3) и ее метиловый эфир (4), которые ранее в реакцию Неницеску не вовлекались (схема 1). Дитерпеновый хинон 3 легко образуется в две стадии из хинопимаровой кислоты (2), диенового аддукта левопимаровой кислоты (1), и *n*-бензохинона, по методу, представленному в работе.¹¹

В качестве енаминного компонента использовали метил-3-аминокротонат. Взаимодействием 1а,4а-дегидрохинопимаровой кислоты (3) или ее метилового эфира (4) с метил-3-аминокротонатом в ледяной AcOH при комнатной температуре по реакции Неницеску осуществлен синтез индольных производных 1а,4а-дегидрохинопимаровой кислоты 5, 6 с выходами 73 и 77% соответственно (схема 2).

В обоих случаях индолы **5**, **6** были получены в виде единственных региоизомеров. Высокая региоселективность при замыкании пиррольного цикла по связи C(3)-C(4), по видимому, связана со стерическими и электронными факторами, обусловленными структурными особенностями дитерпеновой молекулы, а именно объемной изопропилэтеновой группой, затрудняющей подход реагента к положению 2 цикла Е производных хинопимаровой кислоты.^{12–15} В связи с этим образование связи C–C между хинонами **3**, **4** и енамином на первой стадии реакции Неницеску (присоединение по Михаэлю) предпочтительнее по атому C-3 дитерпеновой молекулы.

Структуры синтезированных соединений подтверждены с помощью масс-спектрометрии MALDI TOF/TOF, одно- и двумерной (COSY, NOESY, ¹H-¹³C HSQC, ¹H-¹³C HMBC) спектроскопии ЯМР. Так, сигнал углеродного атома ароматического цикла С-2 в спектре ЯМР ¹³С соединения 5 проявляется при 103.1 м. д. и коррелирует с сигналом протона H-2 при 7.08 м. д. в спектре ¹H-¹³C HSQC. В спектре ЯМР ¹Н наблюдаются характерные сигналы протонов метильных групп при 2.67 (3'-CH₃) и 3.83 м. д. (5'-CH₃), а также уширенные сигналы гидроксильной группы и группы NH при 9.15 и 12.13 м. д. соответственно. В спектре ЯМР ¹Н соединения 6 присутствует дополнительный сигнал протонов сложноэфирной метильной группы при 3.92 м. д., который в спектре ¹H-¹³C HSQC коррелирует с сигналом атома С-21 при 51.9 м. д.

Синтезированные индолы **5** и **6** обладают ограниченной растворимостью в органических растворителях. Кроме того, в спектре NOESY соединения **5**, который регистрировали в растворе ДМСО- d_6 , не удалось однозначно определить ориентацию пиррольного цикла относительно дитерпенового остова. В связи с этим на основе индольного производного 5 получены спирт 7 и ацетат 8. Так, восстановление карбонильной и метоксикарбонильной групп в индоле 5 осуществляли LiAlH₄ при кипячении в ТГФ в течение 4 ч. Реакция протекала с образованием спирта 7, выход которого составил 68% после очистки колоночной хроматографией. Ацилирование гидроксильной группы индола 5 проводили с использованием хлорангидрида. При взаимодействии соединения 5 с AcCl в пиридине получен ацетат 8 с выходом 78%.

Исчерпывающее восстановление карбонильной и метоксикарбонильной групп в соединении **5** подтверждается появлением сигналов атомов углеродов С-20 и С-4' при 72.3 и 55.3 м. д. в спектре ЯМР ¹³С продукта **7**, которые в спектре ¹H—¹³C HSQC коррелируют с дублетными сигналами протонов 20-CH₂ (3.15 и 3.46 м. д.) и мультиплетом протонов 4'-CH₂ (4.51—4.56 м. д.) соответственно. Для спектра ЯМР ¹³С ацильного производного **8** характерно присутствие сигналов углеродных атомов ацетильной группы С-6' при 170.1 м. д. и С-7' при 20.9 м. д.

Кроме того, в спектре NOESY соединения **8** протоны ацетатной группы 7'-CH₃ коррелируют с протонами 12-CH и H-2, а также протон H-2 коррелирует с сигналом метильных протонов сложноэфирной группы 5'-CH₃, что однозначно указывает на образование пиррольного цикла по связи C(3)–C(4) молекулы 1а,4а-дегидрохино-пимаровой кислоты (**3**). Пики молекулярных ионов в масс-спектрах MALDI TOF/TOF соединений **5–8** подтверждают предложенные структуры.

