

Химия гетероциклических соединений 2020, 56(7), 892-897

Влияние положительного заряда на параметры спектров ЯМР моно- и дипротонированных форм 4-диметиламинопиридина

Александр М. Генаев¹, Георгий Е. Сальников¹, Константин Ю. Колтунов^{2,3}*

¹ Новосибирский институт органической химии им. Н. Н. Ворожцова СО РАН,

пр. Академика Лаврентьева, 9, Новосибирск 630090, Россия

e-mail: genaev@nioch.nsc.ru, sge@nmr.nioch.nsc.ru

² Новосибирский государственный университет,

ул. Пирогова, 2, Новосибирск 630090, Россия; e-mail: koltunov@catalysis.ru

³ Институт катализа им. Г. К. Борескова СО РАН, пр. Академика Лаврентьева, 5, Новосибирск 630090, Россия

Поступило 24.04.2020 Принято 11.05.2020

На примере 4-диметиламинопиридина и некоторых его производных, взятых в качестве модельных азотистых гетероциклов с несколькими осно́вными центрами, изучена корреляция параметров спектров ЯМР с направлением (региоселективностью) и кратностью протонирования этих соединений в кислотных системах CF₃COOH–CD₂Cl₂, TfOH–CD₂Cl₂ и FSO₃H–SbF₅. Установленные зависимости спектральных характеристик от значения внесенного положительного заряда будут полезны при изучении реакционной способности аналогичных гетероциклических систем в присутствии кислотных агентов.

Ключевые слова: ДМАП, суперкислоты, квантово-химические расчеты, *N*-протонирование, симуляция спектров ЯМР, ЯМР.

Высокая основность атома азота определяет реакционную способность N-гетероциклических соединений ряда пиридина в среде протонных кислот и суперкислот.^{1,2} Метод ЯМР, наряду с теоретическими расчетами, занимает ведущее место в изучении строения и реакционной способности соответствующих протонированных форм.³ В представленном исследовании на примере 4-диметиламинопиридина (ДМАП) и его производных, взятых в качестве модельных соединений с двумя и более основными центрами, изучено влияние внесенного положительного заряда на параметры спектров ЯМР, которые могут однозначно свидетельствовать о направлении и кратности протонирования предшественников в (супер)кислотах. Установленные корреляции будут полезны при изучении химических свойств аналогичных гетероциклических систем в различных электрофильных средах.

Хорошо известны отличия параметров спектров ЯМР пиридина и его производных от параметров соответствующих негетероциклических аналогов.^{4,5} Такие важные и легко детектируемые особенности, как слабопольный химический сдвиг δ_{H-2} , уменьшенная константа спин-спинового взаимодействия (КССВ) ${}^{3}J_{\text{H-2,H-3}}$ и увеличенная КССВ ${}^{1}J_{\text{C-2,H-2}}$, существенно облегчают идентификацию пиридинового фрагмента в спектрах ЯМР. Считается, что спектральные особенности пиридина в основном обусловлены наличием неподеленной электронной пары на атоме азота. Ее блокировка путем протонирования приводит к тому, что параметры ЯМР становятся сходными с "бензольными".^{6,7} При *N*-протонировании на спектры также оказывают влияние увеличение электроотрицательности атома азота и появление на пиридиновом фрагменте избыточного положительного заряда.⁸ Последний фактор, насколько нам известно, систематически не изучался.

Для молекулы ДМАП (1), содержащей два атома азота, возможно как *N*-моно-, так и *N*,*N*⁻дипротонирование и, таким образом, существенное варьирование заряда на пиридиновом остове.⁹ Благодаря значительному отличию значений р K_a 9.70 и –9.28, отвечающих генерированию соответственно монокатионной и дикатионной форм **1a** и **2a**,⁹ следует ожидать, что исчерпывающее селективное монопротонирование ДМАП (1) может происходить в кислотах средней силы, тогда как дипротонирование – в избытке суперкислоты (схема 1). Более тонкая регулировка заряда на пиридиновом остове может достигаться варьированием заместителей на заряженном атоме N-1 в пиридиниевых катионах, таких как **1b,c**, задействованных в настоящей работе.

