

Химия гетероциклических соединений 2020, 56(7), 848–853

Синтез гетероциклов из алленов, содержащих электроноакцепторные заместители, в условиях электрофильной активации: последние достижения

Станислав В. Лозовский¹*

¹ Санкт-Петербургский государственный университет, Университетский пр., 26, Санкт-Петербург 198504, Россия; e-mail: lozovskiystas@gmail.com Поступило 27.04.2020 Принято 20.05.2020

В обзоре рассмотрены последние достижения в синтезе гетероциклических соединений на основе реакций алленов, содержащих электроноакцепторные заместители, с электрофилами. Материал сгруппирован по типу электроноакцепторного фрагмента в алленах: карбонильная, фосфиноксидная и сульфонильная/сульфинильная группы. Библиография включает 28 литературных источников.

Ключевые слова: аллен, гетероцикл, кислота, суперкислота, электрофил.

В настоящее время химия алленов переживает период бурного развития. Характерной чертой, привлекающей внимание химиков, является разнообразная, зачастую неожиданная реакционная способность алленов.¹ Кроме того, алленовый фрагмент встречается в природных соединениях² и функциональных материалах.³

Реакции алленов, содержащих электроноакцепторные заместители, с электрофилами представляют собой эффективный инструмент создания гетероциклических систем. В этом обзоре суммированы последние достижения в данной области с разделением работ по типу электроноакцепторного фрагмента в алленах: карбонильный компонент C=O или его замаскированный вариант CF₂X (X = C_nF_{2n+1} , P(O)(OEt)OH), фосфиноксидный компонент P=O и сульфоксидный компонент S=O, в том числе в составе сульфонильной группы SO₂R (схема 1).

Схема 1

Реакции алленов, содержащих группу С=О или CF₂X

Перфторалкил-1,2-алленилкетоны 1 в присутствии каталитических количеств трифторметансульфоновой кислоты (TfOH) или AuCl вступают в реакцию внутримолекулярной циклизации, сопровождающейся миграцией заместителя R^1 , образуя фураны 2 с выходами 56–91%. Гидролиз соединений 2 с нагреванием в присутствии TfOH и H₂O приводит к образованию кетонов 3 с выходами 43–95%⁴ (схема 2).

Схема 2

i: TfOH (5 mol %), PhMe, 60°C, 1.5–10 h *ii*: AuCl (5 mol %), PhMe, 100°C, 3–16 h *iii*: TfOH (5 mol %), H₂O (1.5 equiv), PhMe, 100°C, 3–13 h R¹ = H, Ph; R² = Alk, Ar; R³ = Alk; R_F = *n*-C₃F₇, *n*-C₅F₁₁

Аллены 4, образующиеся в результате реакции пропаргиловых спиртов 5 и аренов при промотировании кислотными реагентами (ТfOH или цеолитом

HUSY CBV-720), могут подвергаться внутримолекулярной циклизации с формированием арилзамещенных фуранонов **6** с выходами до 90%⁵ (схема 3).

Высоконенасыщенные аллены 7 при взаимодействии с сульфонилгидразидами 8 в присутствии стехиометрических количеств I_2 и *трет*-бутилгидропероксида образуют 3,4-дигидрофталазины 9 с выходами 40–80%. Иод в этой реакции является многофункциональным промотером: производит электрофильную активацию алленовой системы путем координации по группе C=O, что запускает реакцию (2+2)-циклоприсоединения, приводя к образованию циклобутена 10, участвует в раскрытии интермедиата 11 и является уходящей группой при конечной циклизации соединения 12⁶ (схема 4).

Аналогично FeCl₃, координируясь по группе C=O алленов **13** (переходное состояние **14**), обеспечивает последовательность превращений – циклизацию Назарова и радикальную циклизацию, что ведет к образованию карбоциклов **15**. Кипячение последних с дополнительным количеством FeCl₃ в CH₂Cl₂ позволяет синтезировать пираноны **16** по реакции Байера–Виллигера с выходами 52–89%⁷ (схема 5).

