

Химия гетероциклических соединений 2020, 56(7), 854–866

Гипервалентный иод в структуре N-гетероциклов: синтез, структура и применение в органическом синтезе

Юлия А. Власенко¹, Мехман С. Юсубов¹, Александр Шафир^{2*}, Павел С. Постников^{1*}

¹ Исследовательская школа химических и биомедицинских технологий,

Национальный исследовательский Томский политехнический университет, пр. Ленина, 30, Томск 634050, Россия; e-mail: postnikov@tpu.ru

² Отделение биологической химии, Институт продвинутой химии Каталонии, ул. Жорди Жирона, 18–26, Барселона 08034, Испания; e-mail: ashqbm@cid.csic.es Поступило 16.04.2020 Принято 21.04.2020

Обзор посвящен одному из наиболее актуальных направлений в химии гипервалентного иода – синтезу, структуре и свойствам гетероциклических и псевдогетероциклических систем на основе λ^3 - и λ^5 -иоданов. Среди всего многообразия циклических реагентов на основе гипервалентного иода в последнее время особое внимание уделяется иоданам, содержащим тесный контакт между атомами I и N. В рамках обзора авторами проанализированы методы синтеза, структурные особенности данных реагентов, а также их синтетическое применение. Обзор включает более 100 литературных источников, преимущественно охватывая публикации с 1990 по 2020 г. и ключевые исследования предыдущих лет.

Ключевые слова: гипервалентный иод, иодорганические соединения, псевдогетероциклические соединения, окисление, связь азот-иод.

Химия соединений гипервалентного иода (СГИ) представляет собой одну из наиболее активно развивающихся областей органического синтеза.¹ Реагенты, содержащие атом иода в высоких степенях окисления, широко применяются в качестве источника электрофильных функциональных групп, мягких и селективных окислителей, а также субстратов для нуклеофильных реакций по sp^2 - или sp^3 -гибридизованному углеродному атому.² На сегодняшний день насчитываются тысячи различных превращений, реализующихся с участием СГИ, которые привлекают внимание исследователей как доступные, дешевые и экологичные реагенты для органического синтеза. Различным аспектам реакционной способности СГИ посвящено несколько книг и обзоров,¹ однако на сегодняшний день относительно малоизученной остается область, связанная с синтезом и применением псевдоциклических и циклических λ^3 - и λ^5 -иоданов, содержащих в структуре тесный контакт между атомами I и N. Данный обзор призван суммировать достижения химической науки в этой области за последние годы.

Химия СГИ ассоциируется прежде всего с образованием прочных связей гипервалентного атома иода с

электроотрицательными атомами, представленными в первую очередь кислородом и галогенами.³ Наиболее ярко данная способность проявляется в гетероциклических СГИ, в которых гетероциклический фрагмент достраивается с помощью тесных контактов между атомами кислорода и иода, – такие соединения широко распространены среди реагентов на основе СГИ:⁴ как среди λ^3 -иоданов **1–8**,^{5–16} так и среди λ^5 -иоданов **9–16**^{17–24} (рис. 1).

В свою очередь, иоданы, содержащие связь N–I, распространены значительно реже и в основном представлены ациклическими системами. Так, на сегодняшний день известно большое семейство ациклических реагентов (соединения 17-26)²⁵⁻³² и солей, содержащих ионную связь между *N*-центрированным анионом и иодониевым катионом (соединения 27-30),³³⁻³⁵ часть из которых генерируется *in situ*³⁶ (рис. 2). Кроме того, широко известна химия иминоиоданов, служащих источником нитрена (соединения 31-34).³⁷⁻⁴⁰

В отличие от ациклических иоданов, химия псевдогетероциклических и гетероциклических СГИ начала развиваться относительно недавно. Так, до 1997 г. опубликовано лишь несколько работ, посвященных

Рисунок 1. Распространенные О-стабилизированные реагенты гипервалентного иода.

синтезу гетероциклических λ^3 -иоданов на основе *о*-иодбензолсульфамидов (соединения **35–37**, схема 1)⁴¹ и *о*-иодбензолкарбоксамидов (соединения **38–40**, схема 2).⁴² Именно эти работы положили начало развитию химии гетероциклических и псевдогетероциклических иоданов.

Схема 1

Рисунок 2. Известные реагенты гипервалентного иода, содержащие в структуре связь N–I.

1. СТРУКТУРНЫЕ ОСОБЕННОСТИ ПСЕВДОЦИКЛИЧЕСКИХ И ЦИКЛИЧЕСКИХ λ^3 - И λ^5 -ИОДАНОВ

Структура *N*-координированных иоданов с момента открытия привлекала большое внимание исследователей. Структура первого представителя гетероциклических λ^3 -иоданов, содержащих связь N–I, – соединения **38** – была установлена в 1979 г. Балтазором.^{42a}

Сравнение структур N- и О-иоданов позволяет выявить существенные различия. Так, практически у всех гетероциклических структур связь N····I более прочная, чем связь I···O. Например, данная закономерность обнаруживается при сравнении структур λ^3 -иодана **38** (длина связи N···I 2.113 Å) со структурно близким производным – *о*-иодозобензойной кислотой (**41**) (длина связи I···O 2.298 Å, рис. 3). Прочность связей, по всей видимости, является определяющей в стабильности *N*-координированных реагентов по сравнению с классическими *O*-координированными гетероциклами на основе СГИ.⁴³

В дальнейшем структурные особенности гетероциклических соединений на основе СГИ, содержащих связь N–I, изучались Жданкиным в ранних работах, где впервые были зафиксированы взаимопревращения окисленного ацетоксибензиодазола **42** в соответствующие 3иминобензиодоксолы **43** и **44** (схема 3, рис. 4).⁴⁴