Схема 1. Возможные пути протонирования ДМАП (1) и катионов 1b,c

Согласно данным рентгеноструктурного анализа, группа NMe₂ в молекуле **1** имеет планарное строение,¹⁰ что не согласуется с имеющимися в литературе расчетными данными методами HF и DFT/B3LYP для газовой фазы.¹¹ Согласно нашим расчетам, метод DFT/PBE прогнозирует планарную структуру фрагмента NMe₂ (симметрия молекулы C_{2v}), тогда как метод riMP2 – заметное отклонение от планарности (симметрия C_s). Поэтому мы использовали более надежный метод расчета CCSD(T), считающийся "золотым стандартом" квантовой химии. Согласно методу CCSD(T), в газовой фазе структура симметрии C_s всего лишь на 0.44 ккал/моль более стабильна, чем структура C_{2v} (рис. 1).

Рисунок 1. Геометрия нейтральной молекулы ДМАП (1), согласно расчетам гіМР2 и DFT/PBE.

В отличие от нейтральной молекулы, в протонированном соединении 1, как по расчетным, так и по рентгеноструктурным данным, группа NMe₂ планарна,¹² что, очевидно, обусловлено значительным вкладом резонансной структуры 1a', в которой атом азота в положении 4 имеет гибридизацию sp^2 .

Данные о количественном составе изученных нами растворов соединения **1**, а также солей **1b**, с в кислотных системах CF₃COOH–CD₂Cl₂, TfOH–CD₂Cl₂ и FSO₃H–SbF₅ и выводы о продуктах их протонирования суммированы в табл. 1. Параметры спектров ЯМР ¹H, ¹³C и ¹⁹F полученных растворов приведены в табл. 2–4 (в соответствии с нумерацией табл. 1).

Добавление ~0.3 моль. экв. ТfOH к 0.4 М раствору ДМАП (1) в CD₂Cl₂ (табл. 1, образец 2) приводит к смещению сигналов в спектрах ЯМР ¹Н и ¹³С, что вызвано частичным вкладом структуры 1а в усредненные химические сдвиги. При добавлении 1 экв. TfOH образуется объемный осадок, не позволяющий записать спектры. В присутствии 2.8 экв. кислоты осадок растворяется (табл. 1, образец 3), но при этом возможно генерирование как моно-, так и дипротонированной формы. Тем не менее в спектрах ЯМР 'Н и ¹³С образовавшегося раствора химические сдвиги оказались очень близки к вычисленным для монокатиона 1а, исходя из спектров непротонированного и частично монопротонированного соединения 1 по формуле $\delta_1 = (\delta - \delta_0)/\alpha + \delta_0$, где δ , δ_0 и δ_1 – химические сдвиги частично протонированной, непротонированной и монопротонированной форм 1, а α – это доля монопротонированной формы 1а, принятая равной 0.3. Следовательно, при сравнительно небольшом избытке ТfOH образуется только монокатион 1а.

Направление монопротонирования ДМАП (1) однозначно доказывается данными спектроскопии ЯМР ¹Н. О протонировании по одному из атомов азота свидетельствует форма сигнала и химический сдвиг присоединенного протона – уширенный триплет в области

Таблица 1. Состав образцов для записи спектров ЯМР

Образец	Субстрат (мг)	Кислота (мл)	Растворитель (мл)	Ионная форма
1	1 (25)	-	$CD_2Cl_2(0.5)$	1
2	1 (25)	TfOH (0.006)	$CD_2Cl_2(0.5)$	1, 1a
3	1 (25)	TfOH (0.05)	$CD_2Cl_2(0.5)$	1a
4	1 (25)	TfOH (0.4)	$CD_2Cl_2(0.1)$	2a
5	1 (25)	FSO ₃ H–SbF ₅ (0.5)	-	2a
6	1 (25)	CF ₃ COOH (0.4)	$CD_2Cl_2(0.1)$	1 a
7	$\mathbf{1b} \cdot \Gamma$ (50)	-	D ₂ O (0.5)	1b
8	$\mathbf{1b} \cdot \mathbf{I}^{-} (50)$	TfOH (0.4)	$CD_2Cl_2(0.1)$	2b
9	$1c \cdot F^{-}(15)$	-	D ₂ O (0.5)	1c
10	$1c \cdot F^{-}(50)$	CF ₃ COOH (0.4)	$CD_2Cl_2(0.1)$	1c
11	$1c \cdot F^{-}(50)$	FSO_3H - SbF_5 (0.5)	_	4

