

Приоритетные направления конструирования биологически активных соединений на основе 2-аминопиримидин-4(3*H*)-она и его производных

Андрей В. Еркин¹*, Виктор И. Крутиков¹, Александр В. Гарабаджиу¹

¹ Санкт-Петербургский государственный технологический институт (технический университет),

Московский пр., 26, Санкт-Петербург 190013, Россия e-mail: anerkin@yandex.ru Поступило 31.08.2020 Принято после доработки 30.12.2020

В обзоре собраны литературные данные о конструировании биологически активных соединений на основе 2-аминопиримидин-4(3*H*)-она и его производных за последние 20 лет. Систематизация и анализ собранных данных позволили выявить приоритетные направления этого процесса, включающие разработки противовирусных и антилейкемических агентов, средств для борьбы с гиперурикемией, нейродегенеративными расстройствами, некоторыми формами рака и, наконец, противовоспалительных и гормональных препаратов.

Ключевые слова: 2-амино-6-арилпиримидин-4(3*H*)-оны, 2-амино-3-метил-5,6-дигидропиримидин-4(3*H*)-оны, имидазо[1,2-*a*]пиримидины, меридианины, нуклеозиды, биологическая активность, реакция Сузуки, реакция Хека, циклоконденсация.

Несмотря на то, что 2-аминопиримидин-4(3H)-он (изоцитозин) (1) (рис. 1) не входит в число канонических оснований нуклеиновых кислот, он неоднократно использовался в качестве молекулярного каркаса (скаффолда) при конструировании биологически активных соединений, в том числе противовирусного и противоопухолевого действия. В действительности незамещенный изоцитозин 1 существует в виде равновесной смеси приведенной таутомерной формы и 2-аминопиримидин-4(1*H*)-она в соотношении 1:1 (pH 7).¹ Это соотношение сохраняется и в кристаллическом состоянии.² Наиболее известным примером успешной модификации структуры изоцитозина 1 служит выявление группы низкомолекулярных индукторов интерферона и противогерпесных агентов в ряду 5,6-дизамещенных 2-аминопиримидин-4(3H)-онов 2.3 Впоследствии одно из этих соединений, 5-бром-6-фенилизоцитозин, под названием бропиримин нашло применение в клинической практике не только как эффективный иммуномодулятор, но и как препарат для лечения рака мочевого пузыря⁴ (рис. 1).

Анализируя доступные литературные сведения за последние 20 лет, мы пришли к выводу, что конструи-

рование биологически активных соединений на основе изоцитозина **1** и его производных в этот период развивалось в нескольких приоритетных направлениях, включавших разработки: противовирусных и антилейкемических агентов (раздел 1); препаратов для борьбы с гиперурикемией (раздел 2), нейродегенеративными расстройствами (раздел 3) и некоторыми формами рака (раздел 4); противовоспалительных и гормональных средств (раздел 5).

Рисунок 1. Изоцитозин 1 и его биологически активные производные.

С учетом очевидной актуальности перечисленных разработок мы сформулировали цель настоящего обзора – осветить описанные подходы к трансформации структур 2-аминопиримидин-4(3H)-онов в рамках разделов 1-5 и дать оценку текущего состояния этого процесса. Следует подчеркнуть, что попытки подобного рода до сих пор не предпринимались, поскольку ранее изоцитозины рассматривались исключительно в контексте химии 2-аминопиримидинов,⁵ представляющих интерес для химиотерапии бактериальных инфекций⁶ и туберкулеза.⁷ В противоположность этой позиции уместно упомянуть обзор,⁸ авторы которого выделяют изоцитозины в особую группу гетероциклических скаффолдов. Данная работа, содержащая исчерпывающую информацию о способах непрямой модификации их экзоциклической аминогруппы (по этой причине изоцитозины, содержащие заместитель у аминогруппы, практически исключены из настоящего обзора), может служить хорошим подспорьем в дальнейшем поиске ингибиторов ВИЧ-1 среди N-(ди)замещенных 2-амино-6-бензилпиримидин-4(3*H*)-онов.⁹

1. КОНСТРУИРОВАНИЕ ПРОТИВОВИРУСНЫХ И АНТИЛЕЙКЕМИЧЕСКИХ ПРЕПАРАТОВ

Объединение препаратов столь различного, на первый взгляд, назначения в одной группе объясняется использованием для их создания одних и тех же скаффолдов, главным образом нуклеозидов и их аналогов.

1.1. Синтез ациклических нуклеотидов

Основу синтеза ациклических нуклеотидов составляет неселективное N-алкилирование изоцитозинов ω -фосфоноалкилгалогенидами. Так, из соединения 1 и диизопропил[(2-хлорэтокси)метил]фосфоната (3) образуется смесь региоизомеров 4 и 5¹⁰ (схема 1).

