

Химия гетероциклических соединений 2021, 57(1), 69-74

Синтез новых производных 1,4-оксатиинов, содержащих полифторалкильные заместители в положениях 2 и 6

Ярослав С. Бородкин¹*, Юрий Г. Шермолович¹

¹ Институт органической химии НАН Украины,

ул. Мурманская, 5, Киев 02660, Украина; e-mail: ja.borodkin@gmail.com

Поступило 24.07.2020 Принято 4.09.2020

 $R_F = HCF_2, H(CF_2)_3, H(CF_2)_5$

Дегидрофторирование бис(1,1-дигидрополифторалкил)сульфидов гидроксидом лития в среде морфолина происходит контролируемо с образованием бис(енамин)сульфидов нового типа – бис[2-(морфолин-4-ил)полифторалк-1-ен-1-ил]сульфанов, гидролиз и последующее фторирование которых приводит к получению новых фторсодержащих производных 1,4-оксатиинов с двухвалентной серой.

Ключевые слова: 1,4-дигидрооксатиины, енамины, 1,4-оксатианы, 1,4-оксатиины, сульфиды, дегидрофторирование.

Синтез фторсодержащих производных гетероциклов различных классов является быстро развивающимся направлением современной фторорганической химии.1-4 Обусловлено это тем разнообразным влиянием, которое оказывает наличие атомов фтора на биологические свойства молекулы. В то же время количество работ, посвященных синтезу фторсодержащих производных пяти- и шестичленных гетероциклов, существенно отличается для различных классов гетероциклов. В частности, известно лишь несколько примеров производных 1,4-оксатиинов, содержащих атомы фтора или фторалкильные заместители. 5-9 Интерес к соединениям этого класса связан с изучением их биологической активности, в частности возможности их использования в качестве ненуклеозидных ингибиторов обратимой транскриптазы вируса иммунодефицита человека.^{10,11} 1-(1,4-Оксатиан-2-ил)-5-фторурацил (5-FUra) обладает существенной противоопухолевой активностью.¹² Не содержащие фтор производные 1,4-оксатиинов также являются весьма эффективными фунгицидами и пестицидами и активно изучаются.^{13а,b} Биологически активные производные оксатианов были выделены из некоторых растений. 14,15

Известные методы синтеза фторсодержащих 1,4-оксатиинов основываются на фторировании 1,4-оксатиинов элементарным фтором или трифторидом кобальта^{5,6} или на радикальных реакциях 1,4-оксатиинов с участием фторсодержащих олефинов.⁸ Ранее мы показали, что новые типы фторсодержащих производных 4,4-диоксо-1,4-оксатиинов 1 образуются в результате гидролиза дивинилсульфонов 2, продуктов дегидрофторирования насыщенных бис(1,1-дигидрополифторалкил)сульфонов 3 под действием Et₃N (схема 1).

В настоящей работе мы исследовали возможность синтеза производных 1,4-оксатиинов, содержащих двухвалентную или четырехвалентную серу, из бис(1,1-дигидрополифторалкил)сульфидов 4. С целью экспериментальной проверки представленного выше подхода для синтеза 1,4-оксатиинов с атомами серы в низшем валентном состоянии мы исследовали возможность дегидрофторирования бис(1,1-дигидрополифторалкил)сульфидов 4 под действием различных оснований. Оказалось, однако, что сульфиды 4, в отличие от сульфонов **3**, не изменяются при действии органических оснований (Et₃N, морфолина, DABCO) или гидроксидов лития или натрия в безводной среде, и получение бис(винил)сульфидов **5** таким образом невозможно. Действие же гидроксидов щелочных металлов на сульфиды **4** в присутствии H₂O приводит к образованию сложной смеси продуктов и сопровождается сильным осмолением. Этот результат существенно отличается от полученных нами ранее данных об образовании фторсодержащих ацетиленов **6** при действии водной щелочи на (1,1-дигидрополифторалкил)арилсульфиды 7¹⁶ (схема 2).