Ofmanou*	Химические сдвиги δ_{H} , м. д.				<i>J</i> , Гц							
Н	H-2,6	H-3,5	CH_3	NH	Прочие	$^{3}J_{\mathrm{H-2,H-3}}$	$^4J_{\mathrm{H} ext{-}3,\mathrm{H} ext{-}5}$	${}^4J_{\mathrm{H} ext{-}2,\mathrm{H} ext{-}6}$	$^5J_{ m H-2,H-5}$	${}^{3}J_{ m NH,H-2}$	${}^{4}J_{\rm NH,H-3}$	Прочие
1	8.17	6.49	2.97			6.0	3.0	0.3	0.5			
2	8.12	6.62	3.07	15.7**								
3	8.00	6.87	3.25	10.97		7.4	2.8	1.5	0.4	6.0	1.4	$^{1}J(^{1}\mathrm{H},^{14}\mathrm{N})$ 50
4	9.16	8.44	3.65	13.17, 9.16		6.6	2.7	1.2	0.6	6.8	1.1	
5	9.15	8.42	3.74	12.6, 8.2**		7.4	2.6	1.5	0.0			${}^{3}J_{\rm HNMe}$ 5.1
6	8.09	6.98	3.39	11.1**		7.4	2.8	1.6	0.4	6.0	1.3	
7	7.94	6.84	3.17		$\delta_{Me}3.89$	7.5	3.1	2.1	0.3			
8	9.02	8.35	3.62	9.1**	$\delta_{Me}4.59$							
9	8.17	7.15	3.38			7.9	3.0	2.2	0.2			${}^{5}J_{\text{H-2,F-3}}$ 1.5
10	8.09	7.20	3.51									
11	9.42	8.88	3.88	8.53								$^{3}J_{\rm HNMe}$ 5.0

Таблица 2. Параметры спектров ЯМР ¹Н растворов соединений 1, 1а-с

* Номера и состав образцов согласно табл. 1.

** Уширенные сигналы.

Таблица 3. Параметры спектров ЯМР ¹³С растворов соединений 1, 1а-с

Образец*	Хими	ческие с	двиги б _С	<i>J</i> , Гц			
	C-2,6	C-3,5	C-4	CH_3	$^{1}J_{\text{C-2,H}}$	${}^{1}J_{\text{C-3,H}}$	${}^{1}J_{C,H(Me)}$
1	149.5	106.3	154.0	38.6	174	160	136
2	145.7	106.5	155.2	39.0	177	163	137
3	138.6	107.7	157.4	40.3	186	170	140.2
4	146.7	122.4	157.3	48.9	199	178	148.5
5	146.2	121.3	156.5	48.4	201	179	149
6	139.3	108.0	159.0	40.2	186	170	140
7**	142.3	107.6	156.2	39.6	185	170	139.4
8***	149.8	122.5	155.3	48.8	196	177	148.5
9	141.0	108.2	157.1	40.3			141
10	141.9	109.3	158.3	41.0	189	173	141
11	150.0	124.2	159.6	48.5	204	182	150

* Номера и состав образцов согласно табл. 1.

** δ_{1-Me} 44.4 M. $\exists_{., 1} J_{CH(1-Me)} = 143 \ \Gamma \mu.$ *** δ_{1-Me} 50.4 M. $\exists_{., 1} J_{CH(1-Me)} = 148 \ \Gamma \mu.$

11.0 м. д. с интегральной интенсивностью 1Н и константой ${}^{1}J({}^{1}H,{}^{14}N)$ около 50 Гц. В спектре ЯМР ${}^{1}H$ наблюдается также КССВ 6 Ги. что соответствует ожидаемому значению вицинальной константы J_{NH.H-2} катиона 1а (рис. 2).

Рисунок 2. Фрагменты спектров ЯМР ¹Н образца 3 из табл. 1 (внизу) и симулированного спектра катиона 1а (вверху, спиновая система АА'ВВ'С).