Замена субстрата 1 2-амино-6-метилпиримидин-4(3*H*)-оном (6) приводит к образованию смеси N(3)- и *О*-фосфоноалкилпроизводных 7 и 8 соответственно¹¹ (схема 2). Вероятно, изменение региоизомерного состава продуктов реакции в этом случае обусловливается стерическим эффектом метильной группы, ограни-

Схема 2

чивающим доступность атома N-1 для атаки электрофилом. Применяя метод межфазного катализа, содержание N(3)-изомера в смеси продуктов алкилирования изоцитозинов можно приблизить к 100%, однако выход его при этом не увеличится. Вышеизложенное относится, в частности, к N(3)-этилированию соединения **6** и его 5-метиланалога, приводящему к соответствующим продуктам с выходами 15 и 28%.¹²

При гидролизе эфиров 4, 5, 7 и 8 образуются фосфоновые кислоты 9–12 – аналоги препарата цидофовира (схема 3), применяющегося при лечении цитомегаловирусного ретинита.^{10,11,13}

Схема 3

В целом ациклонуклеотиды **9–12** оказываются неактивными по отношению к ряду содержащих ДНК вирусов (цитомегаловирусу (ЦМВ), ВИЧ-1,2, вирусу простого герпеса 1 и 2 типов и вирусу герпеса человека 3 типа). Лишь соединение **10** ингибирует развитие вируса саркомы Молони в низкой концентрации (полумаксимальная эффективная концентрация (EC₅₀) 2.33 ± 0.31 мкг/мл).¹⁰

1.2. Синтез аналогов рибонуклеозидов

Аминированием незамещенного или 5(6)-замещенных 2-(метилсульфанил)пиримидин-4(3*H*)-онов **13а–d** 1-((3а*R*,4*R*,6а*R*)-2,2-диметил-6-метокситетрагидрофуро-[3,4-*d*][1,3]диоксол-4-ил)метанамином (**14**) через интермедиаты **15а–d** получают необычные нуклеозиды **16а–d**, в которых агликон и фрагмент рибозы соединены азауглеродным мостиком¹⁴ (схема 4).

Из тиоэфиров **13а–d** и 2-[((3а*R*,4*R*,6а*R*)-2,2-диметил-6-метокситетрагидрофуро[3,4-*d*][1,3]диоксол-4-ил)метокси]этан-1-амина (**17**) аналогичным образом через промежуточные соединения **18а–d** образуются нуклеозиды **19а–d**¹⁴ (схема 5).

Большинство соединений **16а–d** и **19а–d** проявляет высокую активность в отношении вируса гепатита В на фоне умеренной или низкой токсичности (количественные данные не приведены).¹⁴

1.3. Синтез производных псевдоизоцитидина

Для получения производных псевдоизоцитидина, синтетического С-нуклеозида антилейкемического действия,¹⁵ сочетающегося с гепатотоксичностью,¹⁶ используется реакция Хека между 2-амино-5-иодпиримидин-4(3*H*)-онами и (2*R*,3*S*)-2-гидроксиметил-2,3-дигидро-1-окса(аза)циклопент-2-ен-3-олами с предварительно защищенными функциональными группами. Например, в результате взаимодействия соединения **20** и защищенного (2*R*,3*S*)-2-гидроксиметил-2,3дигидрофуран-3-ола **21** через интермедиаты **22–24** образуется 2'-деоксипсевдоизоцитидин (**25**)¹⁷ (схема 6).

Схожим образом из 2-амино-1-метил-5-иодпиримидин-4(1H)-она 26 и 2,3-дигидрофурана 27 через промежуточные соединения 28–30 получают 1-метил-2'-деоксипсевдоизоцитидин (31)¹⁸ (схема 7).

Наряду с производными 2,3-дигидрофурана для синтеза азааналогов соединения **25** пригоден (2*R*,3*S*)-2-(гидроксиметил)-2,3-дигидро-1*H*-пиррол-3-ол **32**. Взаимодействие этого соединения с 5-иодизоцитозином **33** через интермедиаты **34–36** приводит к образованию аза-2'-деоксипсевдоизоцитидина (**37**)¹⁹ (схема 8).

ii: 1. HF–Py, MeCN, 25°C, 6 h; 2. NaBH(OAc)₃, MeCN, –15 to 20°C, 5 h *iii*: H₂, Pd/C, MeOH, rt, 7 h; *iv*: NH₄OH, 55°C, 18 h