Такие превращения вообще характерны для циклических и псевдоциклических структур, содержащих атомы N и O, – при протонировании азота наблюдается разрыв связи N–I с образованием связи с атомом кислорода, выступающим донором электронной пары. Вполне логичным было ожидать, что может наблюдаться и обратный процесс – обработка основаниями *O*-координированных производных гипервалентного иода на основе *о*-иодбензамидов должна приводить к образованию *N*-координированных гетероциклов. Возможность проведения данной трансформации была продемонстрирована Жданкиным на примере иодониевой соли **46** (рис. 5).⁴⁵

Псевдоциклическая соль **46** была получена обработкой циклического *N*-координированного тозилата **45** трибутилстаннилбензолом в присутствии TMSOTf. При обработке NaHCO₃ соль **46** практически количе-

Рисунок 3. Структуры иоданов **38** (код CDS: CMBIDZ) и **41** (код CDS: BENIOX). Здесь и на рис. 4–9 расстояния между атомами указаны в Å.

Рисунок 4. Структуры иоданов 42 (код CDS: NEJDEL) и 44 (код CDS: NEJDIP).

ственно превращалась в циклическую форму 47 (схема 4). Иодониевая соль 47 является первым примером циклической иодониевой соли с коротким контактом между атомами N и I. Анализ кристаллической структуры соединения 47 позволил выявить существенное удлинение связи N–I, по сравнению с таковой соединений 42 и 38, что свидетельствует о закономерном вкладе ионных взаимодействий между депротонированным амидом и атомом иода с двумя С-лигандами (рис. 3–5).

Вместе с приведенными выше различиями в структурах циклических N-иоданов и *О*-координированных иоданов в литературе описаны и классические струк-

Рисунок 5. Структуры иоданов 46 (код CDS: BAQVEV) и 47 (код CDS: BAQVIZ).

турные особенности, такие как склонность к самосборке и образованию макроциклов. Так, например, окисление амида 48 диметилдиоксираном приводит к образованию макроциклической структуры 49 (схема 5, рис. 6).⁴⁶

Схема 5

Рисунок 6. Структура макроцикла на основе иодана 49 (код CDS: MIQFEX).

Стоит отметить, что введение двух карбоксамидных групп в о-положения к атому иода в иодбензоле с последующим окислением приводит к образованию бициклической структуры 50 (схема 6, рис.7).⁴⁷

Рисунок 7. Структура иодана 50 (код CDS: VIWSIG).

Дальнейшие структурные исследования циклических N-координированных λ^3 -иоданов сводились к подтверждению структуры и взаимопревращений реагентов. Так, высокая прочность связи N–I в структурах N-ацетилбензиодазолов позволила получить первый реагент, содержащий связь I–SCF₃.⁴⁸

В отличие от циклических *N*-координированных λ^3 -иоданов, структуры псевдоциклических реагентов изучены гораздо хуже. Систематические исследования в данной области были начаты лишь в 2017 г. Муницом⁴⁹ и продолжены в работах Нахцайма⁵⁰ и нашего коллектива.⁵¹ Первым примером псевдоциклического *N*-координированного иодана является производное (2-иодфенил)пиридина (**51**), легко образующееся при окислении соответствующего арилиодида (схема 7).⁴⁹ Длина контакта N…I составляет 2.443 Å (рис. 8), что существенно длиннее, чем у циклических *N*-координированных иоданов (2.113 Å).

Рисунок 8. Структура иодана 51 (код CDS: HAPDEK).

Как было показано нами позднее, окисление 2-(2-иодфенил)бензимидазола также приводит к образованию псевдоциклического *N*-координированного иодана **52** (схема 8).⁵¹ Полученный иодан **52** изоморфен псевдоциклическому IBA-OTs **53**,⁷ что позволяет сравнить длины связей в псевдоциклических производных.

Схема 8

Рисунок 9. Структуры иоданов 52 (код CDS: LIMCUI) и 53 (код CDS: QELMUS).

Как оказалось, для псевдоциклических иоданов длина контакта N···I (2.319 Å в структуре **52**) практически не отличается от расстояния O···I (2.362 Å в структуре **53**), что позволяет предполагать существенные сходства в реакционной способности этих соединений (рис. 9).

Для псевдоциклических *N*-координированных λ^3 -иоданов, содержащих подвижные протоны N–H, также характерны внутримолекулярные трансформации при обработке основаниями. Так, например, тозилат 54 легко вступает в реакцию с NaOH с образованием циклического производного 55 (схема 9).⁵⁰

Аналогичным образом ведут себя и иодониевые соли, например иодониевая соль **56**, содержащая триазолильный фрагмент, легко претерпевает циклизацию в циклический продукт **57** при обработке щелочью (схема 9).⁵⁰ Данное свойство обнаружено также и у иодониевых солей – производных бензимидазолов (соединения **58** и **59**, схема 9).⁵ Тем не менее структура циклических иодониевых солей до настоящего момента установлена не была, возможно, из-за процессов таутомерии и разупорядочения кристаллической решетки.⁵¹

Одной из самых больших проблем химии *N*-координированных циклических и псевдоциклических иоданов является отсутствие структурных данных для соединений пятивалентного иода. Однако, принимая во внимание возрастающую популярность данного направления исследований, мы верим, что в скором будущем появятся и структурные исследования для этого важного класса производных СГИ.