Схема 2

Возможно, в случае бис(полифторалкил)сульфидов 4 при действии сильных неорганических оснований в присутствии H₂O также происходит образование бисацетиленов 8, однако эти соединения превращаются в смесь продуктов в результате реакции с H₂O или полимеризации (схема 2). Поэтому мы синтезировали дивинилсульфиды 5 разработанным нами ранее методом дегидрофторирования бис(полифторалкил)сульфидов 4 с помощью фосфазосоединений $9a,b^{17}$ и исследовали реакции их гидролиза. Оказалось, что, в отличие от бис(полифторакилвинил)сульфонов 2, сульфиды 5 не изменяются при нагревании с H₂O, то есть нуклеофильная подвижность винильного атома фтора в сульфидах 5 существенно ниже. Таким образом, подход к синтезу оксатиинов 10 с атомом двухвалентной серы, аналогичный синтезу 4,4-диоксо-1,4-оксатиинов 1, оказался неэффективным.

Альтернативный метод синтеза искомых 1,4-оксатиинов мы обнаружили, исследуя превращения сульфидов 4a-c под действием LiOH·H₂O в среде морфолина. В этом случае дегидрофторирование происходит контролируемо с образованием бис(енамин)сульфидов **11а-с** (схема 3), а результат их гидролиза определяется в основном размером полифторалкильного заместителя.

Основным продуктом гидролиза бис(енамина) 11а является насыщенный 1,4-оксатиан-2,6-диол 12. При

гидролизе бис(енамина) 11b с более длинными гексафторпропильными заместителями основным продуктом реакции является 2,3-дигидро-1,4-оксатиин-2-ол 13. Возможно, такой результат связан с некоторым различием в превращениях первоначально образующихся бис(гидрокси)сульфидов 14а-с под действием H₂O. Соединение 14а изомеризуется преимущественно в бискетон 15 с последующей гидратацией одной карбонильной группы и циклизацией гидрата 16 в 1,4-оксатиан-2,6-диол 12 (схема 3).

Соединение 13 образуется в результате внутримолекулярной циклизации кетоенола 17. Возможность замыкания кетоспиртов в оксатииновый цикл предполагалась ранее.¹⁸ Дегидратация диолов с замыканием цикла и образованием оксатиинов рассматривалась в некоторых работах.¹⁹ Следует отметить, что при гидролизе соединения 11а, по-видимому, также происходит образование незначительного количества дигидрооксатиина 18, о чем может свидетельствовать наличие в спектре ЯМР ¹⁹F реакционной смеси сигналов, близких к сигналам соединения 13 аналогичного строения. Однако при попытке выделения соединения 18 колоночной хроматографией мы получили только продукт его гидролиза, альдегид 19 с незначительным выходом (схема 3).

Все полученные таким образом соединения, содержащие гидроксильные группы у третичных атомов углерода, являются термически достаточно стабильными. Они не изменяются при нагревании до 100°С в течение 1 ч. Образования возможных продуктов дегидратации оксатиинов при этом не наблюдается. Длительное нагревание при более высоких температурах приводит к образованию сложной смеси продуктов разложения.

В отличие от приведенных результатов, гидролиз енамина **11с** с еще более длинным полифторалкильным заместителем в аналогичных условиях приводит к образованию только ациклического бис(енола) **14с**, который не превращается в производное оксатиина в условиях, аналогичных образованию гетероциклов **12**, **13**.

Образование бис(гидрокси)дивинилсульфида 14с подтверждается превращением его в известный дивинилсульфид 20¹⁷ при действии морфолинотрифторсульфурана (схема 4).

Схема 4

Аналогичная реакция производных оксатиана 12 и дигидроксатиина 13 приводит только к фторированию гидроксильных групп и получению новых фторсодержащих оксатианов 21, 22 (схема 4). Образования продуктов дегидратации, что характерно для фторирования гидроксилсодержащих групп при наличии протонов у β -углеродного атома,²⁰ в данном случае не наблюдается.

Тот факт, что определяющим для образования оксатиинового цикла при гидролизе полученных нами енаминов является валентное состояние атома серы, мы получили при изучении гидролиза дивинилсульфоксидов **24а,b**, полученных окислением сульфидов **20** и **23**. При нагревании этих сульфоксидов в водном диоксане в присутствии Et₃N единственными продуктами гидролиза являются соответственно 1,4-оксатиины **25а,b** (схема 5).

Схема 5

Таким образом, в настоящей работе предложены методы синтеза новых фторсодержащих производных 1,4-оксатиинов с двухвалентной или четырехвалентной серой из бис(1,1-дигидрополифторалкил)сульфидов.