В результате реакции соединения **38** и защищенного (2R,3S,5R)-2-(гидроксиметил)-5-этинилтетрагидрофуран-3-ола **39** через промежуточное соединение **40** образуется нуклеозид **41**, фрагменты которого связаны этиновым звеном²⁰ (схема 9).

ii: HCI-1,4-dioxane, THF, rt, 30 min, then NH₄OH

Относительная легкость синтеза нуклеозидов 25, 31, 37 и 41 обеспечивается, помимо прочего, доступностью исходного соединения 38, получаемого с высокими выходами прямым иодированием изоцитозина 1 *N*-иодсукцинимидом (табл. 1). Для сравнения, классический способ синтеза псевдоизоцитидина основан на циклоконденсации неустойчивого этил[3-метокси-2-(6-метокси-2,2-диметилтетрагидро[3,4-*d*][1,3]диоксол-4-ил)проп-2-еноата], получаемого 5-стадийным способом из соответствующей *O*-защищенной рибофуранозы, с гуанидином. В зависимости от степени очистки этого замещенного этилакрилата выходы 5-(2,3-*O*-изопропилиден-5-*O*-тритил-*D*-рибофуранозил)изоцитозина варьируются в пределах 13–88%.²¹ Таблица 1. Выходы соединения 38 в зависимости от условий иодирования 2-аминопиримидин-4(3*H*)-она (1) *N*-иодсукцинимидом

Условия	Выход, %
NIS, AcOH, 100°С, 1 ч	87 ^{17,19}
NIS, ДМФА, 25°С, 12 ч	99 ¹⁸
NIS, AcOH-H ₂ O, 100°C, 2 ч	8122

В случае нуклеозидов **25**, **31** и **37** экзоциклическую аминогруппу соединения **38** предварительно защищают *N*-ацилированием ацетангидридом (ДМФА, 100°С, 1.5 ч; выход 66%),¹⁷ хлорангидридом пивалевой кислоты (DMAP, 25°С, 18 ч; выход 72%) после предварительного N(1)-метилирования соединения **38**¹⁸ или бензангидридом (ДМФА, 100°С, 1.5 ч; выход 76%).¹⁹

Благодаря способности участвовать в образовании олигонуклеотидов, формирующих триплексную структуру ДНК, в том числе вирусной и раковой природы, нуклеозиды **25**, **31**, **37** и **41** могут служить предшественниками потенциальных препаратов для лечения соответствующих заболеваний.²³ Показано, например, что многостадийное превращение соединения **24** через интермедиаты **42**, **43** и **44а**–f приводит к образованию пролекарств **45а**–f¹⁷ (схема 10).

- *i*: TBDMSCI, DMAP, 1*H*-imidazole, DMF, rt, 24 h;
- *ii*: TFA-H₂O-THF, 1:1:4, 0°C to rt, 2 h
- iii: 1. t-BuMgCl, THF; 2. ArOP(O)NHCH(Me)CO₂R, rt, 16–18 h;
- *iv*: TFA, CH₂Cl₂, 0°C to rt, 6 h
- **a** R = Bn, Ar = Ph; **b** R = C₆H₁₁, Ar = Ph; **c** R = C₅H₁₁, Ar = Ph;
- **d** R = *i*-Pr, Ar = naphthalen-1-yl; **e** R = t-BuCH₂,

Ar = naphthalen-1-yl; f R = Bn, Ar = naphthalen-1-yl

Одно из них, соединение **45e**, под действием карбоксипептидазы Y последовательно деэтерифицируется, образуя моно- и дианионы **46** и **47** соответственно (схема 11). Полагают, что дианион **47** в результате расщепления связей P–N и C–N *in vivo* превращается в 5'-монофосфат 2'-деоксипсевдоизоцитидина, потенциальный антилейкемический агент.¹⁷

1.4. Синтез аналогов аза-2'-деоксипсевдоизоцитидина

Несмотря на то, что синтез аналогов аза-2'-деоксипсевдоизоцитидина **37** включает аминирование 5-галогенпиримидин-4(3*H*)-онов, зачастую протекающее аномально (например, в направлении тандемного дегалогенирования–гидроаминирования субстратов),²⁴ высокотемпературной конденсацией 2-амино-5-бромпиримидин-4(3*H*)-она (**48**) с (3*R*,4*R*)-4-(гидроксиметил)пирролидин-3-олом (**49**) в отсутствие растворителя и катализатора удается получить нуклеозид **50**²⁵ (схема 12). Кроме указания на то, что соединение **50** может выступать как ингибитор различных гликозидаз, в цитируемой работе отсутствуют экспериментальные данные об проявляемом им биологическом действии.