Таким образом, с помощью реакции Неницеску взаимодействием 1а,4а-дегидрохинопимаровой кислоты или ее метилового эфира с метил-3-аминокротонатом впервые осуществлен синтез гибридных молекул, содержащих дитерпеновый и индольный фрагменты. Установлено, что взаимодействие хиноидного фрагмента производных 1а,4а-дегидрохинопимаровой кислоты с енамином протекает с высокой региоселективностью с образованием пиррольного цикла, аннелированного по связи C(3)–C(4) молекулы 1а,4а-дегидрохинопимаровой кислоты.

Экспериментальная часть

Спектры ЯМР ¹Н и ¹³С (500 и 125 МГц соответственно), а также спектры COSY, NOESY (время смешивания 0.7 с), ¹H-¹³C HSQC, ¹H-¹³C HMBC зарегистрированы на спектрометре Bruker Avance II 500 HD Ascend в ДМСО- d_6 (соединение 5), CDCl₃ (соединения 6–8), внутренний стандарт ТМС. В отнесении сигналов ЯМР использована нумерация атомов,¹² приведенная на схеме 2 и отличающаяся от используемой в названиях соединений согласно правилам ИЮПАК. Масс-спектры MALDI TOF/TOF в режиме регистрации положительных ионов (матрица - синапиновая кислота) записаны на масс-спектрометре Bruker AutoflexTM III Smartbeam. Элементный состав С, Н и N определяли на CHNанализаторе Carlo Erba модель 1106. Температуры плавления определены на приборе РНМК 80/2617. Оптические углы измерены на поляриметре PerkinElmer 341. Контроль за ходом реакций осуществлен методом TCX на пластинах Sorbfil (Сорбполимер, Краснодар, Россия), используя систему растворителей гексан-EtOAc, 1:1; проявление 10% раствором H₂SO₄ с последующим нагреванием при 100-120 °С в течение 2-3 мин. Для колоночной хроматографии использован силикагель L марки КСКГ, размер частиц 50-160 мкм.

Хинопимаровая кислота (2),¹² соединения 3, 4¹¹ получены по ранее описанным методикам.

Синтез дитерпеновых индолов 5, 6 (общая методика). К раствору, содержащему 506 мг (1 ммоль) соединения 3 или 520 мг (1 ммоль) соединения 4 в 20 мл ледяной АсОН, при перемешивании добавляют трехкратный избыток (345 мг, 3 ммоль) метил-3-аминокротоната. Реакционную смесь перемешивают при комнатной температуре в течение 20 ч, затем выливают в H_2O , осадок отфильтровывают, промывают до нейтральной среды, остаток сушат на воздухе. Продукт реакции хроматографируют на колонке с силикагелем, элюент CHCl₃–MeOH, 40:1.

(5с*S*,7*aR*,8*R*,11*aR*,11*bR*,13*S*)-1-Гидрокси-14-изопропил-4,8,11а-триметил-3-(метоксикарбонил)-5,6,7,7а,8,9,10, 11,11а,11b,12,13-додекагидро-5с,13-этенофенантро-[2,1-*g*]индол-8-карбоновая кислота (5). Выход 370 мг (73%), желтые кристаллы, т. пл. 199–200 °С, [α]_D¹⁹ +11.9° (*c* 1.77, CHCl₃). Спектр ЯМР ¹H, δ , м. д. (*J*, Г α): 0.69 (3H, с, 18-CH₃); 0.80–0.86 (1H, м, 10-CH₂); 0.96 (3H, д, *J* = 7.0, 17-CH₃); 0.98 (3H, д, *J* = 7.0, 16-CH₃); 1.10 (3H, с, 19-CH₃); 1.22–1.69 (10H, м, 6,8,9,10,11-CH₂, 10b-CH); 1.77–1.80 (1H, м, 6b-CH); 2.34–2.38 (1H, м, 15-CH); 2.55– 2.58 (1H, м, 5-СН₂); 2.67 (3H, с, 3'-СН₃); 2.75–2.82 (1H, м, 5-СН₂); 3.83 (3H, с, 5'-СН₃); 4.20 (1H, с, 12-СН); 5.65 (1H, с, 14-СН); 7.08 (1H, с, 2-СН); 9.15 (2H, уш. с, ОН); 12.13 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ, м. д.: 14.9 (С-3'); 16.5 (С-19); 17.2 (С-9,18); 20.5 (С-17); 20.8 (С-16); 22.0 (С-6); 28.3 (С-11); 32.0 (С-15); 33.5 (С-5); 36.1 (С-12); 36.8 (С-8); 38.2 (С-4b); 38.9 (С-10); 46.5 (С-7); 46.6 (С-10а); 49.8 (С-6b); 51.7 (С-5'); 55.2 (С-10b); 103.1 (С-2); 107.9 (С-1'); 124.1 (С-3); 127.7 (С-13); 131.3 (С-1а); 133.5 (С-4а); 142.7 (С-4); 148.1 (С-1); 152.9 (С-14); 162.6 (С-2'); 164.7 (С-4'); 180.2 (С-20). Массспектр, *m/z* (*I*_{отн}, %): 529 [М+H+Nа]⁺ (100). Найдено, %: С 73.65; H 7.70; N 2.80. С₃₁H₃₉NO₅. Вычислено, %: С 73.63; H 7.77; N 2.77.

