Е. Хуип Нава, В. Мендоза, Э. Гарсиа, Х. А. Гузман, Х. Л. Сальвадор, К. А. Лысенко, В. Н. Нестеров

ИССЛЕДОВАНИЕ СТРОЕНИЯ ПРОДУКТОВ ТРАНСФОРМАЦИИ ПАРВИФОЛИНОНА

Рентгеноструктурным исследованием однозначно доказано строение продуктов трансформации парвифолинона: *транс*-2,3-дигидро-3,6-диметил-7-ацетокси-2-карбоксиметиленбензопиран-4-она и 5-метил-6-(2',4'-диацетокси-5-метил-фенил) пиран-2-она. Конформация дигидропиран-4-онового фрагмента в первом из них — искаженное полукресло, пиран-2-оновое кольцо во втором продукте плоское.

Парвифолин (2-гидрокси-3,6,10-триметилбензоциклоокта-4а — 10а,6-диен), выделенный из растений видов *Corcopsis* [1] и *Pereziae* [2], был превращен в известные терпеноиды кукурхинон, хантонизал, перезон, гидроперезон и др.

Парвифолинон (1) получен окислением парвифолина диоксидом селена [2]. При его обработке надуксусной кислотой образуется продукт, которому на основании данных спектроскопии ЯМР ¹Н и ¹³С приписано строение 5-(2'-ацетокси-4'-гидрокси-5'-метилфенил)-3-гидрокси-5-оксовалериановой кислоты (2)*. Спектр ЯМР ¹³С с протонной развязкой содержит 15 сигналов, 6 из которых относились к области, соответствующей sp^3 -гибридизованному углероду, и 9— sp^2 -гибридизованному атому углерода. Спектр без протонной развязки показал, что в sp^2 -области только два сигнала соответствуют атомам углерода, связанным с водородом (ароматические С(3') и С(5')), остальные 7 сигналов являются синглетами и относятся к углеродным атомам бензольного кольца, не несущим атомов водорода, (С(1'), С(2), С(4), С(5)), и к трем карбонильным группам. В sp^3 -области имеются два дублета от β -С и γ -С, один триплет от α -CH₂ и 3 квартета, соответствующих метильным группам.

При действии на кислоту 2 Ac₂O/AcONa нами была получена смесь *транс*-2,3-дигидро-3,6-диметил-7-ацетокси-2-карбоксиметиленбензопиран-4-она (далее парвибензопиран-4-он) (3) и 5-метил-6-[2',4'-диацетокси-5'-метилфенил]пиран-2-она (далее парвипиран-2-он) (4). Смесь соединений 3

Предварительное сообщение см. [3].

и 4 была разделена хроматографически на колонке с силикагелем. Выделенные соединения представляют собой белые кристаллические вещества с температурами плавления 173 и 105 °C.

С целью однозначного установления полученных продуктов трансформации парвифолинона нами проведены рентгеноструктурные исследования. На рис. 1 представлен общий вид молекулы парвибензопиран-4-она 3, длины связей и валентные углы приведены в табл. 1 (нумерация атомов отличается от рекомендуемой ИЮПАК).

Рис. І. Общий вид молекулы 3 и нумерация атомов

В изученной молекуле шестичленный гетероцикл имеет конформацию искаженного полукресла — атомы C₍₁₎ и C₍₂₎ отклоняются в разные стороны от плоскости, проведенной через четыре атома O₍₁₎, C₍₉₎, C₍₄₎, C₍₃₎ (отклонение атомов от средней плоскости 0,008 Å) на 0,576 и 0,065 Å соответственно. Двугранный угол между указанной плоскостью гетероцикла и бензольным кольцом равен 2,0°. На рис. 2 приведена проекция молекулы вдоль связи C₍₁₎—C₍₂₎, которая указывает на *транс*-ориентацию атомов водорода H₍₁₎ и H₍₂₎ (торсионный угол H₍₁₎—C₍₁₎—C₍₂₎—H₍₂₎ составляет -179,3°). Остальные геометрические характеристики молекулы 3 имеют обычные значения [4].