1.5. Синтез карбоциклических нуклеозидов

В противоположность производным псевдоизоцитидина их карбоциклические аналоги синтезируют циклоконденсацией солей гуанидина с этил-3-гидрокси-2-[(циклоалкил)метил]акрилатами, полученными *in situ*. В частности, модификация интермедиатов **51–53** приводит к образованию ключевого эфира **54**, который последовательной обработкой этилформиатом и карбонатом гуанидина превращают в гетероцикл **55**, а его, в свою очередь, – в нуклеозид **56** (схема 13). Последний в виде фосфата **57** проявляет активность в отношении

Схема 13

ВИЧ-1 (ЕС₅₀ 61.3 мкмоль/л) при сопоставимом уровне цитотоксичности (СС₅₀ 89.5 мкмоль/л).²⁶

1.6. Синтез аналогов нуклеозидов на основе конденсированных гетероциклов

В качестве необычного нуклеозида предложена конденсированная система на основе изоцитозина **6** с фрагментом 2-(гидроксиметил)пирролидина, имитирующим углеводный фрагмент. Для получения такого нуклеозида 2-(ацетиламино)-6-метил-5-нитропиримидин-4(3H)-он (**58**) подвергают *С*-аллилированию 2-пропенилбромидом. Образующийся при этом продукт **59** через промежуточное соединение **60** и невыделяемый интермедиат **61** превращается в 1-амино-7-(гидроксиметил)-4-нитро-6,7-дигидропирроло[1,2-*c*]пиримидин-3(*5H*)-он (**62**) (схема 14). Соединение **62** синтезировано как потенциальный ингибитор обратной транскриптазы ВИЧ-1,²⁷ однако сведения о его биологических испытаниях не приводятся.

i: 1. NaOEt, EtOH, 25°C, 0.5 h; 2. CH₂=CHCH₂Br, DMF, 80°C, 3 h *i*: NBS, DMSO–H₂O, 25°C, 2 days; *ii*: NaOEt, EtOH, 25°C, 1 h

1.7. Синтез агентов ненуклеозидной природы

Способность метильной группы изоцитозина **6** к депротонированию под действием металлоорганических соединений открывает путь к синтезу его производных с модифицированным заместителем в поло-

i: MsCl, Et₃N, CH₂Cl₂, 0°C, 5 h; *ii*: CH₂(CO₂Et)₂, NaH, THF, rt, 12 h; *iii*: LiCl, DMSO, 170°C, 12 h; *iv*: 1. LDA, THF, -78°C, 1.5 h, then HCO₂Et, rt, 12 h; 2. H₂NC(=NH)NH₂·H₂CO₃, NaOEt, EtOH, Δ, 12 h; *v*: TBAF, THF–MeCN, rt, 12 h
 vi: 1. [*t*-BuC(O)S(CH₂)₂O]₂PN(*i*-Pr)₂, 1*H*-tetrazole, THF, rt, 30 min; 2. *m*-CPBA, CH₂Cl₂, rt, 1 h

жении 6. Представленная реакционная последова- 2. КОНСТРУ

тельность включает взаимодействие защищенного изоцитозина 6 (соединение 63) с BuLi, C-(гидрокси)алкилирование литиевого комплекса 64 (арил)алкилгалогенидами или альдегидами и заключительное депротектирование соединений 65а–і до изоцитозинов 66а–i²⁸ (схема 15).

Предпочтительность протекания C-(гидрокси)алкилирования комплекса **64** связывают с повышенной нуклеофильностью ионизированной метильной группы в силу винилогии. Вместе с тем очевидно, что пиримидиновый цикл принимает не меньшее участие в делокализации избыточного заряда, первоначально возникающего на гетероатомах. По нашему мнению, реализацию означенного направления реакции можно объяснить с привлечением теории ЖМКО: ионизированный амбидентный центр, выступающий в роли жесткого основания, блокируется координацией с катионом лития, жесткой кислотой. Отсутствие же продуктов N(3)-(гидрокси)алкилирования в реакционной смеси определяется не в последнюю очередь стерическим влиянием объемной Вос-группы.

Схема 16

a R = Et, **b** R = *n*-Pr, **c** R = *n*-Bu, **d** R = $(CH_2)_2$ Ph **e** R = C(Me)_2OH, **f** R = 4-CIC₆H₄CH(OH), **g** R = 2-F₃CC₆H₄CH(OH) **h** R = 2,4,6-Me₃C₆H₂CH(OH), **i** R = 3,4-(MeO)_2C₆H₃CH(OH)

Бромированием 6-замещенных изоцитозинов **66а–і** образуются 5-бромопроизводные **67а–і** (схема 16), однако уровень активности большинства из них к исследованным вирусам, например к ЦМВ (табл. 2), оказывается сопоставимым с уровнем их токсичности для неинфицированных клеток.²⁸