2. ПСЕВДОЦИКЛИЧЕСКИЕ И ЦИКЛИЧЕСКИЕ λ³-ИОДАНЫ: СИНТЕЗ И ПРИМЕНЕНИЯ В ОРГАНИЧЕСКОМ СИНТЕЗЕ 2.1. Реакционная способность псевдоциклических λ³-иоданов

Псевдоциклические *N*-координированные λ^3 -иоданы являются уникальными представителями соединений поливалентного иода, сочетающими баланс растворимости, стабильности и реакционной способности. На столь благоприятное сочетание свойств существенное влияние оказывает лативное взаимолействие межлу атомом азота амидной группы или гетероцикла и центральным атомом поливалентного иода. В органическом синтезе этот класс соединений нашел свое применение в широком ряде окислительных трансформаций. Строго говоря, первым примером использования *N*-координированных иоданов для окисления органических соединений является окислительное разложение реакционноспособных фосфатов, опубликованное в 1986 г. Моссом.⁵² Данная реакция не получила широкого распространения, однако формально стала первым примером применения *N*-координированных λ^3 -иоданов. Конечно же, развитие химии этих соединений повлекло открытие огромного количества новых реакций, в которых зачастую *N*-координированные иоданы показали себя как достойные конкуренты традиционным О-координированным соединениям.

2.1.1. α-Тозилоксилирование и карбоксилирование кетонов

В 2012 г. научной группой под руководством проф. Лего был разработан метод синтеза иодоксазолинов для каталитического α-тозилоксилирования кетонов.⁵³ Был получен целый ряд соответствующих оксазолинов, содержащих иодарильные заместители и хиральный индуктор в оксазолиновом цикле, но, как оказалось, наибольшую активность в реакциях проявило соединение **60**, способное существовать как в *N*-координированной (структура **60a**), так и в *O*-координированной (структура **60b**) формах в зависимости от добавок кислот (схема 10). Расчетные методы подтверждают, что взаимодействие I–O слабее, чем I–N, что может свидетельствовать о большей реакционной способности протонированной формы. Одной из интереснейших находок авторов являлось сильное влияние *о*-эффекта на реакционную способность данных соединений: при наличии *о*-метильной группы в бензольном цикле реакционная способность этих соединений существенно возрастала, что открывало путь к дальнейшим работам в данном направлении.

Представленные катализаторы на тот момент обеспечивали лучшие выходы и селективность для этого превращения (схема 11).^{53b} Годом позднее тем же научным коллективом было изучено влияние различных модификаций оксазолиновой части в семействе иодоксазолиновых катализаторов,^{53c} однако повысить активность катализаторов и селективность в данном превращении им так и не удалось.

Схема 11

$$R^{-1} = Alk$$

Данное исследование было продолжено в 2020 г. проф. Нахцаймом и его коллегами – они провели систематическое исследование реакционной способности *о*-функционализированных *N*-гетероциклических иодаренов **61** в качестве органокатализаторов при а-тозилоксилировании кетонов.⁵⁴ Было изучено влияние трех электронодонорных *о*-заместителей (Ме, Cl и MeO) и показано возрастание выходов при переходе от метилпроизводных к метоксипроизводным (схема 12).

Внедрение метоксигруппы в структуру реагента позволило разработать один из наиболее эффективных методов введения тозилоксигруппы в молекулы кетонов с использованием лишь 1 моль. % соединения **62** в качестве катализатора. В превращение был вовлечен широкий ряд кетонов, содержащих как ароматические, так и алифатические заместители (схема 13).^{54a}

Успехи применения псевдоциклических *N*-координированных иоданов в реакциях тозилоксилирования закономерно поставили вопрос о энантиоселективном методе. Проф. Нахцайм предложил простой и элегантный метод синтеза оптически активного прекурсора **63**

для генерирования псевдоциклического *N*-координированного иодана в каталитических условиях (схема 14).^{54b}

Соединение 63 показало лидирующую активность в отношении реакций окислительной α -функционализации кетонов. Например, тозилоксилирование кетона 64, сопровождающееся внутримолекулярным карбоксилированием приводит к образованию лактама 65 с 88% выходом и оптической чистотой *ee* 81% (схема 15) (предыдущий результат – выход 47% и *ee* 51%⁵⁵). В аналогичной ситуации тозилоксилирования пропиофенона было выделено соответствующее тозилоксипроизводное с выходом 90% и чистотой *ee* 88% (схема 15).

В целом уже сегодня можно утверждать, что псевдоциклические *N*-координированные λ^3 -иоданы являются перспективными реагентами для функционализации карбонильных соединений по α -углеродному атому, превосходящими известные аналоги.⁵⁶

2.1.2. Бифункционализация алкенов

Одними из наиболее распространенных превращений с использованием СГИ являются реакции функционализации двойных связей (в частности, диаминирование и ацетоксилирование⁵⁷). Вполне очевидным является применение псевдоциклических *N*-координированных иоданов в этих реакциях.

В 2014 г. научным коллективом под руководством проф. Вирта был разработан эффективный высокостереоселективный метод внутримолекулярного диаминирования алкенов с использованием нового хирального реагента 67 на основе гипервалентного иода в качестве катализатора.⁵⁸ Соединение 67 было получено по простой схеме с использованием коммерчески доступных реагентов (схема 16). Удивительно, что, по сравнению с традиционными *О*-координированными энантиомерно чистыми иоданами, именно использование реагента 67 привело к наивысшим выходам и оптической чистоте продукта.

Стоит отметить также, что иодан **67** проявлял высокую активность как в эквимолярных, так и в каталитических количествах при получении из прекурсора **66** *in situ* (при добавках лишь 20 моль. % катализатора, схема 17).⁵⁸

При обсуждении функционализации алкенов нельзя не упомянуть работу Муница, которая существенно повлияла на развитие химии *N*-координированных иоданов.⁴⁹ Как уже упоминалось выше, была установ-

лена структура соединения **51**, но вместе с тем была показана высокая каталитическая активность реагента в реакциях диацетоксилирования при использовании простого 2-(2-иодфенил)пиридина в качестве *in situ* прекурсора иодана **51** (схема 18). Причем, как показали кинетические эксперименты, наличие тесного контакта между атомами I и N пиридинового цикла существенно ускоряет реакцию.