Электрофильная лактонизация хиральных алленов **17а,b** под действием каталитических количеств (Ph₃P) AuNTf₂ и последующее снятие защитной *трет*бутилдиметилсилильной группы в мягких условиях привели к образованию биологически активных

13–15 R¹ = H, Cl, Br, CF₃, OMe; R² = Me, Ar; **15** R³ = H, Cl, Me, OMe; **16** R¹ = H, CF₃, OMe

бутенолидов **18а,b** (схема 6), в том числе встречающихся в природе (+)-ксилогиблактонов А–С. Реакция характеризуется диастереоселективностью при формировании хирального центра у атома С-5 и образовании лактонного цикла.⁸

Схема 6

 $(Ph_3P)AuNTf_2$ взаимодействует с алленами 19 при нагревании в течение нескольких суток, предположительно образуя лактонный интермедиат 20, который далее участвует в реакции кросс-сочетания с бромоацетиленами 21 с образованием лактонов 22, содержащих ацетиленовый фрагмент, с выходами 10–80%⁹ (схема 7).

Для алленов, содержащих карбоксильную или сложноэфирную группу, характерны реакции бром- и иодлактонизации. Недавними примерами являются реакции образования 4-бром- и 4-иодлактонов 23 и 24 из алленов 25 под действием избытка CuBr₂ или I₂ соответственно, причем циклизация в 4-бромлактоны 23 протекает при нагревании реакционных смесей,¹⁰ а реакция аллена 25 ($R^1 = Ph$, $R^2 = n$ -Bu) с I₂ – при охлаждении¹¹ (схема 8).

Замещенные аллены 26, содержащие группы NHR² и CF₃, образуются по реакции енинов 27 с первичными аминами в присутствии AgNO₃. Далее они превращаются в 4-замещенные 3-пирролины 28 с выходами 52-94%.¹² Из енинов 27 при взаимодействии с тиолами R²SH в присутствии тетраметилэтилендиамина можно также получить аллены 29 с сульфанильной группой. При обработке таких алленов избытком NCS или NBS образуются 3-галоген-4-трифторметилтиофены 30 с выходами 79–84%¹³ (схема 9).

 R^1 = Alk, Alkenyl, Ar, Hetar; R^2 = Alk, Ar; X = Cl, Br

Нагревание алленов **31** в смеси с CuCl₂ или CuBr₂ в N,N-диметилацетамиде приводит к образованию 2-оксидов 3,3-дифтор-1,2-оксафосфининов **32**, потенциальных миметиков биофосфатов, устойчивых к гидролизу¹⁴ (схема 10).

Схема 10

Реакции алленов, содержащих группу Р=О

Циклизация алленилфосфиновых кислот **33** под действием значительных количеств (100-кратного массового избытка) ионообменной смолы DOWEX 50 позволяет получить 2-оксиды 2,5-дигидро-1,2-оксафосфолов **34**, которые легко подвергнуть дериватизации по атому фосфора: катализируемое палладием арилирование приводит к образованию соединений **35**, реакция Пудовика с ароматическими альдегидами – спиртов **36**, а трехкомпонентная реакция Кабачника– Филдса – вторичных аминов **37**¹⁵ (схема 11).

Двойственная реакционная способность в реакциях с электрофилами описана для фосфорсодержащих алленов **38**, имеющих группу CH₂C(OY)Me (Y = H или тетрагидропиран-2-ильная группа (THP)) в γ -положении алленовой триады. Эта гидроксильная группа может участвовать в циклизации алленов **38** при катализе AuCl с образованием полизамещенных пиранов **39а,b**. В то же время в реакциях с Br₂ и PhSeBr аллены **38** образуют 2-оксиды 2-метокси-1,2-оксафосфолов **40а,b**¹⁶ (схема 12).

Сходные фосфорные аллены **41**, содержащие группы CH₂OY (Y = H или THP) и P(O)X₂ в α -положении, также могут взаимодействовать с электрофильными агентами. Так, в реакциях, использующих AgClO₄ в качестве катализатора, из алленов **41** образуются 2,5-дигидрофураны **42a,b**, тогда как реакции алленов **41** с Cl₂, Br₂, PhSBr и PhSeBr приводят к образованию смеси 2-оксидов 1,2-оксафосфолов **43** и фуранонов **44** (X = OMe) или смеси солей 1,2-оксафосфолин-2-ия **45** и фуранонов **46** (X = Ph)¹⁷ (схема 13).