Таблица 2. Антивирусная активность против ЦМВ и цитотоксичность 6-замещенных 5-бромизоцитозинов 67а-і

			1		
Соеди- нение	EC ₅₀ , мкмоль/л	МСС*, мкмоль/л	Соеди- нение	EC ₅₀ , мкмоль/л	МСС*, мкмоль/л
67a	>100	>100	67f	100	100
67b	>20	>20	67g	>100	>100
67c	>4	>4	67h	8.9	2.5
67d	>100	>100	67i	>100	>100
67e	>100	100	Цидофовир	0.51	_

 Минимальная цитотоксическая концентрация, вызывающая изменение морфологии клеток, которая обнаруживается под микроскопом.

2. КОНСТРУИРОВАНИЕ ПРЕПАРАТОВ ПРОТИВ ГИПЕРУРИКЕМИИ

Возникновение гиперурикемии – нарушения, сопровождающегося увеличением концентрации мочевой кислоты в крови – вызвано повышенной активностью ксантиноксидазы, которая катализирует окисление ксантина в мочевую кислоту. Наряду с ингибиторами этого фермента из других классов гетероциклических соединений²⁹ внимание привлекают 6-замещенные 2-амино-4-арилпиримидины и 2-амино-7-ароил-4*H*пирроло[3,2-*d*]пиримидин-4-оны.

2.1. Синтез 6-замещенных 2-амино-4-арилпиримидинов

6-Арилизоцитозины получают классической циклоконденсацией солей гуанидина с алкил-3-арил-3-оксопропаноатами и кросс-сочетанием Сузуки 2-амино-6-хлорпиримидин-4(3*H*)-она (**68**) с замещенными бензолбороновыми кислотами. При использовании карбоната гуанидина и проведении циклоконденсации в кипящем EtOH выходы 6-арилизоцитозинов **69а–с** обычно превышают 50%.³⁰ Напротив, использование гидрохлорида гуанидина в присутствии основания и нагревание реагентов в ДМФА нередко приводят к низким выходам целевых соединений (например, выходы гетероциклов **69d,е** – 14 и 22% соответственно).³¹ Впрочем, широкий диапазон значений выходов 6-арилизоцитозинов **69f–t** характерен также для реакции Сузуки³² (схема 17).

i: EtOH, 80°C (X = HCO₃); *ii*: NaOAc, DMF, 100°C, 48h (X = Cl) *iii*: Pd(PPh₃)₄, Na₂CO₃, DMF, MW, 140°C, 1–2 h

a Ar = Ph, **b** Ar = $3-O_2NC_6H_4$, **c** Ar = $4-O_2NC_6H_4$ **d** Ar = $4-MeOC_6H_4$, **e** Ar = $3,4-(MeO)_2C_6H_3$, **f** Ar = $4-HOC_6H_4$ **g** Ar = $4-(i-Bu)C_6H_4$, **h** Ar = $4-BuSC_6H_4$, **i** Ar = $4-(i-Pr)C_6H_4$ **j** Ar = $4-BuOC_6H_4$, **k** Ar = $4-(i-BuO)C_6H_4$,

n Ar = 4-PhC₆H₄, **o** Ar = 4-BnC₆H₄, **p** Ar = 4-PhOC₆H₄ **q** Ar = 3-F₃CO-4-(*i*-BuO)C₆H₃, **r** Ar = 3-MeO-4-(*i*-BuO)C₆H₃ **s** Ar = 3-O₂N-4-(*i*-BuO)C₆H₄, **t** Ar = 3-NC-4-(*i*-BuO)C₆H₃

Рисунок 2. Оптимизация структуры соединения 69d.

Способность соединения **69d** к ингибированию ксантиноксидазы³¹ повлекла за собой оптимизацию его структуры типа hit-to-lead, в результате чего удалось выявить более активные 6-арилизоцитозины **69k**,t.³² В ходе дальнейшей модификации этих соединений обнаружен 2-амино-6-[4-(изобутокси)-3-цианофенил]-пиримидин (**70**), обладающий повышенным значением концентрации ингибирования, однако, в отличие от предшественников, имеющий более высокую пероральную биодоступность³³ (рис. 2).