К числу реакций бисфункционализации алкенов можно отнести и окислительные внутримолекулярные перегруппировки енонов и аллиловых спиртов. Синтетический потенциал псевдоциклических *N*-координированных иоданов был в полной мере продемонстрирован проф. Нахцаймом в ключевых работах по изучению реакционной способности псевдоциклических СГИ.^{50,54} Так, например, псевдоциклический тозилат **54** является эффективным реагентом для перегруппировки халкона в соответствующий 3,3-диметокси-1,2-дифенилпропан-1-он (схема 19).⁵⁰

о-Метоксизамещенный аналог реагента **54** легко вступает в реакцию с производными аллилового спирта при использовании прекурсора **68** в каталитических количествах,^{54a} причем аналогичная реакция при использовании высокоактивного энантиомерно чистого соединения **63** протекает уже с выходом 80% и оптической чистотой, достигающей 98% (схема 20).^{54b}

В тренде развития данной области в 2017 г. проф. Нахцайм и Перикас разработали метод синтеза семейства триазолсодержащих иодаренов и успешно показали применимость их в окислительной циклизации производных 3-(1-гидроксинафтал-2-ил)пропановой кислоты.⁵⁹ Хорошие выходы и высокая энантиоселективность были достигнуты в асимметричной спироциклизации посредством генерирования *in situ* СГИ из соответствующего прекурсора **69** с использованием MCPBA в качестве окислителя (схема 21).

Уже в 2020 г. использование *о*-метоксизамещенного соединения **63** привело к значительному увеличению активности катализатора.^{54b} Так, при использовании 10% катализатора при -10 °C за 32 ч удалось повысить выход до 85% и стереоселективность до *ее* 99%.

2.1.4. Другие окислительные превращения

Как было показано выше, псевдоциклические реагенты на основе поливалентного иода имеют широкий профиль реакционной способности в совершенно различных окислительных превращениях. Закономерно данные стабилизированные N-гетероциклами реагенты, например иоданы **70**, **71**, проявляют высокую реакционную способность в таких превращениях, как окисление тиоанизола до соответствующего сульфоксида^{50,60} или деароматизация фенолов (схема 22).^{50,54b} Во всех этих превращениях удается достичь хороших выходов продуктов, а в некоторых случаях и высокой стереоселективности.

Схема 22

Конструирование гетероциклических систем и по сей день является весьма востребованным, так как гетероциклические фрагменты встречаются в структурах органических соединений повсеместно. Данный класс реагентов может быть с легкостью применен и в различных реакциях замыкания цикла. Например, стабилизированные N-гетероциклами СГИ **61**, **70** позволяют получить *N*-ацилкарбазол и 6*H*-бензо[*c*]-хромен-6-он посредством окислительной циклизации соответствующих производных бифенила,^{54a} а 3,5-дифенил-1,2,4-тиадиазол – в реакции окислительной димеризации тиобензамида (схема 23).⁶⁰

Таким образом, псевдоциклические N-координированные λ^3 -иоданы являются одними из самых перспективных реагентов на основе СГИ. Немаловажным преимуществом является их стабильность, простота получения, а также возможность реализовать целый ряд каталитических энантиоселективных превращений.

2.2. Реакционная способность циклических N-координированных λ^3 -иоданов

Несмотря на обилие исследований, посвященных реакционной способности псевдоциклических *N*-координированных реагентов на основе СГИ, химия циклических производных все еще остается малоизученной областью, однако не менее важной. Если псевдоциклические реагенты обычно находят применение в каталитических превращениях, сопровождающихся *in situ* генерированием активного реагента, то от циклических производных можно ожидать реакций переноса функциональных групп. Конечно же, не менее важной остается область окислительных трансформаций, особенно в тех случаях, когда использование каталитических систем невозможно или нецелесообразно.

2.2.1. Реакции переноса функциональных групп

Вполне очевидным является то, что синтез *N*-координированных аналогов традиционных циклических реагентов на основе СГИ проводился по аналогии с известными методами, как было показано выше. Тем не менее первое исследование реакционной способности N-содержащих гетероциклов было проведено на примере аза-аналога реагента Жданкина (**8**),¹³ а именно азидоиодоксазола **72**.^{44а} Так, Жданкиным было продемонстрировано, что азидоиодоксазол **72** может быть использован в качестве азидирующего агента для азидирования метильных групп в *N*,*N*-диметиланилинах (схема 24).^{44а}

Только после 20-летнего перерыва в исследованиях реакционной способности данного класса реагентов в реакциях переноса функциональных групп Жанг и его коллеги представили новый *N*-координированный СГИ **73**, содержащий группу SCF₃ в качестве лиганда (схема 25).⁴⁸

Это соединение вообще относится к первым реагентам на основе СГИ, содержащим группу SCF₃ в качестве лиганда. Например, предыдущие попытки получения соединения **73** на основе кислородсодержащих гетероциклов не привели к успеху,⁶¹ и лишь использование азота в качестве лиганда позволило получить этот реагент. Соединение **73** в мягких

Схема 26

условиях вступает в реакции с различными нуклеофилами, сопровождающиеся переносом электрофильной группы SCF₃ (схема 26).^{61a}

2.2.2. Окислительные трансформации органических субстратов

Надо полагать, что, как и типичные представители циклических *О*-координированных иоданов, иодоксазолы должны выступать в качестве реагентов для окислительных трансформаций органических веществ. В 2018 г. научным коллективом во главе с Иошимурой и Жданкиным был разработан метод синтеза трициклического бензиододиазола **50** (схема 6).⁴⁷ Соединение **50** не содержит дополнительного лиганда на электрофильном иодониевом центре для реакций переноса, однако оно показывает высокую активность в окислительных реакциях этерификации и амидирования (схема 27).