Диметил-(5cS,7aR,8R,11aR,11bR,13S)-1-гидрокси-14-изопропил-4,8,11а-триметил-5,6,7,7а,8,9,10,11,11а, 11b,12,13-додекагидро-5с,13-этенофенантро[2,1-g]индол-3,8-дикарбоксилат (6). Выход 400 мг (77%), желтые кристаллы, т. пл. 165–168 °С, [а]_D¹⁹+12.1° (*с* 0.36, CHCl₃). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.79 (3H, с, 18-CH₃); 0.89–0.93 (1Н, м, 10-СН₂); 1.05 (3Н, д, *J* = 7.0, 17-СН₃); 1.07 (3Н, д, J = 7.0, 16-СН₃); 1.25 (3Н, с, 19-СН₃); 1.52-1.78 (10Н, м, 6,8,9,10,11-СН₂, 10b-СН); 1.93-1.96 (1Н, м, 6b-CH); 2.42–2.48 (1Н, м, 15-CH); 2.65–2.68 (1Н, м, 5-СН₂); 2.74 (3H, с, 3'-СН₃); 2.93–3.01 (1H, м, 5-СН₂); 3.75 (3H, c, 5'-CH₃); 3.92 (3H, c, 21-CH₃); 4.24 (1H, c, 12-CH); 5.72 (1H, c, 14-CH); 7.16 (1H, c, 2-CH); 9.05 (1H, уш. с, OH); 10.20 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ, м. д.: 14.8 (С-3'); 16.5 (С-19); 16.9 (С-18); 17.2 (С-9); 20.2 (C-17); 20.5 (C-16); 22.1 (C-6); 28.3 (C-11); 32.2 (C-15); 33.2 (C-5); 36.3 (C-12); 36.9 (C-8); 38.4 (C-4b); 38.7 (C-10): 46.6 (C-7): 47.4 (C-10a): 49.9 (C-6b): 51.3 (C-5'); 51.9 (C-21); 54.8 (C-10b); 103.3 (C-2); 108.1 (C-1'); 124.6 (C-3); 127.7 (C-13); 130.8 (C-1a); 133.7 (C-4a); 143.7 (C-4); 146.1 (C-1); 153.0 (C-14); 163.1 (C-2'); 165.3 (С-4'); 179.6 (С-20). Масс-спектр, *m/z* (*I*_{отн}, %): 529 [M]⁺ (100). Найдено, %: С 74.00; Н 7.85; N 2.77. С₃₂Н₄₁NO₅. Вычислено, %: С 73.96; Н 7.95; N 2.70.