2.2. Синтез 2-амино-7-ароил-4*Н*-пирроло-[3,2-*d*]пиримидин-4-онов

Для аннелирования пиррола к изоцитозину **6** применяется последовательность реакций, включающая одновременное *C*- и *N*-аминометиленирование 2-амино-5-нитро-6-метилпиримидин-4(3*H*)-она (71) диметилацеталем ДМФА с образованием ключевого интермедиата **72**. В несколько измененных условиях (ДМФА, 60° С, 12 ч) соединение **72** претерпевает неожиданное *N*(3)-метилирование, приводящее к соответствующему продукту с выходом 92%.³⁴ В результате циклизации соединения **72** в ходе восстановления нитрогруппы образуется продукт **73**, который при *N*-депротектировании превращается в пирролопиримидин **74**³⁵ (схема 18).

iv: 1. ArCOCI, F₃CSO₃H, 80–120°C, 48 h; 2. NaOH, H₂O, 60°C, 2.5 h

Рисунок 3. Константы ингибирования ксантиноксидазы соединением **751** и аллопуринолом.

С-Ароилированием соединения 74 получают 2-амино-7-ароил-4*H*-пирроло[3,2-d]пиримидин-4-оны 75а–1 (схема 18), оказавшиеся в некоторых случаях более эффективными ингибиторами ксантиноксидазы (например, соединение 751) по сравнению с аллопуринолом (рис. 3). На это указывает сопоставление значений констант ингибирования (K_i) ксантиноксидазы гетероциклом 751 и препаратом сравнения.³⁵

3. КОНСТРУИРОВАНИЕ ПРЕПАРАТОВ ПРОТИВ НЕЙРОДЕГЕНЕРАТИВНЫХ РАССТРОЙСТВ

Патологическим признаком болезни Альцгеймера, принадлежащей к нейродегенеративным расстройствам, являются амилоидные образования, которые возникают в головном мозге при непосредственном участии фермента β-секретазы 1 (ВАСЕ-1). В качестве ингибиторов этого фермента предложены различные гетероциклические соединения,³⁶ в том числе производные 6-замещенных 3-метилизоцитозинов и их 5,6-дигидроаналоги.

3.1. Синтез 6-(гет)арилалкил- и 6-арилзамещенных 2-амино-3-метилпиримидин-4(3*H*)-онов и их 5,6-дигидроаналогов

Для синтеза 6-((гет)арилалкил)изоцитозинов пригодна упомянутая выше циклоконденсация солей гуанидина с этил-3-оксобутаноатами. Некоторые 2-амино-6-((гет)-арилметил)пиримидин-4(3*H*)-оны **76а–f**, полученные таким образом, подвергают метилированию, в результате которого образуются в основном N(3)-метилпроизводные **77а–e**³⁷ (схема 19).

Введение дополнительного ароматического или гетероароматического фрагмента в структуру соединения **77е** с получением 2-амино-6-[2-(ди(гет)арил)этил]-3-метилпиримидин-4(3*H*)-онов **78а-с** осуществляется с помощью кросс-сочетания Сузуки³⁷ (схема 20).

Схема 20

Циклоконденсацией 3-замещенных *N*-метил-*N*-цианобут-2-енамидов и 4-метоксибензиламина синтезируют 6-замещенные 2-имино-3,6-диметил-1-(4-метоксибензил)-4-оксо-1,2,3,4,5,6-гексагидропиримидины **79а,b**, которые через ключевые интермедиаты **80а,b** трансформируются в продукты **81, 82а,b** и **83** с насыщенной связью $C(5)-C(6)^{37}$ (схема 21).

Из многообразия изоцитозинов 77а-е и 78а-с, а также их 5,6-дигидропроизводных 81, 82а,b и 83 в качестве соединения-лидера выбран *R*-энантиомер 83, характеризующийся значением полумаксимальной ингибирующей концентрации (IC₅₀) 0.08 ммоль/л и высоким значением эффективности лиганда (LE), равным 0.37 ккал/моль.³⁷

3.2. Синтез 1-(2-амино-3-метил-4-оксо-3,4-дигидропиримидин-6-ил)-2-арилциклопропанов

Альтернативу гетероциклу **83** составляют его аналоги, в которых фрагменты 3-метилизоцитозина и биарила или гетарила связаны циклопропильным мостиком. Такие соединения можно получить из оптически чистого *S*-(+)-2-(хлорметил)оксирана, конденсируемого с арилацетонитрилами. Образующиеся в результате лактоны **84а–с** через промежуточные соединения **85а–с** и **86а–с** превращают в β -кетоэфиры **87а–с**. Циклоконденсация этих эфиров с карбонатом гуанидина приводит к образованию соединений **88а–с**, которые *in situ* подвергают *N*(3)-метилированию до изоцитозинов **89а–с**³⁸ (схема 22).