Рис. 2. Проекция молекулы 3 вдоль связи С(1)-С(2)

Таблица 1

Связь	<i>d</i> , Å	Угол	arphi, град.
$O_{(1)} - C_{(1)}$	1,450(5)	$C_{(9)} - O_{(1)} - C_{(1)}$	115,4(3)
O(2)-C(15)	1,218(5)	$C_{(10)} - O_{(5)} - C_{(7)}$	119,5(4)
$O_{(3)} - C_{(15)}$	1,302(5)	$O_{(1)} - C_{(1)} - C_{(2)}$	111.8(3)
O(4)-C(3)	1,230(5)	$O_{(1)} - C_{(1)} - C_{(14)}$	104,4(3)
$O_{(5)} - C_{(10)}$	1,343(6)	$C_{(2)}-C_{(1)}-C_{(14)}$	113,5(4)
O(5)—C(7)	1,406(5)	$C_{(3)}-C_{(2)}-C_{(1)}$	109,8(3)
O(6)-C(10)	1,201(6)	$C_{(3)} - C_{(2)} - C_{(13)}$	111,1(4)
$C_{(1)} - C_{(2)}$	1,520(6)	$C_{(1)}-C_{(2)}-C_{(13)}$	112,4(4)
C(1)C(14)	1,526(6)	$O_{(4)}-C_{(3)}-C_{(4)}$	121,9(4)
$C_{(2)} - C_{(3)}$	1,516(6)	$O_{(4)} - C_{(3)} - C_{(2)}$	120,8(4)
C(3)—C(4)	1,466(5)	$C_{(4)} - C_{(3)} - C_{(2)}$	117,3(3)
$C_{(2)} - C_{(13)}$	1,523(6)	$C_{(5)}-C_{(4)}-C_{(9)}$	118,8(4)
$C_{(4)} - C_{(5)}$	1,387(6)	$C_{(5)}-C_{(4)}-C_{(3)}$	121,7(4)
C(4)-C(9)	1,396(5)	$C_{(9)}-C_{(4)}-C_{(3)}$	119,5(4)
$C_{(5)} - C_{(6)}$	1,378(6)	$C_{(6)}-C_{(5)}-C_{(4)}$	123,2(4)
$C_{(6)} - C_{(7)}$	1,380(6)	$C_{(5)}-C_{(6)}-C_{(7)}$	115,4(4)
$C_{(6)} - C_{(12)}$	1,496(7)	$C_{(5)}-C_{(6)}-C_{(12)}$	121,6(4)
C(7)—C(8)	1,372(6)	$C_{(7)}-C_{(6)}-C_{(12)}$	122,9(4)
C(8)-C(9)	1,387(6)	$C_{(8)}-C_{(7)}-C_{(6)}$	124,4(4)
C(10)-C(11)	1,478(8)	C(8)-C(7)-O(5)	114,9(4)
C(14)—C(15)	1,490(6)	C ₍₆₎ -C ₍₇₎ -O ₍₅₎	120,4(4)
		$C_{(7)}-C_{(8)}-C_{(9)}$	118,4(4)
		$O_{(1)}-C_{(9)}-C_{(8)}$	117,6(4)
		$O_{(1)}-C_{(9)}-C_{(4)}$	122,6(4)
		$C_{(8)}-C_{(9)}-C_{(4)}$	119,7(4)
		O(6)-C(10)-O(5)	123,0(5)
		$O_{(6)}-C_{(10)}-C_{(11)}$	126,3(6)
		O(5)-C(10)-C(11)	110,7(6)
		$C_{(15)}-C_{(14)}-C_{(1)}$	113,9(4)
		O(2)-C(15)-O(3)	121,6(4)
		O(2)—C(15)—C(14)	123,5(4)
		$O_{(3)}-C_{(15)}-C_{(14)}$	114,8(4)

Длины связей и валентные углы в структурах 3

Анализ кристаллической упаковки показал, что в кристалле 3 межмолекулярные водородные связи $O_{(3)}$ — $H_{(30)}$... $O_{(2)}$ (-0,5 -x, -0,5 + y,z) $[O_{(3)}$... $O_{(2)}$ 2,636(6), $O_{(3)}$ — $H_{(30)}$ 0,88(4), $H_{(30)}$... $O_{(2)}$ 1,79(4) Å, угол $O_{(3)}$ — $H_{(30)}$... $O_{(2)}$ 162(2)°] объединяют молекулы в бесконечные цепочки, вытянутые вдоль оси *b* (рис. 3).