Экспериментальная часть

Спектры ЯМР ¹Н зарегистрированы на спектрометре Bruker Avance-400 (400 МГц), внутренний стандарт -ТМС. Спектры ЯМР ¹³С записаны на спектрометре Bruker Avance-500 (126 МГц), химические сдвиги относительно сигналов растворителя: приведены ДМСО-*d*₆ (δ_{C} 39.5 м. д.), (CD₃)₂CO (δ_{CD3} 29.9 м. д., δ_{CO} 206.7 м. д.), CDCl₃ (δ_C 77.2 м. д.). Сигналы ядер углерода отнесены с помощью метода АРТ. Спектры ЯМР ¹⁹F зарегистрированы на спектрометре Bruker Avance-400 (377 МГи). внутренний стандарт – С₆F₆ (б_г –162.90 м. д.). Масс-спектры HPLC/MS записаны на приборе Agilent 1100, оснащенном диодно-матричным и масс-селективным детектором Agilent LC/MSD SL (ионизация электрораспылением при атмосферном давлении, 70 эВ). Масс-спектры GC/MS записаны на приборе Hewlett-Packard 5890/5972 (ионизация ЭУ, 70 эВ). Элементный анализ выполнен в аналитической лаборатории Института органической химии НАН Украины методом экспресс-гравиметрии (С, Н), методом сожжения по Шенигеру (S) и методом Дюма-Прегля (N). Температуры плавления определены на столике Boetius. Для колоночной хроматографии (диаметр колонки 2 см, длина колонки: 30 см) использован силикагель Merck 60 (70-230 мкм). Для тонкослойной хроматографии использованы пластины Macherey-Nagel, Polygram[®] Sil G/UV254.

Все растворители предварительно высушены и перегнаны согласно стандартным методикам. Соединение **23** получено по описанной ранее методике.¹⁷

Получение бис(енамин)сульфидов 11а-с (общая методика). К раствору 10 ммоль сульфида 4а-с в 7 мл морфолина присыпают 21 мг (50 ммоль) LiOH·H₂O. Суспензию перемешивают в течение 5 ч при температуре 100–105°C в атмосфере аргона. Затем реакционную смесь охлаждают до комнатной температуры, фильтруют и промывают на фильтре 10 мл CH₂Cl₂. Метиленовый раствор промывают 10 мл H₂O, а затем

10 мл 10% водного раствора HCl, затем снова H₂O. Органическую фазу сушат над безводным Na₂SO₄, фильтруют и упаривают досуха. Остаток кристаллизуют из гексана.

Бис[2-(морфолин-4-ил)-3,3-дифторпроп-1-ен-1-ил]сульфан (11а). Выход 1.4 г (40%), коричневый порошок, т. пл. 102–103°С. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 3.03 (8H, т, *J* = 4.0, 4CH₂); 3.75 (8H, т, *J* = 4.0, 4CH₂); 6.07 (2H, т, *J* = 56.0, 2CHF₂); 6.12 (2H, т, *J* = 2.0, 2CH=). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 49.7 (с, CH₂); 67.3 (с, CH₂); 113.9 (т, *J* = 241.6, CHF₂); 121.0 (т, *J* = 12.0, CH=); 137.9 (т, *J* = 20.0, CHF₂<u>C</u>). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (*J*, Гц): –113.19 (4F, д, *J* = 56.0, 2CHF₂). Масс-спектр, *m*/*z* (*I*_{0тн}, %): 356 [M]⁺ (100). Найдено, %: С 47.00; H 5.48; N 7.72; S 8.92. C₁₄H₂₀F₄N₂O₂S. Вычислено, %: С 47.18; H 5.66; N 7.86; S 9.00.

Бис[2-(морфолин-4-ил)-3,3,4,4,5,5-гексафторпроп-1-ен-1-ил]сульфан (11b). Выход 2.5 г (45%), белый порошок, т. пл. 122–124°С. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 3.02 (8Н, т, *J* = 4.0, 4CH₂); 3.74 (8Н, т, *J* = 4.4, 4CH₂); 6.07 (2Н, т. т, *J* = 52.6, *J* = 5.6, 2CHF₂); 6.60 (2H, с, 2CH=). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 49.9 (с, CH₂); 67.5 (с, CH₂); 107.9 (т. т, *J* = 251.6, *J* = 32.9, CHF₂); 114.8 (т. т, *J* = 257.8, *J* = 33.5, CF₂); 128.9 (т, *J* = 6.9, CH=); 133.0 (т, *J* = 23.3, CF₂<u>C</u>). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (*J*, Гц): –137.71 (4F, д, *J* = 52.6, 2CHF₂); –130.07 (4F, с, 2CF₂); –110.00 (4F, с, 2CF₂). Масс-спектр, *m/z* (*I*_{отн}, %): 557 [M+H]⁺ (100). Найдено, %: С 38.59; Н 3.40; N 5.00; S 5.77. С₁₈H₂₀F₁₂N₂O₂S. Вычислено, %: С 38.86; Н 3.62; N 5.03; S 5.76.