(5cS,7aR,8R,11aR,11bR,13S)-3,8-Бис(гидроксиметил)-14-изопропил-4,8,11а-триметил-5,6,7,7а,8,9,10,11,11а, 11b,12,13-додекагидро-5с,13-этенофенантро[2,1-g]индол-1-ол (7). К суспензии 114 мг (3 ммоль) LiAlH₄ в 15 мл безводного ТГФ при перемешивании по каплям добавляют раствор 506 мг (1 ммоль) соединения 5 в безводном ТГФ и кипятят в течение 4 ч. Затем при охлаждении по каплям добавляют 7 мл H₂O и 7.5 мл 20% раствора H₂SO₄. Фазы разделяют, продукт реакции экстрагируют CHCl₃ (3 × 10 мл), объединенные экстракты промывают H₂O (3 × 30 мл), сушат CaCl₂ и упаривают при пониженном давлении. Остаток очищают колоночной хроматографией, элюент СНСІ3-МеОН, 40:3. Выход 310 мг (68%), серый порошок, т. пл. 188-190 °С, [а]_D¹⁹ +0.8° (с 0.51, СНСІ₃). Спектр ЯМР ¹Н, б, м. д. (Ј, Гц): 0.63–0.68 (1Н, м, 10-СН₂); 0.71 (3Н, с, 18-СН₃); 0.78 (3H, с, 19-СН₃); 1.02 (3H, д, J = 6.5, 17-СН₃); 1.06 (3Н, д, J= 6.5, 16-СН₃); 1.23–1.56 (10Н, м, 6,8,9,10,11-СН₂, 10b-CH); 1.67–1.70 (1Н, м, 6b-CH); 2.31 (3Н, с, 3'-CH₃); 2.41-2.44 (1Н, м, 15-СН); 2.65-2.67 (1Н, м, 5-СН₂); 2.86-2.92 (1Н, м, 5-СН₂); 3.15 (1Н, д, J = 10.5, 20-СН₂); 3.46 (1H, д, J = 11.0, 20-CH₂); 4.24 (1H, с, 12-CH); 4.51–4.56 (2H, м, 4'-CH₂); 5.68 (1H, с, 14-CH); 6.70 (1H, с, 2-CH); 7.10 (1H, уш. с, OH); 8.19 (2H, уш. с, OH); 10.01 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ , м. д.: 12.1 (C-3'); 16.6 (C-19); 17.4 (C-9); 17.8 (C-18); 19.1 (C-6); 20.4 (C-17); 20.5 (C-16); 28.6 (C-11); 32.2 (C-15); 33.5 (C-5); 35.2 (C-12); 36.5 (C-8); 37.3 (C-4b); 38.6 (C-10); 39.4 (C-7); 46.3 (C-10a); 48.7 (C-6b); 55.0 (C-10b); 55.3 (C-4'); 72.3 (C-20); 100.7 (C-2); 113.2 (C-1'); 126.7 (C-3); 127.7 (C-13); 130.4 (C-1a); 133.9 (C-4a); 143.6 (C-1); 145.8 (C-4); 151.9 (C-2'); 153.1 (C-14). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 463 [M]⁺ (100). Найдено, %: С 77.69; H 8.93; N 3.05. С₃₀H₄₁NO₃. Вычислено, %: С 77.71; H 8.91; N 3.02.

(5cS,7aR,8R,11aR,11bR,13S)-1-(Ацетилокси)-14-изопропил-4,8,11а-триметил-3-(метоксикарбонил)-5,6,7, 7а,8,9,10,11,11а,11b,12,13-додекагидро-5с,1-этенофенантро[2,1-g]индол-8-карбоновая кислота (8). К раствору 506 мг (1 ммоль) соединения 5 в 15 мл сухого пиридина добавляют 102 мг (1.3 ммоль) AcCl и кипятят в течение 6 ч. Реакционную смесь выливают в H₂O, продукт реакции экстрагируют CHCl₃ (3 × 10 мл), объединенные экстракты промывают H_2O (3 × 30 мл), сушат CaCl₂ и упаривают при пониженном давлении. Остаток очищают колоночной хроматографией, элюент гексан-EtOAc, 1:1. Выход 430 мг (78%), темно-желтые кристаллы, т. пл. 132–134 °С, [а] р¹⁹ +18.9° (с 1.11, СНСl₃). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 0.81 (3H, с, 18-СН₃); 0.85–0.98 (1Н, м, 10-СН₂); 1.05 (3Н, д, J = 7.0, 17-СН₃); 1.06 (3Н, д, J = 7.0, 16-СН₃); 1.08–1.79 (10Н, м, 6,8,9,10,11-CH₂, 10b-CH); 1.29 (3H, c, 19-CH₃); 1.97-1.99 (1Н, м, 6b-CH); 2.31–2.38 (1Н, м, 15-CH); 2.42 (3Н, с, 7'-СН₃); 2.73–2.76 (1Н, м, 5-СН₂); 2.80 (3Н, с, 3'-СН₃); 2.96-3.03 (1Н, м, 5-СН₂); 3.85 (1Н, с, 12-СН); 3.92 (3Н, c, 5'-CH₃); 5.76 (1H, c, 14-CH); 7.39 (1H, c, 2-CH); 8.19 (1H, уш. с, OH); 9.05 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ, м. д.: 14.7 (С-3'); 16.5 (С-19); 16.6 (С-18); 16.7 (С-9); 20.3 (C-17); 20.5 (C-16); 20.9 (C-7'); 22.1 (C-6); 27.9 (C-11); 32.0 (C-15); 33.2 (C-5); 36.9 (C-8); 37.7 (C-12); 38.3 (C-4b); 38.7 (C-10); 46.7 (C-7); 47.1 (C-10a); 49.4 (C-6b); 51.3 (C-5'); 54.7 (C-10b); 108.5 (C-1'); 110.5 (C-2); 124.9 (C-3); 128.1 (C-13); 133.4 (C-4a); 135.7 (C-1a); 141.2 (C-1); 146.2 (C-4); 152.1 (C-14); 163.9 (C-2'); 164.9 (C-4'); 170.1 (C-6'); 185.7 (C-20). Maccспектр, *m/z* (*I*_{отн}, %): 548 [M+H]⁺ (100). Найдено, %: С 72.35; Н 7.54; N 2.54. С₃₃Н₄₁NO₆. Вычислено, %: C 72.37; H 7.55; N 2.56.