$$R^1 = n$$
-Pr, Ph; $R^2 = n$ -Bu, Ph; X = NH, O

Таким образом, реакционная способность циклических N-координированных λ^3 -иоданов остается малоизученной, но весьма притягательной областью исследований, способной в перспективе открыть новые возможности в использовании СГИ. Стоит отметить также, что применение таких соединений не ограничивается исключительно органическим синтезом: недавно в литературе начали появляться сообщения о перспективности циклических N-координированных λ^3 -иоданов в качестве инициаторов полимеризации.⁶²

3. ПСЕВДОЦИКЛИЧЕСКИЕ И ЦИКЛИЧЕСКИЕ λ⁵-ИОДАНЫ: СИНТЕЗ И ПРИМЕНЕНИЯ В ОРГАНИЧЕСКОМ СИНТЕЗЕ

Несмотря на широкие и яркие перспективы использования N-координированных λ^3 -иоданов в современном органическом синтезе, химия λ^5 -иоданов, содержащих тесный контакт между атомами I и N, все еще остается слабоизученной. На сегодняшний день насчитывается лишь несколько работ, прямо или косвенно свидетельствующих о возможности образования тесных контактов с N-содержащими лигандами или осно́вными растворителями.⁶³ Тем не менее структурных данных о строении данного класса соединений представлено не было.

Первыми представителями пятивалентных *N*-координированных иоданов являются гетероциклы **74**,⁶⁴ синтезированные при прямом окислении соответствующих амидов перброматом калия в серной кислоте (схема 28). Данный реагент показал себя как активный окислитель в реакциях окисления спиртов до альдегидов и сульфидов до сульфоксидов с высокими выходами (90–92%).⁶⁴

Схема 28

Жданкиным был предложен синтез циклического иодана **75**, легко образующегося при обработке бис-(ацетокси)иодилбензола TMSOTf и 2,2'-бипиридином (схема 29).⁶⁵ Интересным является тот факт, что именно бидентатные лиганды были способны образовывать относительно стабильные продукты, что объясняется пространственным строением пятивалентного

Схема 29

иода. Однако структура этого соединения не установлена по сей день.

Реакционная способность иодана **75** была неизвестной до последнего времени – лишь в 2019 г. синтетический потенциал этого реагента раскрылся в полной мере.⁶⁶ Так, было проведено масштабное исследование окисления фенолов в соответствующие *о*- и *n*-хиноны с использованием реагента **75**, генерируемого *in situ* из соответствующего бис(ацетокси)иодилбензола. Реакция протекала в мягких условиях при комнатной температуре с высокими выходами целевых продуктов (схема 30).

Схема 30

Еще одним примером окислительных превращений является конверсия спиртов в кетоны и карбоновые кислоты.⁶⁷ В данном случае в качестве активного реагента выступает псевдоциклическое производное 77, образующееся *in situ* из соответствующего бензамида 76 при окислении Оксоном (схема 31). Реакция окисления спиртов успешно протекает в каталитическом режиме с образованием соответствующих кетонов (или карбоновых кислот в случае первичных спиртов) с высокими выходами.

Как можно увидеть, на сегодняшний день химия пятивалентных *N*-координированных иоданов остается малоизученной. Однако уже существующие данные говорят о перспективности исследований в этой области и ярком будущем для псевдоциклических и гетероциклических *N*-иоданов.

В целом, подводя итог данному обзору, можно сказать о том, что химия *N*-координированных иоданов является одним из самых динамично развивающихся

направлений химии соединений гипервалентного иода. Высокая стабильность *N*-координированных иоданов при хранении в сочетании с высокой реакционной способностью позволяет рассматривать их как удобную альтернативу широко известным *O*-координированным иоданам. Вместе с тем огромное количество открытий в данной области все еще ожидает исследователей.

Обзор подготовлен при финансовой поддержке Российского фонда фундаментальных исследований (грант 19-43-703004).