Бис[2-(морфолин-4-ил)-3,3,4,4,5,5,6,6,7,7-декафторгепт-1-ен-1-ил]сульфан (11с). Выход 2.6 г (35%), белый порошок, т. пл. 60–61°С. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (J, Гц): 2.99 (8Н, т, J = 4.4, 4CH₂); 3.74 (8Н, т, J = 4.8, 4CH₂); 6.05 (2Н, т. т, J = 52.0, J = 5.2, 2CHF₂); 6.58 (2H, с, 2 CH=). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (J, Гц): 50.0 (с, CH₂); 67.6 (с, CH₂); 107.8 (д. т, J = 251.6, J = 8.8, CHF₂); 108.5–112.6 (м, CF₂) 115.0 (т. т, J = 261.0, J = 34.0, CF₂); 128.5 (т, J = 6.6, CH=); 134.1 (т, J = 23.3, CF₂C). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (J, Гц): –138.19 (4F, д, J = 52.0, 2CHF₂); –130.74 (4F, с, 2CF₂); –124.41 (4F, с, 2CF₂); –117.79 (4F, с, 2CF₂); –108.00 (4F, с, 2CF₂). Найдено, %: С 34.86; Н 2.60; N 3.30; S 4.15. C₂₂H₂₀F₂₀N₂O₂S. Вычислено, %: С 34.93; Н 2.67; N 3.70; S 4.24.

Получение соединений 12, 13, 14с, 19 гидролизом бис(енамин)сульфидов 11а-с (общая методика). В 10 мл диоксана растворяют 3.6 ммоль енамина 11а-с и добавляют 3.7 мл 10% водного раствора HCl. Перемешивают при 110°С в течение 2 ч. Затем реакционную смесь упаривают при пониженном давлении 10–20 мм рт. ст., а остаток растворяют в 10 мл CH₂Cl₂. Дихлорметановый раствор промывают H₂O (2×10 мл). Органический слой сушат над безводным Na₂SO₄, фильтруют и упаривают при пониженном давлении 10–20 мм рт. ст.

2,6-Бис(дифторметил)-1,4-оксатиан-2,6-диол (12) получают из бис(енамина) **11а**, очищают с использованием колоночной хроматографии, элюент EtOAc-

гексан, 4:6, $R_{\rm f}$ 0.77. Выход 0.7 г (85%), желтое масло. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 2.99 (2H, д, *J* = 14.0, 2C<u>H</u>_AH_B); 2.62 (2H, д, *J* = 14.0, 2CH_A<u>H</u>_B); 3.71 (2H, с, 2OH); 6.07 (2H, т, *J* = 55.0, 2CHF₂). Спектр ЯМР ¹³C (CDCl₃), δ , м. д. (*J*, Гц): 29.2 (с, CH₂); 92.5 (т, *J* = 25.7, CHF₂<u>C</u>); 112.9 (т, *J* = 250.0, CHF₂). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (*J*, Гц): -138.21 (2F, д. д, *J* = 285.0, *J* = 55.0, CHF₂); -135.64 (2F, д. д, *J* = 285.0, *J* = 55.0, CHF₂). Масс-спектр, *m*/*z* (*I*_{0TH}, %): 218 [M–H₂O]⁺ (100). Найдено, %: С 30.22; H 3.32; S 13.49. C₆H₈F₄O₃S. Вычислено, %: C 30.51; H 3.41; S 13.57.