Таблица 4. Параметры спектров ЯМР ¹³С и ¹⁹F тетрафторпиридинового фрагмента катиона 1c*

Образец*	Хим	иические	<i>Ј</i> , Гц				
	C-2',6'	C-3',5'	C-4'	F-2',6'	F-3',5'	$^{1}J_{\text{C-2',F-2'}}$	${}^{1}J_{\text{C-3',F-3'}}$
9	143.9	137.4	131.1	-87.8	-149.0	245	265
10	145.3	138.1	131.5	-86.3	-149.9	250	268.5
11	145.5	139.3	137.1	-86.7	-136.1	306	281
		-					

* Номера и состав образцов согласно табл. 1.

Следует отметить, что протонирование ДМАП (1) по атому азота группы NMe₂ с образованием структуры 5 можно отвергнуть, поскольку значение КССВ ${}^{5}J_{\rm NH H-2} = 6$ Гц крайне маловероятно.

Протонирование ДМАП (1) по атому N-1 согласуется также с результатами квантово-химических расчетов. Расчет методом DFT/PBE/L22 показывает, что катион 1а значительно (на 30.6 ккал/моль) стабильнее структуры 5 и тем более изомерных С-протонированных форм. При этом расчетные химические сдвиги монокатиона 1а в спектрах ЯМР ¹Н и ¹³С намного лучше согласуются с экспериментальными (табл. 5, рис. S1 в сопроводительных материалах).

Дальнейшее увеличение содержания TfOH в смеси 1-ТfOH-CD₂Cl₂ приводит к расслаиванию кислотной системы. Однако гомогенность достигается при мольном соотношении 1:TfOH = 1:22 (табл. 1, образец 4).

Таблица 5. Расчетные химические сдвиги соединения 1 и его протонированных форм (б, м. д.), полученные методом PBE/L22//PBE/L1

5							
Соеди- нение	H-2	Н-3	$C\underline{H}_3$	C-2	C-3	C-4	<u>C</u> H ₃
1	8.40	6.38	3.05	150.3	104.7	149.4	36.4
1 a	7.78	7.01	3.43	135.6	110.2	153.3	40.0
5	9.24	8.38	3.87	149.1	124.3	161.3	51.0
2a	9.57	7.18	3.43	158.6	109.7	148.6	47.3
6	7.77	8.13	4.37	139.1	126.8	153.3	49.7

В спектре ЯМР ¹Н такого раствора появляется новый уширенный сигнал при 9.16 м. д. интенсивностью 1Н. Химические сдвиги атомов углерода и связанных с ними протонов соответствуют рассчитанным для дипротонированной формы 2a и не согласуются с альтернативной формой **6** (схема 1, рис. S1). Генерирование дикатиона **6**, как и протонирование монокатиона **1** по атомам C-2 и C-3 можно также отвергнуть на основании данных спектра ЯМР ¹Н, в котором присутствуют два широких слабопольных сигнала интенсивностью 1Н каждый, относящиеся к протонам, связанным с разными атомами азота. Отметим также, что, согласно расчетам методом DFT/PBE/L22, дикатион **6** на 32.0 ккал/моль менее стабилен по сравнению с наблюдаемым изомером **2a**.

В более сильной кислоте FSO₃H-SbF₅ (1:1 моль/моль) положение сигналов в спектрах ЯМР существенно не изменяется, что указывает на генерирование дикатиона 2а и отсутствие дополнительного протонирования в этой среде. Однако сигнал метильных групп заряженного фрагмента NHMe₂ становится дублетным вследствие замедленного обмена протона NH с протонами среды. Отметим также, что при растворении соединения 1 в значительно более слабой CF₃COOH (табл. 1, образец 6) в спектре ЯМР ¹Н генерированного монокатиона 1a для протона 1-NH наблюдался отдельный сигнал со спин-спиновым взаимодействием с протонами пиридинового остова, что тоже свидетельствует об отсутствии быстрого обмена со средой.

Спектры ЯМР раствора соли $1b \cdot \Gamma$ в TfOH (табл. 1, образец 8) сходны со спектрами ДМАП (1) в той же среде. Это соответствует ожидаемому протонированию катиона 1b по атому азота группы NMe₂ с образованием дикатиона 2b. Примечательно, что растворение иодида 1b $\cdot \Gamma$ в TfOH сопровождается быстрым выпадением элементарного иода. Эта побочная окислительновосстановительная реакция, в которой окислителем выступает, очевидно, TfOH не приводит к появлению дополнительных сигналов в спектрах ЯМР ¹H и ¹³C.