a Ar = Ph, **b** Ar = 3-BrC_6H_4 , **c** Ar = 4-BrC_6H_4

i: 1. ArCH₂CN, NaNH₂, PhH, rt, 1.5 h; 2. KOH, H₂O–EtOH, Δ, 8 h *ii*: 1. KOH, H₂O–EtOH, rt, 1 h; 2. NaOMe, MeOH–Et₂O; *iii*: NalO₄, RuCl₃, MeCN–H₂O, rt, 25 h; *iv*: 1. CDI, 45 min; 2. EtO₂CCH₂CO₂K, MgCl₂, Et₃N, MeCN, rt to 80°C, 3 h; *v*: H₂NC(=NH)NH₂·H₂CO₃, NaOEt, EtOH, 90°C, 14 h; *vi*: MeI, K₂CO₃, DMF

Деэтерификация соединений **89а-с** осуществляется в два этапа: сначала аминогруппу блокируют Восзащитой, а затем интермедиаты **90а-с** гидролизуют до карбоновых кислот **91а-с**. Последние вновь ацилируют под действием Вос₂О и получают соединения **92а-с**³⁸ (схема 23).

60°C, 4 h; *iii*: *N*,*O*-bis(trimethylsilyl)acetamide, EtOAc, rt, 30 min; *iv*: Boc₂O, DMAP, CH₂Cl₂, rt, 1 h

Наконец, кислоты **92а-с** декарбоксилируют в условиях реакции Бартона до *N*-защищенных изоцитозинов **93а-с**, превращающихся в целевые соединения **94а-с** в результате обработки трифторуксусной кислотой³⁸ (схема 24).

ii: TFA, CH₂Cl₂, rt, 30 min

Из соединения **94с** кросс-сочетанием Сузуки получают большое количество производных **95а**-z³⁸ (схема 25).

a R = Ph, b R = 2-MeC₆H₄, c R = 3-MeC₆H₄, d R = 4-MeC₆H₄

На основе анализа зависимости структура–активность в ряду изоцитозинов **94а–с** и **95а–**г выявлено соединениелидер **94а** (IC₅₀ 157 ммоль/л, LE 0.29 ккал/моль), модификация которого привела к обнаружению новых ингибиторов BACE-1. В табл. 3 представлены значения IC₅₀ и LE изоцитозинов **95с, n, u**, ингибирующих BACE-1.³⁸

Направление дальнейшего поиска ингибиторов этого фермента включало синтез двух групп аналогов изоцитозинов 94 и 95. В первую входят соединения, в которых ароматические циклы связаны между собой насыщенным или ненасыщенным мостиком, во вторую – стерео-

Таблица 3. Полумаксимальная ингибирующая концентрация (IC₅₀) и эффективность лиганда (LE) 1-(2-амино-3-метил-4-оксо-3,4-дигидропиримидин-6-ил)-2-(4-арилфенил)циклопропанов **95с, n, u**, ингибирующих BACE-1

Соединение	IC ₅₀ , ммоль/л	LE, ккал/моль
95c	17.1	0.26
95n	10.2	0.25
95u	9.1	0.26

изомеры 3,6-диметил-5,6-дигидроизоцитозинов, содержащие в положении 6 арилциклопропильный фрагмент.

Для введения означенных мостиков в структуру предварительно защищенного соединения **93b** применяют реакции Сузуки и Соногаширы (схема 26). В ряду изоцитозинов **96а–j**, получаемых таким образом, наиболее активным оказалось соединение **96b** (IC₅₀ 22.2 ммоль/л, LE 0.25 ккал/моль), чья ингибирующая способность резко снижается с увеличением кратности связи С–С мостика или при наличии заместителей в терминальном ароматическом цикле.³⁹