2,6-Бис(1,1,2,2,3,3-гексафторпропил)-2,3-дигидро-1,4-оксатиин-2-ол (13) получают из бис(енамина) 11b, очищают с использованием колоночной хроматографии, элюент МТБЭ-гексан, 1:1, Rf 0.62. Выход 0.7 г (46%), желтое масло. Спектр ЯМР 1 Н (CDCl₃), δ , м. д. (*J*, Гц): 3.07 (1Н, д, *J* = 12.0, CH_A<u>H</u>_B); 3.12 (1Н, д, $J = 12.0, CH_AH_B$; 4.22 (1H, c, OH); 5.98 (1H, T. T, $J = 52.4, J = 5.6, CHF_2$; 6.10 (1H, $\pi, J = 4.0, CH$); 6.20 (1H, T. T, J = 52.4, J = 6.8, CHF₂). Cnektp SMP ¹³C (CDCl₃), б, м. д. (*J*, Гц): 27.8 (с, CH₂); 91.9 (т, *J* = 30.4, <u>С</u>ОН); 100.7 (т, J = 6.6, CH); 107.8 (т. т. J = 253.9, J = 31.6, CHF₂); 108.7–114.9 (м, CF₂); 136.1 (т, J = 28.7, СF₂<u>С</u>). Спектр ЯМР ¹⁹F (CDCl₃), δ, м. д. (*J*, Гц): −138.72÷ -138.00 (4F, м, 2CHF₂); -132.31 (1F, д, J = 289.52, CF_AF_B); -131.67 (2F, c, CF₂); -129.34 (1F, д, J = 289.52, $CF_{A}F_{B}$); -128.10 (1F, д, J = 282.0, $CF_{A}F_{B}$); -125.56 (1F, д, J = 282.0, CF_A<u>F</u>_B); -120.19 (1F, д, J = 280.0, C<u>F</u>_AF_B); -117.95 (1F, д, J = 298.0, CF_A<u>F</u>_B). Масс-спектр, m/z ($I_{\text{отн}}$, %): 419 [M+H]⁺ (100). Найдено, %: С 28.56; Н 1.40; S 7.55. С₁₀Н₆F₁₂O₂S. Вычислено, %: С 28.72; Н 1.45; S 7.67.

1,1'-Сульфандиилбис(3,3,4,4,5,5,6,6,7,7-декафторгепт-1-ен-2-ол) (14с) получают из бис(енамина) **11с**. Выход 1.0 г (46%), бесцветная вязкая жидкость. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 3.95 (2H, с, 2OH); 6.04 (2H, т. т, *J* = 52.0, *J* = 5.2, 2CHF₂); 6.39 (2H, д, *J* = 30.4, 2CH). Спектр ЯМР ¹⁹F(CDCl₃), δ , м. д. (*J*, Гц): -138.28÷ -137.98 (4F, м, 2CHF₂); -130.75÷-130.49 (4F, м, 2CF₂); -124.72÷-124.57 (4F, м, 2CF₂); -124.74÷-124.34 (4F, м, 2CF₂); -117.92÷-117.22 (4F, м, 2CF₂). Найдено, %: С 27.16; H 0.95; S 5.09. С₁₄H₆F₂₀O₂S. Вычислено, %: С 27.20; H 0.98; S 5.19.

6-(Дифторметил)-6-гидрокси-5.6-дигидро-1.4-оксатиин-2-альдегид (19) получают из бис(енамина) 11а, очищают с использованием колоночной хроматографии, элюент EtOAc-гексан, 4:6, Rf 0.53. Выход 35 мг (5%), желтое масло. Спектр ЯМР ¹Н ((CD₃)₂CO), δ, м. д. $(J, \Gamma \mu)$: 2.86 (1H, $\pi, J = 12.8$, CH_AH_B); 2.95 (1H, π, J) J = 12.8, CH_AH_B); 3.07 (1H, yui. c, OH); 5.85 (1H, T, J = 54.0, CHF₂); 6.79 (1H, c, CH=); 8.88 (1H, c, CHO). Спектр ЯМР ¹³С ((CD₃)₂CO), δ, м. д. (*J*, Гц): 26.6 (с, CH₂); 90.3 (T, J = 25.8, CHF₂C); 113.5 (T, J = 247.8, CHF₂); 121.7 (c, CH); 146.4 (c, CHOC); 182.0 (c, CHO). Спектр ЯМР ¹⁹F ((CD₃)₂CO), б. м. д. (*J*, Ги): –135.18 (1F. д. д. $J = 285.0, J = 54.0, CHF_{A}F_{B}$; -132.73 (1F, д. д. $J = 285.0, J = 54.0, CHF_AF_B$; Macc-cnektp, m/z(*I*_{отн}, %): 197 [М+Н]⁺ (100). Найдено, %: С 36.62; Н 3.00; S 16.35. C₆H₆F₂O₃S. Вычислено, %: С 36.74; Н 3.08; S 16.34.