Фосфорные аллены 47, содержащие группу X₂P=O $(X = OR, Ph, NHAr, NR_2, SAr)$, в реакциях с суперкислотами Бренстеда и кислотами Льюиса проявляют высокую реакционную способность. При наличии электронодонорных заместителей R² и R³ эти аллены в суперкислотах Бренстеда образуют соли 1,2-оксафосфолиния 48, обнаруженные методом спектроскопии ЯМР. При увеличении времени реакции или температуры соединения 48 (X = Ph) могут образовывать 1-оксиды фосфинолинов 49. Сольволиз солей 48 (X = OR, SAr) дает 1,2-оксафосфолиевые кислоты 50 или амиды 51. Для аллена 47 (X = NHPh) при помощи спектроскопии ЯМР в ТfOH зафиксирован каскад превращений с участием соединений 47→48→52→53 (схема 14). Гидролиз катиона соединения 53 приводит к образованию соответствующего бензоазафосфепина. При взаимодействии с кислотами Льюиса некоторые аллены 47 (X = Ph, OPh) образуют продукты внутримолекулярной реакции Фриделя-Крафтса - соединения **49** или **54**¹⁸ (схема 15).

Схема 14

Схема 15

При нагревании аллена **55** в TfOH образуется смесь диастереомерных мостиковых бициклов **56а,b** с суммарным выходом 41%. Предположительно, реакция протекает через промежуточное образование индана **57**¹⁹ (схема 16).

Схема 16

2-Оксиды 2-этилсульфанил-1,2-оксафосфолов **58** с выходами 66–77% образуются при взаимодействии алленов **59** с эквимолярными количествами PhSeBr или PhSBr при охлаждении в CH₂Cl₂²⁰ (схема 17).

В результате реакции хиральных алленилфосфонатов **60**, содержащих циклический фрагмент, с I₂ в кипящем циклогексане были синтезированы спироциклические 2-оксиды 4-иод-1,2-оксафосфолов **61** с выскими выходами. Циклизация по атому C-5 протекает диастереоселективно, однако продукты **61** выделяются в виде смесей эпимеров по атому фосфора²¹ (схема 18).

Схема 18

По аналогии с предыдущей реакцией бис(алленилфосфонаты) **62** подвергаются двойной циклизации под действием I_2 или CuBr₂ с формированием бис(2-оксидов 4-галоген-1,2-оксафосфолов) **63** с выходами 37–78%²² (схема 19).

Образование 2-оксидов 2-арил-1,2-оксафосфолов 64 с выходами 48–95% происходит при нагревании (диарилфосфонил)алленов 65 с I₂ и *t*-BuOOH. Необычной особенностью реакции является разрыв связи Р–С(Аг). Механизм реакции включает иодгидроксилирование аллена 65, приводящее к образованию алкена 66, и нуклеофильную циклизацию последнего с получением кислоты 67. Далее взаимодействие *трет*-бутоксильного (или гидроксильного) радикала с соединением 67 позволяет получить фосфиноксидный радикал 68, в котором происходит миграция арильного фрагмента с формированием радикала 69. Гашение этой частицы гидроксильным радикалом и последующая экструзия молекулы фенола ведут к продукту 64²³ (схема 20).

Схема 20

Реакции алленов, содержащих группу S=O или SO₂

Реакции сульфоксид- и сульфонилалленов с электрофилами скудно представлены в современной литературе. Так, за последние 12 лет можно обнаружить только 3 публикации по синтезу гетероциклических соединений из указанных алленов в реакции с электрофильными реагентами. Сульфонилаллены **70**, содержащие фрагмент CXR¹R² (X = OH или NHSO₂Ph) при α -атоме алленовой системы, способны вступать в реакции гетероциклизации при катализе AgF. При комнатной температуре в MeCN соединения **70** (X = OH) образуют 2,5-дигидрофураны **71**,²⁴ тогда как для синтеза 2,5-дигидропирролов **72** из алленов **70** (X = NHSO₂Ph) необходимо кипячение²⁵ (схема 21).

В сильных кислотах Бренстеда (TfOH, FSO₃H, D₂SO₄) (арилсульфонил)аллены 73 и (арилсульфинил)аллены 74 подвергаются циклизации в соответствующие стабильные 1,2-оксатиолиевые катионы 75 и 76 соответственно, которые были изучены с помощью спектроскопии ЯМР. В течение длительного времени (более месяца) эти катионы были стабильны в кислоте и не переходили в другие частицы (для сравнения с фосфорсодержащими катионами см. схему 14 и превращение соединения 48→49). Гашение растворов катионов 75 и 76 приводит к образованию ациклических продуктов, в то время как кипячение растворов катионов 75 приводит к циклизации в 1,1-диоксиды тиохроменов 77 с высокими выходами. В случае катиона 76 кипячение не позволило получить ожидаемые продукты **78**²⁶ (схема 22).

Схема 22

В обзоре рассмотрены литературные данные за последние пять лет по использованию алленов, содержащих электроноакцепторные группы, в синтезе гетероциклических соединений при взаимодействии с электрофильными реагентами.