Спектры ЯМР растворов соли 1с · F⁻ в CF₃COOH и в D₂O почти не отличаются, что указывает на отсутствие протонирования катиона 1с в CF₃COOH. Напротив, в кислотной системе FSO₃H-SbF₅ происходит дипротонирование катиона 1с с образованием трикатиона 4 (табл. 1, образец 11). На протонирование группы NMe₂ указывает дублетный сигнал метильных групп в спектре ЯМР ¹Н и уширенный септет присоединенного протона. С другой стороны, наблюдается резкое, более чем на 50 Гц, увеличение КССВ ¹*J*_{C-2',F-2'}. Примерно такое же увеличение - от 244 до 293 Гц, наблюдали ранее при *N*-протонировании пентафторпиридина.¹³ Следовательно, атом азота тетрафторпиридинового фрагмента тоже подвергается протонированию в FSO_3H –SbF₅. При протонировании соли 1с · F⁻ в кислоте промежуточной силы - TfOH - спектры ЯМР отражают сложные обменные процессы с возможным участием ионов 2с, 3 и 4, описание которых будет представлено в отдельной публикации.

Рисунок 3. Сигнал протона H-3 в спектрах ЯМР ¹Н растворов а) ДМАП (1) в CD_2Cl_2 ; b) соли $1c \cdot F^-$ в D_2O (похожий вид сигнала наблюдали для растворов солей $1c \cdot F^-$ в CF₃COOH и $1b \cdot I^-$ в D_2O); c) ДМАП (1) в CF₃COOH (похожий вид сигнала наблюдали для раствора соединения 1 в TfOH (2.8 экв.)); d) ДМАП (1) в TfOH (22 экв.).

Для протонов H-2 и H-3 молекулы 1 характерна спиновая система AA'XX' (рис. 3a) с почти одинаковой формой А- и Х-частей, вид которых в шкале герц не зависит от частоты спектрометра ЯМР благодаря значительной разнице химических сдвигов δ_{H-2} и δ_{H-3} . Вицинальная константа ³J_{H-2.H-3}, как и в других производных пиридина,⁴ меньше, чем у большинства ароматических соединений. Обращает на себя внимание значительная разница W-констант ${}^{4}J_{\text{H-2,H-6}}$ и ${}^{4}J_{\text{H-3,H-5}}(0.3)$ и 3.0 Гц соответственно), что меньше и больше типичных для ароматических соединений значений. Согласно квантово-химическим расчетам, эта разница возникает из-за различия ферми-контактных вкладов. В катионах 1b,с вид спиновой системы АА'ХХ' существенно меняется (рис. 3b). Симуляция спектров показала, что это вызвано в основном увеличением констант ³J_{H-2,H-3} и ${}^{4}J_{\text{H-2,H-6}}$ (табл. 2). Подобное изменение констант происходит и при протонировании пиридина, что связывают с исчезновением неподеленной электронной пары на атоме азота, а не с появлением положительного заряда в пиридиновом цикле.^{6,14} В результате протонирования по атому N-1 спиновая система катиона принимает вид АА'ХХ'М, и в А-части, соответствующей протону H-2 (рис. 2), проявляется вицинальная константа ³J_{NH.H-2}, обеспечивающая триплетный вид сигнала этого протона в рутинных спектрах. Аналогично возникает W-константа ³*J*_{NH,H-3} (1.4 Гц), существенно изменяющая тонкую структуру Х-части сигнала Н-3 (рис. 3с), тогда как дополнительное протонирование по группе NMe₂ существенно не влияет на спиновую систему сигнала H-3 (рис. 3d).

Примечательно, что такие параметры спектра ЯМР, как химические сдвиги и КССВ ${}^{1}H_{-}{}^{1}H$, не показывают корреляции с зарядом при переходе от соединения **1** к его протонированным формам **1а** и **2а** (табл. 2, 3). Вместе с тем оказалось, что в этом ряду монотонно

Рисунок 4. Зависимость КССВ ${}^{1}J_{C,H}$ в структурах 1, 1а–с, 2а,b, 4 от заряда на фрагменте С–Н, рассчитанного методом NBO riMP2/L1//HF/6G-31*.