Получение соединений 20–22 фторированием соединений 14с, 12, 13 с использованием морфолинотрифторсульфурана (общая методика). В 5 мл сухого CH₂Cl₂ растворяют 0.3 ммоль енола 12, 13, 14с, и в атмосфере аргона порциями добавляют 1.2 ммоль морфолинотрифторсульфурана. Перемешивают при комнатной температуре в течение 18 ч. Затем раствор разбавляют 10 мл CH₂Cl₂ и промывают 10 мл H₂O, затем 10 мл 10% раствора NaHCO₃ и снова 10 мл H₂O. Органический слой отделяют, сушат на Na₂SO₄, фильтруют и упаривают при пониженном давлении 10–20 мм рт. ст.

Бис(2,3,3,4,4,5,5,6,6,7,7-ундекафторгепта-1-ен-1-ил)сульфан (20) очищают с использованием колоночной хроматографии, элюент EtOAc-гексан, 1:9, $R_{\rm f}$ 0.6. Выход 75 мг (40%), оранжевое масло. Спектральные характеристики совпадают с описанными ранее.¹⁷

2,6-Бис(дифторметил)-2,6-дифтор-1,4-оксатиан (21) очищают с использованием колоночной хроматографии, элюент МТБЭ–гексан, 7:3, R_f 0.85. Выход 32 мг (42%), желтое масло. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 2.94–3.28 (4H, м, 2CH₂); 5.68 (2H, т, *J* = 56.0, 2CHF₂). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 25.3 (д, *J* = 28.3, CH₂); 103.7 (д. д. д. *J* = 29.3, *J* = 80.8, *J* = 238.4, CHF₂C); 111.1 (д. т, *J* = 39.4, *J* = 251.5, CHF₂). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (*J*, Гц): –138.38 (2F, д. д, *J* = 293.3, *J* = 56.4, CHF₂A); –134.45 (2F, д. д, *J* = 293.3, *J* = 56.4, CHF₂B); –119.65 (2F, д. *J* = 33.8, 2CF). Масс-спектр, *m*/*z* (*I*_{отн}, %): 240 [M]⁺ (100). Найдено, %: С 29.98; H 2.48; S 13.27. С₆H₆F₆OS. Вычислено, %: С 30.01; H 2.52; S 13.35.

2-Фтор-2,6-бис(1,1,2,2,3,3-гексафторпропил)-2,3-дигидро-1,4-оксатиин (22) очищают вымораживанием из гексана. Выход 84 мг (66%), бесцветное масло. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 3.08 (1H, д. д, *J* = 24.0, *J* = 8.0, CH_A<u>H</u>_B); 3.29 (1H, д, *J* = 16.0, C<u>H</u>_AH_B); 6.03 (2H, к. т, *J* = 88.0, *J* = 37.6, *J* = 5.6, 2CHF₂); 6.33 (1H, c, CH). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 24.7 (д, *J* = 30.4, CH₂); 102.6 (д. т, *J* = 241.0, *J* = 31.2, CF₂<u>C</u>F), 105.0 (т, *J* = 6.3, CH); 107.8 (т. т, *J* = 254.1, *J* = 32.0, CHF₂); 108.7–113.0 (м, CF₂); 134.2 (т, *J* = 31.5, CF₂<u>C</u>). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (*J*, Гц): –138.31 (2F, т, *J* = 52.6, CHF₂); –137.96 (2F, д, *J* = 52.6, CHF₂); –131.23 (2F, c, CF₂); –130.61 (2F, c, CF₂); –126.53 (2F, м, CF₂); –119.87÷–117.58 (2F, м, CF₂); –111.81 (1F, т, *J* = 11.3, CF). Масс-спектр, *m/z* (*I*_{отн}, %): 419 [M]⁺ (100).

Получение бис(полифторалкилалкенил)сульфоксидов 24а,b (общая методика). К раствору 0.42 ммоль бис(полифторалкилвинил)сульфида 20 или 23 в 5 мл ледяной АсОН приливают 0.17 мл (1.7 ммоль) 36% H₂O₂. Смесь перемешивают при 50°С в течении 8 ч. Раствор охлаждают до комнатной температуры и добавляют 15 мл H₂O. Выпавшее масло отделяют и очищают вымораживанием из гексана.