Файл сопроводительной информации, содержащий спектры ЯМР ¹Н и ¹³С полученных соединений, доступен на сайте журнала http://hgs.osi.lv.

Исследование выполнено в рамках проектной части государственного задания (АААА-А19-119022290012-3) и при финансовой поддержке Министерства науки и высшего образования РФ (грант Федеральной целевой программы № 2019-05-595-000-058) с использованием оборудования Центра коллективного пользования "Агидель" Уфимского федерального исследовательского центра РАН.

Список литературы

- 1. Bugaenko, D. I.; Karchava, A. V.; Yurovskaya, M. A. Russ. Chem. Rev. 2019, 88, 99. [Vcnexu xumuu 2019, 88, 99.]
- 2. Heterocyclic Scaffolds II. Reactions and Applications of Indoles; Gribble, G. W., Ed.; Springer-Verlag: Berlin, 2010.
- 3. Sravanthi, T. V.; Manju, S. L. Eur. J. Pharm. Sci. 2016, 91, 1.
- Kaushik, N. K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, Ch. H.; Verma, A. K.; Choi, E. H. *Molecules* 2013, *18*, 6620.
- 5. Машковский, М. Д. *Лекарственные средства*; РИА Новая Волна: Москва, 2012.
- Allen, G. R., Jr.; Pidacks, C.; Weiss, M. J. J. Am. Chem. Soc. 1966, 11, 2536.
- 7. Garbett, N. C.; Graves, D. E. Curr. Med. Chem. 2004, 4, 149.
- Gu, X. H.; Wan, X. Z.; Jaing, B. Bioorg. Med. Chem. Lett. 1999, 9, 569.
- 9. Yurovskaya, M. A.; Alekseyev, R. S. Chem. Heterocycl. Compd. 2014, 49, 1400. [Химия гетероцикл. соединений 2013, 1507.]
- 10. Granik, V. G.; Lyubchanskaya, V. М.; Mukhanova, T. I. Pharm. Chem. J. 1993, 27, 413. [Хим.-фарм. журн. 1993, 27(6), 37.]
- Shul'ts, E. E.; Oleinikov, D. S.; Nechepurenko, I. V.; Shakirov, M. M.; Tolstikov, G. A. Russ. J. Org. Chem. 2009, 45, 102. [Журн. орган. химии 2009, 45, 108.]
- 12. Herz, W.; Blackstone, R. C.; Nair, M. G. J. Org. Chem. 1967, 32, 2992.
- Flekhter, O. B.; Tret'yakova, E. V.; Makara, N. S.; Gabdrachmanova, S. F.; Baschenko, N. Z.; Galin, F. Z.; Zarudii, F. S.; Tolstikov, G. A. *Pharm. Chem. J.* **2003**, *37*, 142. [Хим.-фарм. журн. **2003**, *37*(3), 35.]
- Толстиков, Г. А.; Шульц, Э. Э.; Мухаметзянова, Т. Ш.; Байкова, И. П.; Спирихин, Л. В. *Журн. орган. химии* 1993, 29, 698.
- Tretyakova, E. V.; Salimova, E. V.; Parfenova, L. V.; Yunusbaeva, M. M.; Dzhemileva, L. U.; D'yakonov, V. A.; Dzhemilev, U. M. Anti-Cancer Agents Med. Chem. 2019, 19, 1172.