Список литературы

- (a) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328. (b) Zhdankin, V. V. ARKIVOC 2020. DOI: 10.24820/ ark.5550190.p011.145. (c) Hypervalent Iodine Chemistry; Wirth, T., Ed.; Springer, 2016. (d) The Chemistry of Hypervalent Halogen Compounds; Olofsson, B.; Marek, I.; Rappoport, Z., Eds.; John Wiley & Sons, Ltd.: Chichester, 2019. (e) Zhdankin, V. V. Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Application of Polyvalent Iodine Compounds; John Wiley & Sons, Ltd.: Chichester, 2014. (f) Yusubov, M. S.; Zhdankin, V. V. Resour.-Effic. Technol. 2015, 1, 49.
- (a) Chen, W. W.; Cuenca, A. B.; Shafir, A. Angew. Chem., Int. Ed. 2020. DOI: 10.1002/anie.201908418. (b) Yoshimura, A.; Saito, A.; Zhdankin, V. V. Chem.-Eur. J. 2018, 24, 15156.
 (c) Hari, D. P.; Caramenti, P.; Waser, J. Acc. Chem. Res. 2018, 51, 3212. (d) Ghosh, M. K.; Rajkiewicz, A. A.; Kalek, M. Synthesis 2019, 359. (e) Flores, A.; Cots, E.; Bergès, J.; Muñiz, K. Adv. Synth. Catal. 2019, 361, 2. (f) Hyatt, I. F. D.; Dave, L.; David, N.; Kaur, K.; Medard, M.; Mowdawalla, C. Org. Biomol. Chem. 2019, 17, 7822.
- (a) Scilabra, P.; Terraneo, G.; Resnati, G. Acc. Chem. Res. 2019, 52, 1313. (b) Sreenithya, A.; Sunoj, R. B. Dalton Trans. 2019, 4086. (c) Grelier, G.; Darses, B.; Dauban, P. Beilstein J. Org. Chem. 2018, 14, 1508. (d) Boelke, A.; Finkbeiner, P.; Nachtsheim, B. J. Beilstein J. Org. Chem. 2018, 14, 1263.
- (a) Richter, H. W.; Koser, G. F.; Incarvito, C. D.; Rheingold, A. L. Inorg. Chem. 2007, 46, 5555. (b) Yusubov, M. S.; Postnikov, P. S.; Yoshimura, A.; Zhdankin, V. V. Synlett 2020, 315.
 (c) Yannacone, S.; Oliveira, V.; Verma, N.; Kraka, E. Inorganics 2019, 7, 47. (d) Bauzá, A.; Quiñonero, D.; Frontera, A. Molecules 2018, 23, 18. (e) Pinto de Magalhães, H.; Togni, A.; Lüthi, H. P. J. Org. Chem. 2017, 82, 11799.
- 5. Justik, M. W.; Protasiewicz, J. D.; Updegraff, J. B. *Tetrahedron Lett.* **2009**, *50*, 6072.
- Yoshimura, A.; Fuchs, J. M.; Middleton, K. R.; Maskaev, A. V.; Rohde, G. T.; Saito, A.; Postnikov, P. S.; Yusubov, M. S.; Nemykin, V. N.; Zhdankin, V. V. *Chem.–Eur. J.* 2017, 23, 16738.
- Yoshimura, A.; Klasen, S. C.; Shea, M. T.; Nguyen, K. C.; Rohde, G. T.; Saito, A.; Postnikov, P. S.; Yusubov, M. S.; Nemykin, V. N.; Zhdankin, V. V. *Chem – Eur. J.* 2017, *23*, 691.
- (a) Legault, C. Y.; Prévost, J. Acta Crystallogr., Sect. E: Struct. Rep. Online 2012, E68, o1238. (b) Geary, G. C.; Hope, E. G.; Singh, K.; Stuart, A. M. Chem. Commun. 2013, 9263.
- (a) Braddock, D. C.; Cansell, G.; Hermitage, S. A.; White, A. J. P. *Chem. Commun.* 2006, 1442. (b) Zhdankin, V. V.; Krasutsky, A. P.; Kuehl, C. J.; Simonsen, A. J.; Woodward, J. K.; Mismash, B.; Bolz, J. T. *J. Am. Chem. Soc.* 1996, *118*, 5192. (c) Eisenberger, P.; Gischig, S.; Togni, A. *Chem.–Eur. J.* 2006, *12*, 2579.

- Koser, G. F.; Sun, G.; Porter, C. W.; Youngs, W. J. J. Org. Chem. 1993, 58, 7310.
- Nemykin, V. N.; Maskaev, A. V.; Geraskina, M. R.; Yusubov, M. S.; Zhdankin, V. V. *Inorg. Chem.* 2011, 50, 11263.
- 12. Kraszkiewicz, L.; Skulski, L. ARKIVOC 2003, (vi), 120.
- (a) Zhdankin, V. V.; Kuehl, C. J.; Krasutsky, A. P.; Formaneck, M. S.; Bolz, J. T. *Tetrahedron Lett.* **1994**, *35*, 9677. (b) Vita, M. V.; Waser, J. Org. Lett. **2013**, *15*, 3246.
- (a) Zhdankin, V. V.; Kuehl, C. J.; Krasutsky, A. P.; Bolz, J. T.; Mismash, B.; Woodward, J. K.; Simonsen, A. J. *Tetrahedron Lett.* **1995**, *36*, 7975. (b) Shen, H.; Li, J.; Liu, Q.; Pan, J.; Huang, R.; Xiong, Y. J. Org. Chem. **2015**, *80*, 7212.
- Matoušek, V.; Václavík, J.; Hájek, P.; Charpentier, J.; Blastik, Z. E.; Pietrasiak, E.; Budinská, A.; Togni, A.; Beier, P. *Chem.-Eur. J.* 2016, 22, 417.
- Matoušek, V.; Pietrasiak, E.; Schwenk, R.; Togni, A. J. Org. Chem. 2013, 78, 6763.
- Zhdankin, V. V.; Litvinov, D. N.; Koposov, A. Y.; Luu, T.; Ferguson, M. J.; McDonald, R.; Tykwinski, R. R. Chem. Commun. 2004, 106.
- Meprathu, B. V.; Justik, M. W.; Protasiewicz, J. D. Tetrahedron Lett. 2005, 46, 5187.
- Macikenas, D.; Skrzypczak-Jankun, E.; Protasiewicz, J. D. Angew. Chem., Int. Ed. 2000, 39, 2007.
- Yusubov, M. S.; Soldatova, N. S.; Postnikov, P. S.; Valiev, R. R.; Yoshimura, A.; Wirth, T.; Nemykin, V. N.; Zhdankin, V. V. *Chem. Commun.* 2019, 7760.
- 21. Hartman, C.; Mayer, V. Ber. Dtsch. Chem. Ges. 1893, 26, 1727.
- 22. Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
- (a) Uyanik, M.; Akakura, M.; Ishihara, K. J. Am. Chem. Soc.
 2009, 131, 251. (b) Mironova, I. A.; Postnikov, P. S.; Yusubova, R. Y.; Yoshimura, A.; Wirth, T.; Zhdankin, V. V.; Nemykin, V. N.; Yusubov, M. S. Beilstein J. Org. Chem.
 2018, 14, 1854. (c) Koposov, A. Y.; Litvinov, D. N.; Zhdankin, V. V.; Ferguson, M. J.; McDonald, R.; Tykwinski, R. R. Eur. J. Org. Chem. 2006, 4791.
- Yusubov, M. S.; Svitich, D. Y.; Yoshimura, A.; Nemykin, V. N.; Zhdankin, V. V. *Chem. Commun.* 2013, 49, 11269.
- 25. Veretennikov, E. A.; Gavrilov, A. E. Chem. Heterocycl. Compd. 2007, 43, 1081. [Химия гетероцикл. соединений 2007, 1273.]
- (a) Lishchynskyi, A.; Muñiz, K. Chem.-Eur. J. 2012, 18, 2212. (b) Souto, J. A.; Becker, P.; Iglesias, A.; Muñiz, K. J. Am. Chem. Soc. 2012, 134, 15505. (c) Souto, J. A.; Zian, D.; Muñiz, K. J. Am. Chem. Soc. 2012, 134, 7242.
- Röben, C.; Souto, J. A.; Escudero-Adán, E. C.; Muñiz, K. Org. Lett. 2013, 15, 1008.
- (a) Hadjiarapoglou, L.; Spyroudis, S.; Varvoglis, A. Synthesis 1983, 207. (b) Papadopoulou, M.; Varvoglis, A. J. Chem. Res., Synop. 1983, 66. (c) Papadopoulou, M.; Varvoglis, A. J. Chem. Res., Synop. 1984, 166. (d) Souto, J. A.; González, Y.; Iglesias, A.; Zian, D.; Lishchynskyi, A.; Muñiz, K. Chem.-Asian J. 2012, 7, 1103. (e) Kantak, A. A.; Marchetti, L.; DeBoef, B. Chem. Commun. 2015, 3574.
- (a) Souto, J. A.; Martínez, C.; Velilla, I.; Muñiz, K. Angew. Chem., Int. Ed. 2013, 52, 1324. (b) Yoshimura, A.; Koski, S. R.; Fuchs, J. M.; Saito, A.; Nemykin, V. N.; Zhdankin, V. V. Chem.-Eur. J. 2015, 21, 5328.
- 30. (a) Han, H.; Tsarevsky, N. V. *Chem. Sci.* 2014, *5*, 4599.
 (b) Magnus, P.; Lacour, J.; Evans, P. A.; Roe, M. B.; Hulme, C. *J. Am. Chem. Soc.* 1996, *118*, 3406.
- 31. (a) Lazbin, I. M.; Koser, G. F. J. Org. Chem. 1987, 52, 476.
 (b) Koser, G. F.; Kokil, P. B.; Shah, M. Tetrahedron Lett. 1987, 28, 5431.