Общий вид молекулы 4 представлен на рис. 4, длины связей и некоторые валентные углы приведены в табл. 2. Как видно из табл. 2, в молекуле нет сильно искаженных связей, по длине отличающихся от стандартных для данного класса соединений [4]. Бензольный и связанный с ним пиран-2-оновый гетероциклы плоские (среднее отклонение атомов 0,008 и 0,009 Å). Двугранный угол между этими двумя плоскостями составляет 49,0°. Углы между плоскостями, задаваемыми группами CO_2Et , и бензольным циклом равны 107° и 98° соответственно для $O_{(3)}C_{(13)}O_{(4)}C_{(14)}$ и $O_{(5)}C_{(15)}O_{(6)}C_{(16)}$.

Анализ кристаллической упаковки показал, что межмолекулярные и внутримолекулярные контакты в исследованной структуре соответствуют типичным ван-дер-ваальсовым расстояниям [5].

Рис. 3. Проекция кристаллической упаковки в плоскости ОҮZ в кристалле 3

Таблица 2

Связь	<i>d</i> , Å	Угол	arphi, град.
0 (1) $-$ C (5)	1 370/2)	Cra One Cra	100.0 (0)
O(1) - C(3)	1,379(3)	$C_{(3)} = O_{(1)} = C_{(1)}$	122,8(2)
O(1) - C(1)	1,304(4)	$C_{(13)} = O_{(3)} = C_{(8)}$	110,0(2)
O(2) - C(1)	1,207(4)	$C_{(15)} = O_{(5)} = C_{(10)}$	119,0(2)
O(3) - C(13)	1,372(3)	$0_{(2)} - C_{(1)} - O_{(1)}$	110,2(3)
$O_{(3)} - C_{(8)}$	1,399(3)	$U_{(2)} - C_{(1)} - C_{(2)}$	128,1(3)
O(4) - C(13)	1,191(4)	$O_{(1)} - C_{(1)} - C_{(2)}$	115,7(3)
O(5) - C(15)	1,346(4)	$C_{(3)} - C_{(2)} - C_{(1)}$	120,5(3)
$O_{(5)} - C_{(10)}$	1,394(4)	$C_{(2)}-C_{(3)}-C_{(4)}$	122,7(3)
$O_{(6)} - C_{(15)}$	1,177(4)	$C_{(5)}-C_{(4)}-C_{(3)}$	117,5(3)
$C_{(1)} - C_{(2)}$	1,428(5)	$C_{(5)} - C_{(4)} - C_{(6)}$	123,9(3)
$C_{(2)} - C_{(3)}$	1,325(5)	$C_{(3)}-C_{(4)}-C_{(6)}$	118,6(3)
$C_{(3)} - C_{(4)}$	1,418(4)	$C_{(4)}-C_{(5)}-O_{(1)}$	120,7(2)
$C_{(4)} - C_{(5)}$	1,345(4)	$C_{(4)} - C_{(5)} - C_{(7)}$	127,7(2)
$C_{(4)} - C_{(6)}$	1,508(4)	O(1)-C(5)-C(7)	111,6(2)
$C_{(5)}-C_{(7)}$	1,471(4)	$C_{(12)}-C_{(7)}-C_{(8)}$	116,9(3)
$C_{(7)} - C_{(8)}$	1,403(4)	$C_{(12)}-C_{(7)}-C_{(5)}$	121,3(2)
C(7)—C(12)	1,391(4)	C(8)—C(7)—C(5)	121,7(2)
$C_{(8)} - C_{(9)}$	1,365(4)	C(9)-C(8)-O(3)	120,1(2)
C(9)-C(10)	1,377(4)	C(9)-C(8)-C(7)	121,5(3)
$C_{(10)}-C_{(11)}$	1,396(4)	O(3)-C(8)-C(7)	118,3(2)
$C_{(11)}-C_{(12)}$	1,384(5)	C(8)-C(9)-C(10)	119,4(3)
$C_{(11)} - C_{(17)}$	1,501(5)	$C_{(9)}-C_{(10)}-O_{(5)}$	119,1(3)
C(13)-C(14)	1,460(5)	$C_{(9)}-C_{(10)}-C_{(11)}$	122,1(3)
C(15)-C(16)	1,484(5)	$O_{(5)}-C_{(10)}-C_{(11)}$	118,6(3)
		$C_{(12)}-C_{(11)}-C_{(10)}$	116,5(3)
		$C_{(12)}-C_{(11)}-C_{(17)}$	121,1(4)
		$C_{(10)} - C_{(11)} - C_{(17)}$	122,4(4)
		$C_{(11)} - C_{(12)} - C_{(7)}$	123,5(3)
		$O_{(4)} - C_{(13)} - O_{(3)}$	121,9(3)
		$O_{(4)}-C_{(13)}-C_{(14)}$	126,9(3)
		$O_{(3)}-C_{(13)}-C_{(14)}$	111,2(3)
		$O_{(6)}-C_{(15)}-O_{(5)}$	122,8(3)
		$O_{(6)} - C_{(15)} - C_{(16)}$	126,6(4)
		$O_{(5)}-C_{(15)}-C_{(16)}$	110,6(4)