Бис(2,3,3,4,4,5,5-гептафторпент-1-ен-1-ил)сульфоксид (24а). Выход 74 мг (40%), желтая вязкая жидкость. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 6.04 (2H, т. т, *J* = 52.0, *J* = 4.8, 2CHF₂); 6.70 (2H, д, *J* = 32.0, 2CH). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 107.2–109.6 (м, CF₂); 107.7 (т. т, *J* = 254.5, *J* = 32.8, CHF₂); 120.7–120.9 (м, CH); 151.0 (д. т, J = 281.5, J = 31.4, CF₂CF). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (J, Гц): -137.69 (4F, д, J = 51.9, 2CHF₂); -130.34÷-130.28 (4F, м, 2CF₂); -120.61÷-120.49 (4F, м, 2CF₂); -107.99÷-107.81 (2F, м, 2CF). Масс-спектр, m/z ($I_{\text{отн}}$, %): 438 [M]⁺ (100). Найдено, %: C 27.36; H 0.88; S 7.28. C₁₀H₄F₁₄OS. Вычислено, %: C 27.41; H 0.92; S 7.32.

Бис(2,3,3,4,4,5,5,6,6,7,7-ундекафторгепт-1-ен-1-ил)сульфоксид (24b). Выход 0.1 г (40%), бесцветная вязкая жидкость. Спектр ЯМР ¹Н (ДМСО- d_6), δ, м. д. (*J*, Гц): 7.17 (2H, т. т, *J* = 50.0, *J* = 5.2, 2CHF₂); 7.95 (2H, д, *J* = 34.8, 2CH). Спектр ЯМР ¹³С (ДМСО- d_6), δ, м. д. (*J*, Гц): 106.9–114.5 (м, CF₂); 108.4 (т. т, *J* = 252.9, *J* = 31.1, CHF₂); 122.9 (с, CH); 149.1 (д. т, *J* = 276.3, *J* = 31.2, CF₂C). Спектр ЯМР ¹⁹F (ДМСО- d_6), δ, м. д. (*J*, Гц): -138.85 (4F, д, *J* = 50.8, 2CHF₂); -129.29 (4F, с, 2CF₂); -123.57÷-123.32 (8F, м, 4CF₂); -118.02÷-117.91 (4F, м, 2CF₂); -114.66÷-114.46 (2F, м, 2CF). Найдено, %: С 26.28; Н 0.63; S 5.00. С₁₄Н₄F₂₂OS. Вычислено, %: C 26.35; H 0.63; S 5.02.

Получения монооксидов бис(полифторалкил)оксатиина 25а,b (общая методика). В смеси из 5 мл диоксана и 1 мл H_2O растворяют 0.4 ммоль сульфоксида 24а,b. Приливают к раствору 220 мкл (1.6 ммоль) Et_3N и перемешивают при нагревании 100–105°C в течении 1 ч. После охлаждения до комнатной температуры реакционную смесь разбавляют 15 мл CH_2Cl_2 и промывают H_2O (2 × 10 мл). Метиленовый раствор сушат над безводным Na_2SO_4 , фильтруют и упаривают при пониженном давлении 10–20 мм рт. ст.

4-Оксид 2,6-бис(1,1,2,2,3,3-гексафторпропил)-1,4оксатиина (25а). Выход 67 мг (40%), желтоватая жидкость. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 6.06 (2H, т. т, *J* = 52.0, *J* = 4.8, 2CHF₂); 6.96 (2H, с, 2CH). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 107.7 (т. т, *J* = 254.7, *J* = 33.4, CHF₂); 108.5 (с, CH); 110.4–113.4 (м, CF₂); 143.6 (т, *J* = 30.6, CF₂<u>C</u>). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (*J*, Гц): -137.73 (4F, д, *J* = 51.9, 2CHF₂); -130.19÷–130.14 (4F, м, 2CF₂); -119.76÷–119.53 (4F, м, 2CF₂). Масс-спектр, *m*/*z* (*I*_{0TH}, %): 416 [M]⁺ (100). Найдено, %: С 28.79; Н 0.93; S 7.65. C₁₀H₄F₁₂O₂S. Вычислено, %: С 28.86; H 0.97; S 7.70.