- 32. Mikhael, M.; Adler, S. A.; Wengryniuk, S. E. Org. Lett. 2019, 21, 5889.
- Montanari, V.; DesMarteau, D. D.; Pennington, W. T. J. Mol. Struct. 2000, 550–551, 337.
- 34. Postnikov, P. S.; Guselnikova, O. A.; Yusubov, M. S.; Yoshimura, A.; Nemykin, V. N.; Zhdankin, V. V. J. Org. Chem. 2015, 80, 5783.
- (a) Ishida, K.; Togo, H. Moriyama, K. Chem.–Asian J. 2016, 11, 3583. (b) Moriyama, K.; Ishida, K.; Togo, H. Chem. Commun. 2015, 51, 2273.
- (a) Marchetti, L.; Kantak, A.; Davis, R.; DeBoef, B. Org. Lett.
 2015, 17, 358. (b) Cho, S. H.; Yoon, J.; Chang, S. J. Am. Chem. Soc. 2011, 133, 5996. (c) Kim, H. J.; Kim, J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc. 2011, 133, 16382. (d) Röben, C.; Souto, J. A.; González, Y.; Lishchynskyi, A.; Muñiz, K. Angew. Chem., Int. Ed. 2011, 50, 9478. (e) Lubriks, D.; Sokolovs, I.; Suna, E. J. Am. Chem. Soc. 2012, 134, 15436. (f) Galligan, M. J.; Akula, R.; Ibrahim, H. Org. Lett. 2014, 16, 600. (g) Xu, L.; Mou, X.-Q.; Chen, Z.-M.; Wang, S.-H. Chem. Commun. 2014, 50, 10676. (g) Pedersen, C. M.; Marinescu, L. G.; Bols, M. Org. Biomol. Chem. 2005, 3, 816. (h) Xie, F.; Qi, Z.; Li, X. Angew. Chem., Int. Ed. 2013, 52, 11862.
- Ochiai, M.; Nakano, A.; Yoshimura, A.; Miyamoto, K.; Hayashi, S.; Nakanishi, W. *Chem. Commun.* 2009, 959.
- Kobayashi, Y.; Masakado, S.; Takemoto, Y. Angew. Chem., Int. Ed. 2018, 57, 693.
- Ochiai, M.; Nakano, A.; Yoshimura, A.; Miyamoto, K.; Hayashi, S.; Nakanishi, W. Chem. Commun. 2009, 959.
- Macikenas, D.; Skrzypczak-Jankun, E.; Protasiewicz, J. D. J. Am. Chem. Soc. 1999, 121, 7164.
- 41. Jaffe, H.; Leffler, J. E. J. Org. Chem. 1975, 40, 797.
- 42. (a) Balthazor, T. M.; Godar, D. E.; Stults, B. R. J. Org. Chem.
 1979, 44, 1447. (b) Wolf, W.; Steinberg, L. Chem. Commun. (London) 1965, 449. (c) Barber, H. J.; Henderson, M. A. J. Chem. Soc. C. 1970, 862.
- Boelke, A.; Vlasenko, Y. A.; Yusubov, M. S.; Nachtsheim, B. J.; Postnikov, P. S. *Beilstein J. Org. Chem.* 2019, 15, 2311.
- 44. (a) Zhdankin, V. V.; Arbit, R. M.; McSherry, M.; Mismash, B.; Young, V. G. J. Am. Chem. Soc. 1997, 119, 7408.
 (b) Zhdankin, V. V.; Arbit, R. M.; Lynch, B.; Kiprof, P.; Young, V. G. J. Org. Chem. 1998, 63, 6590.
- Zhdankin, V. V.; Koposov, A. Y.; Su, L.; Boyarskikh, V. V.; Netzel, B. C.; Young, V. G. Org. Lett. 2003, 5, 1583.
- 46. (a) Zhdankin, V. V.; Koposov, A. E.; Smart, J. T.; Tykwinski, R. R.; McDonald, R.; Morales-Izquierdo, A. J. Am. Chem. Soc. 2001, 123, 4095. (b) Kiprof, P.; Zhdankin, V. V. ARKIVOC 2003, (vi), 170.
- Yoshimura, A.; Shea, M. T.; Makitalo, C. D.; Jarvi, M. E.; Rohde, G. T.; Saito, A.; Yusubov, M. S.; Zhdankin, V. V. *Beilstein J. Org. Chem.* 2018, 14, 1016.
- 48. Yang, X.-G.; Zheng, K.; Zhang, C. Org. Lett. 2020, 22, 2026.