возрастают константы взаимодействия ${}^{1}J$ между атомами С и Н. Поэтому мы сопоставили константы ${}^{1}J_{C,H}$ с суммарным зарядом на соответствующих атомах углерода и водорода, рассчитанным методом NBO (рис. 4). Следует отметить, что КССВ между атомами С-2 и H-2, а также между атомами С и Н метильных групп фрагмента NMe₂ продемонстрировали монотонную зависимость от рассчитанных атомных зарядов во всем ряду изученных частиц.

Таким образом, в результате комбинированного исследования методом спектроскопии ЯМР и квантовохимических расчетов установлены качественные и количественные закономерности влияния внесенного положительного заряда на параметры спектров ЯМР моно- и дипротонированных форм 4-диметиламинопиридина и его производных. Найденные закономерности могут быть полезны при дальнейших исследованиях методом ЯМР поведения азотистых гетероциклических соединений в электрофильных средах.

Экспериментальная часть

Спектры ЯМР записаны на спектрометрах AV-400 (400 МГц для ¹H и 100 МГц для ¹³С), AV-600 (600, 565 и 151 МГц для ¹H, ¹³С и ¹⁹F соответственно), AV-300 (300 МГц для ¹H и 282 МГц для ¹⁹F), DRX-500 (500 МГц для ¹H и 125 МГц для ¹³С) фирмы Bruker. В качестве внутреннего стандарта в спектрах ЯМР ¹H использованы остаточные сигналы протонов lock-соединения CD_2Cl_2 (5.33 м. д.). Все спектры ЯМР записаны при температуре 20–25 °С. Для растворов, в которых CD_2Cl_2 не растворим (D_2O) или вступает в реакции (FSO₃H–SbF₅), в качестве внутреннего стандарта применен Me₄N⁺BF₄⁻ (3.20 м. д.). Химические сдвиги в спектрах ЯМР ¹³С и ¹⁹F калиброваны по процедуре χ -ref.¹⁵

Для приготовления кислотных сред использована HSO₃F (дважды перегнана, т. кип. 158–161 °C). SbF₅, CF₃COOH и TfOH перегнаны в токе аргона.

Соединение 1 фирмы Fluka использовано без дополнительной очистки.

Соль **1b**·I⁻ получена из соединения **1** и MeI.¹⁶

Соль $1c \cdot F^-$ получена реакцией соединения 1 и пентафторпиридина в EtOAc.¹⁷ Как и в литературной методике,¹⁷ соль $1c \cdot F^-$ получена с примесью неидентифицированного дизамещенного производного пентафторпиридина (~12 моль. %, данные спектроскопии ЯМР ¹⁹F), присутствие которого, однако, практически не влияет на реакционную способность и спектральные характеристики основного вещества в кислотных растворах.

Квантово-химические расчеты проведены на кластере Информационно-вычислительного центра Новосибирского государственного университета. Оптимизация геометрии молекулы соединения 1 и катионов 1а-с, 2а, b, 3, 4 проведена с помощью программы PRIRODA¹⁸ методами DFT/PBE или riMP2 с использованием базиса L1.¹⁹ Химические сдвиги в спектрах ЯМР рассчитаны с помощью той же программы методом GIAO DFT/PBE/L22. КССВ вычислены методом MP2/SOPPA²⁰ (базисы сс-pVDZ-Cs для атомов углерода, aug-cc-pVTZ-J без d-функций для протонов, сс-рVDZ для атомов азота) с помощью программы Dalton.²¹ Атомные заряды рассчитаны методом NBO²² НF/6G-31* с помощью программы GAMESS.²³ Расчет энергий конформаций C_s и C_{2v} соединения 1 проведены методом DLPNO-CCSD(T)/TZVP с помощью программы Orca.²⁴ Симуляция спиновых систем с итерационной подгонкой к экспериментальным спектрам ЯМР выполнена методом ANATOLIA²⁵ с помощью программы XSIM.²⁶

Файл сопроводительных материалов, содержащий результаты квантово-химических расчетов и спектры ЯМР, доступен на сайте журнала http://hgs.osi.lv.

Работа выполнена в рамках государственных заданий № АААА-А17-117041710083-5 для Института катализа им. Г. К. Борескова СО РАН и № АААА-А18-118020290191-2 для Новосибирского института органической химии им. Н. Н. Ворожцова СО РАН.

Авторы выражают благодарность Химическому исследовательскому центру коллективного пользования СО РАН за проведение спектральных и аналитических исследований.