4-Оксид 2,6-бис(1,1,2,2,3,3,4,4,5,5-декафторпентил)-1,4-оксатиина (25b). Выход 145 мг (56%), оранжевое масло. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 6.04 (2H, т. т, *J* = 51.2, *J* = 4.8, 2CHF₂); 7.00 (2H, с, 2CH). Спектр ЯМР ¹³C (CDCl₃), δ , м. д. (*J*, Гц): 107.5 (т. т, *J* = 255.7, *J* = 31.6, CHF₂); 108.8 (с, CH); 110.9–114.7 (м, CF₂); 143.4 (т, *J* = 30.3, CF₂<u>C</u>).Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (*J*, Гц): -137.74 (4F, д, *J* = 51.5, 2CHF₂); -130.10÷ -129.67 (4F, м, 2CF₂); -123.89÷-123.66 (4F, м, 2CF₂); -123.08÷-122.88 (4F, м, 2CF₂); -117.84÷-117.63 (4F, м, 2CF₂). Масс-спектр, *m/z* (*I*_{отн}, %): 617 [M+H]⁺ (100). Найдено, %: C 27.30; H 0.64; S 5.13. C₁₄H₄F₂₀O₂S. Вычислено, %: C 27.29; H 0.65; S 5.20.

Файл сопроводительных материалов, содержащий спектры ЯМР ¹H, ¹³C, ¹⁹F соединений **11a,b**, **19**, **22**, **24a,b**, доступен на сайте журнала http://hgs.osi.lv.

Список литературы

- Kirk, K. L. In *Fluorinated Hetrocyclic Compounds*; Petrov, V. A., Ed.; John Wiley & Sons, Inc.: Hoboken, 2009, p. 91.
- 2. Shermolovich, Yu. G.; Pazenok, S. V. Top. Heterocycl. Chem. 2012, 27, 101.
- 3. Gakh, A. A.; Shermolovich, Yu. Curr. Top. Med. Chem. 2014, 14, 952.
- 4. *Fluorine in Heterocyclic Chemistry*; Nenajdenko, V. G., Ed.; Springer: Heidelberg, New York, London, 2014.
- Huang, H.-N.; Roesky, H.; Lagow, R. J. Inorg. Chem. 1991, 30, 789.
- 6. Burdon, J.; Parsons, I. W. Tetrahedron 1971, 27, 4533.
- Kawa, H.; Hamouda, H. A.; Ishikawa, N. Bull. Chem. Soc. Jpn. 1980, 53, 1694.
- Chen, J.; Kirchmeier, R. L.; Shreeve, J. M. Inorg. Chem. 1996, 35, 6676.
- Hah, H.-G., Chang, K. H.; Nam, K. D.; Bae, S. Y.; Mah', H. Heterocycles 1998, 48, 2253.
- Hammock, B. II.; Hasagawa, L. S. Biochem. Pharmacol. 1983, 32, 1155.
- 11. Hahn, H.-G.; Rhee, H. K.; Lee, C. K.; Whang , K. J. Arch. Pharm. Res. 2000, 23, 315.

- 12. Hronowski, L. J. J.; Szarek, W. A. J. Med. Chem. 1982, 25, 522.
- (a) Murray, W. T.; Kelly, J. W.; Evans, S. A., Jr. J. Org. Chem. 1987, 52, 525. (b) Sakhabutdinova, G. N.; Raskil'dina, G. Z.; Baikova, I. P.; Zlotskii, S. S.; Sultanova, R. M. Chem. Heterocycl. Compd. 2019, 55, 1222. [Химия гетероцикл. соединений 2019, 55, 1222.]
- 14. Yang, F. G.; Lian, B. Y. Carbohydr. Res. 2010, 345, 309.
- 15. Yamada, H.; Adachi, M.; Nishikawa, T. Chem. Commun. 2013, 49, 11221.
- 16. (а) Тимошенко, В. М.; Листван, В. В.; Русанов, Э. Б.; Шермолович, Ю. Г.; Марковский, Л. Н. *Журн. орган. химии* **1997**, *33*, 70. (b) Shermolovich, Yu. G.; Musyanovich, R. Ya.; Timoshenko, V. M.; Markovsky, L. N. *Heteroat. Chem.* **2000**, *11*, 383.
- 17. Borodkin, Ya.; Rusanov, E.; Marchenko, A.; Koidan, Yu.; Shermolovich, Yu. J. Sulfur Chem. 2019, 40, 416.
- Obijalska, E.; Pawelec, M.; Mlostoń, G.; Capperucci, A.; Tanini, D.; Heimgartner, H. *Eur. J. Org. Chem.* 2018, 3716.
- 19. Hahn, H.-G.; Chang, K.-H.; Lee, W. S. *Heterocycles* 1995, 41, 921.
- 20. Hiyama T. Organofluorine Compounds. Chemistry and Applications; Springer: Berlin, Heidelberg, New York, 2000.