Длины связей и валентные углы в структуре 4

Рис. 4. Общий вид молекулы 4 и нумерация атомов

На основании полученных данных о строении соединений 3 и 4 можно предположить механизм их образования из соединения 2.

		Координат	ы неводород	ных атом	ов* (А	Å × 10 ⁴)	. 2		2
и	их	эквивалентные	изотропные	температу	рные	факторы	$(Å^{Z})$	×	10°)
			в структ	урах 3 и	4				

Атом	x	у	z	U
		Структура	3	
0(1)	637(2)	2246(4)	6171(1)	36(1)
0(2)	-2491 (3)	1483(4)	6044(1)	50(1)
0(3)	-1230(3)	-631(4)	5895(1)	46(1)
O(4)	3159(3)	3127(5)	5331(1)	52(1)
0(5)	3187(3)	879(5)	7238(1)	51(1)
0(6)	3977(4)	3537(6)	7430(1)	73(1)
C(1)	423(3)	1976(6)	5731(1)	30(1)
C(2)	1177(3)	3179(6)	5464(1)	33(1)
C(3)	2398(4)	2893(6)	5585(1)	32(1)
C(4)	2627(3)	2340(5)	6015(1)	29(1)
C	3717(4)	2125(6)	6161(1)	33(1)
C(6)	3962(4)	1644(6)	6565(1)	34(1)
C(7)	3044(4)	1464(6)	6825(1)	38(1)
C(8)	1945(4)	1659(6)	6702(1)	37(1)
C(9)	1730(3)	2078(6)	6289(1)	30(1)
C(10)	3635(4)	2035(8)	7519(2)	50(1)
C(11)	3621 (8)	1210(16)	7938(2)	80(2)
C(12)	5144(5)	1293(12)	6704(2)	53(2)
C(12)	1003(5)	2842(10)	5001(2)	52(2)
C(14)	-829(4)	2390(7)	5680(2)	35(1)
C(15)	-1581(3)	1064(6)	5897(1)	32(1)
0(13)		Структура	4	
Om	7428(2)	4433(2)	3625(1)	58(1)
O(2)	7213(3)	5273(4)	4605(1)	95(1)
O(3)	9574(2)	2266(2)	3379(1)	54(1)
O(4)	11104(2)	4360(3)	3548(1)	86(1)
0.6	11001(3)	2739(3)	1245(1)	85(1)
06	12301(3)	4958(3)	1485(1)	94(1)
C(1)	6619(3)	4659(4)	4150(2)	65(1)
C(2)	5171(3)	4184(4)	4078(2)	72(1)
C(3)	4682(3)	3517(4)	3544(2)	68(1)
C(4)	5545(3)	3245(3)	3020(1)	55(1)
CG	6905(3)	3715(3)	3076(1)	49(1)
Cíá	4902(4)	2417(5)	2441 (2)	73(1)
C(7)	8005(3)	3541 (3)	2607(1)	51(1)
C(8)	9321 (3)	2824(3)	2761(1)	50(1)
C(9)	10311(3)	2584(4)	2316(1)	58(1)
C(10)	10032(3)	3100(4)	1706(2)	65(1)
C(11)	8758(4)	3859(4)	1523(1)	66(1)
C(12)	7770(3)	4038(4)	1985(1)	60(1)
C(13)	10453(3)	3226(4)	3754(2)	59(1)
C(14)	10468(5)	2651(7)	4407(2)	84(1)
· · · · ·	12132(3)	3734(4)	1187(2)	66(1)
C(15)				
C ₍₁₅₎ C ₍₁₆₎	13082(6)	3069(7)	705(3)	96(1)