- Aertker, K.; Rama, R. J.; Opalach, J.; Muñiz, K. Adv. Synth. Catal. 2017, 359, 1290.
- 50. Boelke, A.; Lork, E.; Nachtsheim, B. J. Chem.-Eur. J. 2018, 24, 18653.
- Vlasenko, Y. A.; Postnikov, P. S.; Trusova, M. E.; Shafir, A.; Zhdankin, V. V.; Yoshimura, A.; Yusubov, M. S. *J. Org. Chem.* 2018, 83, 12056.
- Moss, R. A.; Chatterjee, S.; Wilk, B. J. Org. Chem. 1986, 51, 4303.
- (a) Guilbault, A.-A.; Legault C. Y. ACS Catal. 2012, 2, 219.
 (b) Guilbault, A.-A.; Basdevant, B.; Wanie, V.; Legault, C. Y. J. Org. Chem. 2012, 77, 11283. (c) Thérien, M.-È.; Guilbault, A.-A.; Legault, C. Y. Tetrahedron: Asymmetry 2013, 24, 1193.
- (a) Boelke, A.; Nachtsheim, B. J. Adv. Synth. Catal. 2020, 362, 184. (b) Abazid, A. H.; Nachtsheim, B. J. Angew. Chem., Int. Ed. 2020, 59, 1479.
- 55. Rodríguez, A.; Moran, W. J. Synthesis 2012, 1178.
- 56. (a) Levitre, G.; Dumoulin, A.; Retailleau, P.; Panossian, A.; Leroux, F. R.; Masson, G. J. Org. Chem. 2017, 82, 11877.
 (b) Bekkaye, M.; Masson, G. Synthesis 2016, 302.
- 57. (a) Li, X.; Chen, P.; Liu, G. Beilstein J. Org. Chem. 2018, 14, 1813. (b) Muñiz, K. Acc. Chem. Res. 2018, 51, 1507. (c) Romero, R. M.; Wöste, T. H.; Muñiz, K. Chem.-Asian J. 2014, 9, 972. (d) Lee, J. H.; Choi, S.; Hong, K. B. Molecules 2019, 24, 2634.
- Mizar, P.; Laverny, A.; El-Sherbini, M.; Farid, U.; Brown, M.; Malmedy, F.; Wirth, T. *Chem.-Eur. J.* 2014, 20, 9910.
- Hempel, C.; Maichle-Mössmer, C.; Pericas, M. A.; Nachtsheim, B. J. Adv. Synth. Catal. 2017, 359, 2931.
- Vaish, A.; Sayala, K. D.; Tsarevsky, N. V. Tetrahedron Lett. 2019, 60, 150995.
- (a) Shao, X.; Wang, X.; Yang, T.; Lu, L; Shen, Q. Angew. Chem., Int. Ed. 2013, 52, 3457. (b) Vinogradova, E. V.; Müller, P.; Buchwald, S. L. Angew. Chem., Int. Ed. 2014, 53, 3125.
- 62. Cao, Y.; Kumar, R.; Tsarevsky, N. V. Macromol. Chem. Phys. 2019, 220, 1800471.
- 63. (a) Magdziak, D.; Rodriguez, A. A.; Van De Water, R. W.; Pettus, T. R. R. Org. Lett. 2002, 4, 285. (b) Usui, K.; Yamamoto, K.; Shimizu, T.; Okazumi, M.; Mei, B.; Demizu, Y.; Kurihara, M.; Suemune, H. J. Org. Chem. 2015, 80, 6502.
 (c) Yusubov, M. S.; Postnikov, P. S.; Yusubova, R. Y.; Yoshimura, A.; Jürjens, G.; Kirschning, A.; Zhdankin, V. V. Adv. Synth. Catal. 2017, 359, 3207. (d) Dess, D. B.; Wilson, S. R.; Martin, J. C. J. Am. Chem. Soc. 1993, 115, 2488.
- 64. Zhdankin, V. V.; Smart, J. T.; Zhao, P.; Kiprof, P. *Tetrahedron Lett.* **2000**, *41*, 5299.
- Zhdankin, V. V.; Koposov, A. Y.; Yashin, N. V. Tetrahedron Lett. 2002, 43, 5735.
- 66. Xiao, X.; Greenwood, N. S.; Wengryniuk, S. E. Angew. Chem., Int. Ed. 2019, 58, 16181.
- Yakura, T.; Fujiwara, T.; Yamada, A.; Nambu, H. *Beilstein J.* Org. Chem. 2018, 14, 971.