Список литературы

- (a) Olah, G. A.; Klumpp, D. A. Superelectrophiles and Their Chemistry; John Wiley & Sons, Inc.: New York, 2008.
 (b) Olah, G. A.; Prakash, G. K. S.; Molnár, Á.; Sommer, J. Superacid Chemistry; Wiley: New York, 2009. (c) Vuong, H.; Stentzel, M. R.; Klumpp, D. A. Tetrahedron Lett. 2020, 61, 151630.
- Dyablo, O. V.; Pozharskii, A. F.; Nosacheva, E. A. Chem. Heterocycl. Compd. 2018, 54, 1. [Химия гетероцикл. соединений 2018, 54, 1.]
- Krivdin, L. B. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 112– 113, 103.
- Denisov, A. Y.; Mamatyuk, V. I.; Shkurko, O. P. Chem. Heterocycl. Compd. 1984, 20, 771. [Химия гетероцикл. соединений 1984, 948.]

- 5. Denisov, A. Y.; Mamatyuk, V. I.; Shkurko, O. P. *Chem. Heterocycl. Compd.* **1984**, *20*, 1000. [Химия гетероцикл. соединений **1984**, 1223.]
- 6. Gil, V. M. S.; Pinto, A. J. L. Mol. Phys. 1970, 19, 573.
- 7. Del Bene, J. E.; Elguero, J. Magn. Reson. Chem. 2006, 44, 784.
- 8. Seel, H.; Guenther, H. J. Am. Chem. Soc. 1980, 102, 7051.
- Forsythe, P.; Frampton, R.; Johnson, C. D.; Katritzky, A. R. J. Chem. Soc., Perkin Trans. 2 1972, 671.
- 10. Ohms, U.; Guth, H. Z. Kristallogr. 1984, 166, 213.
- Sundaraganesan, N.; Kalaichelvan, S.; Meganathan, C.; Joshua, B. D.; Cornard, J. Spectrochim. Acta, Part A 2008, 71, 898.
- Chao, M.; Schempp, E.; Rosenstein, R. D. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1977, 33, 1820.
- Chambers, R. D.; Matthews, R. S.; Kenneth, W.; Musgrave, R.; Urben, P. G. Org. Magn. Reson. 1980, 13, 363.
- 14. Sándor, P.; Radics, L. Org. Magn. Reson. 1980, 14, 98.
- (a) Harris, R. K.; Becker, E. D.; Cabral De Menezes, S. M.; Goodfellow, R.; Granger, P. *Pure Appl. Chem.* 2001, *73*, 1795. (b) Harris, R. K.; Becker, E. D.; Cabral De Menezes, S. M.; Granger, P.; Hoffman, R. E.; Zilm, K. W. *Pure Appl. Chem.* 2008, *80*, 59.
- Thomas, C.; Milet, A.; Peruch, F.; Bibal, B. Polym. Chem. 2013, 4, 3491.

- 17. Schmidt, A.; Mordhorst, T.; Namyslo, J. C.; Telle, W. *J. Heterocycl. Chem.* **2007**, *44*, 679.
- (a) Laikov, D. N. Chem. Phys. Lett. 1997, 281, 151.
 (b) Laikov, D. N.; Ustynyuk, Y. A. Russ. Chem. Bull., Int. Ed. 2005, 54, 820. [*H36. AH, Cep. xum.* 2005, 804.]
- (a) Laikov, D. N. Chem. Phys. Lett. 2005, 416, 116.
 (b) Laikov, D. N. Theor. Chem. Acc. 2019, 138, 40.
- 20. Kjær, H.; Sauer, S. P. A.; Kongsted, J. J. Chem. Phys. 2010, 133, 144106.
- 21. DALTON, A Molecular Electronic Structure Program, Release 2.0; 2005. https://daltonprogram.org/
- (a) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066.
 (b) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.
- Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A., Jr. J. Comput. Chem. 1993, 14, 1347.
- 24. Neese, F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73.
- Cheshkov, D. A.; Sheberstov, K. F.; Sinitsyn, D. O.; Chertkov, V. A. Magn. Reson. Chem. 2018, 56, 449.
- Marat, K. XSIM, The University of Manitoba NMR Spectral Simulation and Analysis Package; University of Manitoba: Winnipeg, 1996.