* Координаты водородных атомов могут быть получены у авторов.

ИК спектры записаны на приборе Perkin-Elmer 399В, спектры MP — на приборе Varian Gemini (200 МГц на ¹H и 50 МГц на ¹³C) в растворах CDCl₃. Парвифолинон 1 получен по методу, описанному ранее [2].

5-(2'-Αцетокси-4'-гидрокси-5'-метилфенил)-3-гидрокси-5-оксовалериановая кислота (2). К смеси 0,42 г (1,83 ммоль) соединения 1, 2,5 мл AcOH и 0,025 мл H₂SO4 приливают 1,6 мл охлажденной 40% надуксусной кислоты. Для лучшей растворимости реагентов добавляют 10 мл хлороформа. Реакционную смесь выдерживают при комнатной температуре в течение 72 ч. После этого добавляют 30 мл воды и экстрагируют хлороформом. Органический слой промывают водой до pH ~7 и сушат над безводным Na₂SO4. После упаривания из остатка с помощью хроматографии получают масло янтарного цвета, которое соответствует соединению 2. Выход 0,2 г (26%). ИК спектр: 3300 (ш, COOH), 1720, 1630 (С=O), 1600, 1500 см⁻¹ (аром.). Спектр IMP: 12,61 (1H, с, COOH); 7,75 и 6,34 (2H, с, Н_{аром}); 5,53 (1H, д. д. *д. J* = 7,8 и 4 Гц, β-H); 4,6 (уш., OH); 3,98 (1H, м, γ-H); 2,73 и 2,21 (2H, д. д. *J* = 16,4 и 16,8 Гц соответственно, два α-H); 2,19 (3H, с, CH₃CO); 2,03 (3H, с, 5'-Me); 1,22 м. д. (3H, д, γ-Me). Спектр SMP ¹³C: 204,13 (CO), 175,31 (Me<u>C</u>OO), 171,30 (COOH), 164,05 и 162,92 (C_(2') и C_{(4'})), 132,46 (C_{3'})), 117,44 и 112,51 (C_{(1'} и C_{(5'})), 102,36 (C_{(5'})), 71,54 (β-C), 42,23 (γ-C), 34,86 (α-CH₂), 20,84 (5'-Me), 15,24 (<u>Me</u>COO), 11,67 (γ-Me).

транс-2,3-Дигидро-3,6-диметил-7-ацетокси-2-карбоксиметиленбензопиран-4-он (3) и 5метил-6-(2',4'-диацетокси-5'-метилфенил) пиран-2-он(4). Смесь 0,5 г (1,6 ммоль) соединения 2, 3 мл Ac₂O и 0,2 г (2,44 ммоль) AcONa кипятят при перемешивании в течение 15 мин. Реакционную смесь охлаждают до комнатной температуры, выливают в холодную воду и экстрагируют этилацетатом. Органический слой промывают водой, сушат над безводным Na₂SO₄ и концентрируют. Из остатка колоночной хроматографией на силикагеле (элюент гексан этилацетат, 9 : 1), выделяют продукты 3 и 4. Выход 3 61 мг (13%). $T_{\Pi\pi}$ 172...173 °C. Найдено, %: C 61,64; H 5,52. Cl₅Hl₆O₆. Вычислено, %: C 61,51; H 5,39. Выход 4 102 мг (20%). $T_{\Pi\pi}$ 105 °C. Найдено, %: C 64,55; H 5,10. Cl₇Hl₆O₆. Вычислено, %: C 64,63; H 5,02.