Список литературы

- Modern Allene Chemistry; Krause, N.; Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, 2004.
- Hoffmann-Röder, A.; Krause, N. Angew. Chem., Int. Ed. 2004, 43, 1196.
- Rivera-Fuentes, P.; Diederich, F. Angew. Chem., Int. Ed. 2012, 51, 2818.
- 4. Xue, C.; Huang, X.; Wu, S.; Fu, C.; Ma, S. Org. Chem. Front. **2016**, *3*, 588.
- 5. Devleshova, N. A.; Lozovskiy, S. V.; Vasilyev, A. V. *Tetrahedron* **2019**, *75*, 130517.
- Fu, R.; Li, M.-F.; Zhou, P.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Adv. Synth. Catal. 2019, 361, 2280.
- Miao, M.; Jin, M.; Chen, P.; Wang, L.; Zhang, S.; Ren, H. Org. Lett. 2019, 21, 5957.
- Park, S.; Pak, G.; Oh, C.; Lee, J.; Kim, J.; Yu, C.-M. Org. Lett. 2019, 21, 7660.
- Yang, Y.; Schießl, J.; Zallouz, S.; Göker, V.; Gross, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. *Chem.-Eur. J.* 2019, 25, 9624.
- 10. Yao, Y.; Zhu, G.; Chen, Q.; Qian, H.; Ma, S. Org. Chem. Front. 2019, 6, 304.
- Zhang, W.; Huang, C.; Yuan, Y.; Ma, S. Chem. Commun. 2017, 53, 12430.

- 12. Zhou, X.; Huang, C.; Zeng, Y.; Xiong, J.; Xiao, Y.; Zhang, J. *Chem. Commun.* **2017**, *53*, 1084.
- Cheng, H.; Zhou, X.; Hu, A.; Ding, S.; Wang, Y.; Xiao, Y.; Zhang, J. *RSC Adv.* **2018**, *8*, 34088.
- 14. Jiang, X.; Cai, X.; Lin, Y.; Liu, J. Tetrahedron 2018, 74, 4466.
- Fourgeaud, P.; Volle, J.-N.; Vors, J.-P.; Békro, Y.-A.; Pirat, J.-L.; Virieux, D. *Tetrahedron* **2016**, *72*, 7912.
- Hasanov, H. H.; Ivanov, I. K.; Christov, V. Ch. *Heteroat. Chem.* 2017, 28, 1.
- Ismailov, I. E.; Ivanov, I. K.; Christov, V. Ch. Phosphorus, Sulfur. Silicon Relat. Elem. 2020, 195, 314.
- (a) Bogachenkov, A. S.; Dogadina, A. V.; Boyarskaya, I. A.; Boyarskiy, V. P.; Vasilyev, A. V. Org. Biomol. Chem. 2016, 14, 1370. (b) Lozovskiy, S. V.; Ivanov, A. Yu.; Bogachenkov, A. S.; Vasilyev, A. V. ChemistrySelect 2017, 2, 4505. (c) Lozovskiy, S. V; Ivanov, A. Yu.; Vasilyev, A. V. Beilstein J. Org. Chem. 2019, 15, 1491.
- Lozovskiy, S. V.; Bogachenkov, A. S.; Dogadina, A. V.; Vasilyev, A. V. *Tetrahedron Lett.* 2016, 57, 3167.
- 20. Enchev, D. D. Acta Sci. Nat. 2017, 4, 13.
- Berton, J. K. E. T.; Salemi, H.; Pirat, J.-L.; Virieux, D.; Stevens, C. V. J. Org. Chem. 2017, 82, 12439.
- 22. Essid, I.; Laborde, C.; Legros, F.; Sevrain, N.; Touil, S.; Rolland, M.; Ayad, T.; Volle, J.-N.; Pirat, J.-L.; Virieux, D. *Org. Lett.* **2017**, *19*, 1882.
- Liu, T.; Zhu, J.; Sun, X.; Cheng, L.; Wu, L. Adv. Synth. Catal. 2019, 361, 3532.
- 24. Tata, R. R.; Harmata, M. Org. Lett. 2016, 18, 5684.
- 25. Tata, R. R.; Fu, C.; Kelley, S. P.; Harmata, M. Org. Lett. 2018, 20, 5723.
- Lozovskiy, S. V; Ivanov, A. Yu.; Khoroshilova, O. V; Vasilyev, A. V. *Beilstein J. Org. Chem.* 2018, 14, 2897.