Рентгеноструктурные исследования. Бесцветные монокристаллы соединений 3 и 4 были получены медленным выпариванием из этанола в течение 3 дней.

Рентгенодифракционное исследование соединения 3 (С15Н16О6) проводилось при 25 °С на автоматическом 4-кружном дифрактометре Siemens P3/PC (МоК α -излучение, графитовый монохроматор, $\theta/2\theta$ -сканирование, $2\theta < 56$ °). Кристаллы при 25 °С ромбические: a = 11,877(3), b = 7,280(3), c = 32,184(6) Å, V = 2783(1) Å³, $d_{calc} = 1,395$ г/см³, $\mu = 0,109$ мм⁻¹, F(000) = 1232, M = 292,28, пространственная группа Pbca, Z = 8.

Рентгенодифракционное исследование соединения **4** (С₁₇Н₁₆О₆) проводилось при 28 °С на автоматическом 4-кружном дифрактометре CAD4 Enraf-Nonius (МоК*α*-излучение, графитовый монохроматор, $\theta/5/2\theta$ -сканирование, $2\theta < 58^{\circ}$). Кристаллы при 28 °С моноклинные: a = 9,476(5), b = 8,031(4), c = 21,228(11) Å, $\beta = 91,83(4)^{\circ}$, V = 1614(1) Å³, $d_{calc} = 1,301$ г/см³, $\mu = 0,099$ мм⁻¹, F(000) = 664, M = 316,30, пространственная группа P2₁/n, Z = 4. Из общего числа 3038 и 3081 (для соединений 3 и 4 соответственно) измеренных отражений в уточнении структур использовали 2983 и 2868.

Структуры уточнялись в анизотропном-изтропном полноматричном приближении по F^2 . Атомы водорода были выявлены в разностных синтезах электронной плотности и были включены в окончательное уточнение в изотропном приближении.

Окончательные факторы расходимости для соединения 3: $wR_2 = 0,215$, GOF-1,062 по всем измеренным 2983 отражениям ($R_1 = 0,081$ по 1394 отражениям с $I > 2\sigma(I)$, рассчитанным по F); для соединения 4: $wR_2 = 0,2616$, GOF = 1,028 по всем измеренным 2868 отражениям ($R_1 = 0,0584$ по 1728 отражениям с $I > 2\sigma(I)$, рассчитанным по F). Все расчеты проведены на IBM PC/AT по комплексу программ SHELXTL PLUS (версия 5). Координаты неводородных атомов и их тепловые параметры приведены в табл. 3.

Работа выполнена при финансовой поддержке РФФИ (проект № 97-03-33786) и Программы поддержки ведущих научных школ (грант № 96-15-97367).

СПИСОК ЛИТЕРАТУРЫ

- Bohlmann F., Zdero Ch. // Chem. Ber. 1977. Bd 110. S. 468.
 Mendoza V., Garcia E. // J. Natur. Prod. 1993. Vol. 56. P. 2073.
- 3. Mendoza V., Garcia E., Guzman J. A., Salvador J. L. // The Fifth Chemistry Congress of North America. — Can Cun, Quintana Roo, Mexico. November 11-15. — 1997.
- 4. Allen F. H., Kennard O., Watson D. G., Brammer L., Orpen A. G., Taylor R. // J. Chem. Soc. Perkin Trans. II. - 1987. - N 12. - P. S1.
- 5. Rowland R. S., Taylor R. // J. Phys. Chem. 1996. Vol. 100. P. 7384.

Instituto Tecnologico de Morelia, Av. Tecnologico 15000, Morelia Mich., Mexico Поступило в редакцию 02.04.98 После переработки 09.07.98

Instituto de Investigaciones Quimico-Biologicas, Universidad Michoacana, Cd. Universitaria Edif.B-1, Morelia Mich., Mexico

Институт элементоорганических соединений им. А. Н. Несмеянова РАН, Москва 117813, Россия