 $\label{eq:constraint} \begin{array}{l} \emph{i:} \mbox{ Ar-X-BF}_3 \mbox{K}, \mbox{ PdCl}_2 \mbox{(dppf)}, \mbox{ Cs}_2 \mbox{CO}_3, \mbox{ THF-H}_2 \mbox{O}, \mbox{80°C}, \mbox{7 h} \\ \emph{ii:} \mbox{ ArCH=CHB}(\mbox{OH})_2, \mbox{ Pd}(\mbox{Ph}_3)_2 \mbox{Cl}_2, \mbox{ K}_2 \mbox{CO}_3, \\ \mbox{ 1,4-dioxane-H}_2 \mbox{O}, \mbox{100°C}, \mbox{3.5 h} \\ \emph{iii:} \mbox{ PhC=CH}, \mbox{Pd}(\mbox{Ph}_3)_2 \mbox{Cl}_2, \mbox{ Cu}, \mbox{ MW}, \mbox{ 80°C to 150°C}, \mbox{1 h} \\ \mbox{a} \mbox{ R}^1 = \mbox{R}^2 = \mbox{R}^3 = \mbox{H}, \mbox{ X} = \mbox{CH}_2)_2 \\ \mbox{c} \mbox{ R}^1 = \mbox{R}^2 = \mbox{R}^3 = \mbox{H}, \mbox{ X} = \mbox{(CH}_2)_2 \\ \mbox{c} \mbox{ R}^1 = \mbox{R}^2 = \mbox{R}^3 = \mbox{H}, \mbox{ X} = \mbox{(CH}_2)_2 \\ \mbox{g} \mbox{ R}^1 = \mbox{M}_2 = \mbox{R}^3 = \mbox{H}, \mbox{ X} = \mbox{(CH}_2)_2 \\ \mbox{h} \mbox{R}^1 = \mbox{R}^3 = \mbox{H}, \mbox{R}^2 = \mbox{Me}, \mbox{ X} = \mbox{(CH}_2)_2 \\ \mbox{h} \mbox{R}^1 = \mbox{R}^3 = \mbox{H}, \mbox{R}^2 = \mbox{Me}, \mbox{ X} = \mbox{(CH}_2)_2 \\ \mbox{h} \mbox{R}^1 = \mbox{R}^2 = \mbox{H}, \mbox{R}^2 = \mbox{Me}, \mbox{ X} = \mbox{(CH}_2)_2 \\ \mbox{h} \mbox{R}^1 = \mbox{R}^2 = \mbox{H}, \mbox{R}^2 = \mbox{Me}, \mbox{X} = \mbox{(CH}_2)_2 \\ \mbox{h} \mbox{R}^1 = \mbox{R}^2 = \mbox{H}, \mbox{R}^2 = \mbox{OMe}, \mbox{X} = \mbox{(CH}_2)_2 \\ \mbox{j} \mbox{R}^1 = \mbox{R}^3 = \mbox{H}, \mbox{R}^2 = \mbox{OMe}, \mbox{X} = \mbox{(CH}_2)_2 \\ \mbox{j} \mbox{R}^1 = \mbox{R}^3 = \mbox{H}, \mbox{R}^2 = \mbox{OMe}, \mbox{X} = \mbox{(CH}_2)_2 \\ \mbox{j} \mbox{R}^1 = \mbox{R}^3 = \mbox{H}, \mbox{R}^2 = \mbox{OMe}, \mbox{X} = \mbox{(CH}_2)_2 \\ \mbox{j} \mbox{R}^1 = \mbox{R}^3 = \mbox{H}, \mbox{R}^2 = \mbox{OMe}, \mbox{X} = \mbox{(CH}_2)_2 \\ \mbox{j} \mbox{R}^1 = \mbox{R}^3 = \mbox{H}, \mbox{R}^2 = \mbox{OMe}, \mbox{X} = \mbox{(CH}_2)_2 \\ \mbox{j} \mbox{R}^1 = \mbox{R}^3 = \mbox{H}, \mbox{R}^2 = \mbox{OMe}, \mbox{X} = \mbox{(CH}_2)_2 \\ \mbox{j} \mbox{R}^1 = \mbox{R}^3 = \mbox{R}^2 = \mbox{OMe}, \mbox{K} = \mbox{(CH}_2)_2 \\ \mbox{j} \mbox{R}^1 = \mbox{R}^2 = \mbox{OMe}, \mbox{R$

Синтез насыщенных производных соединения **95a** с дополнительной метильной группой в положении 6 пиримидинового цикла осуществляют косвенным путем исходя из (1R,2R)-2-арилциклопропан-1-карбоновых кислот **97a**,**b**⁴⁰ (схема 27).

Схема 28

Эти кислоты через амиды Вайнреба **98а**,**b** трансформируются в (арилциклопропил)метилкетоны **99а**,**b**, которые, взаимодействуя с (R)-2-метилпропан-2-сульфинамидом или его (S)-энантиомером, образуют основания Шиффа **100а**,**b** или **101а**,**b** соответственно. Метоксикарбонилметилированием азометинов **100а**,**b** и **101а**,**b** образуются сульфинамиды **102а**,**b** и **103а**,**b** соответственно, депротектирование которых и приводит к метиловым эфирам аминокислот **104а**,**b** и **105а**,**b**. Полученные эфиры циклизуются под действием Восзащищенной *N*-метилтиомочевины в 5,6-дигидроизоцитозины **106а**,**b** и **107а**,**b**. Снятие Вос-защиты с последних приводит к целевым соединениям **108а**,**b** и **109а**,**b**⁴⁰ (схема 28).

Аналогично из (1R,2S)-2-фенилциклопропан-1-карбоновой кислоты (110) через промежуточные соединения 111–116 синтезируют метиловые эфиры аминокислот 117 и 118⁴⁰ (схема 29).

Эфиры 117 и 118 при взаимодействии с Восзащищенной *N*-метилтиомочевиной циклизуются в интермедиаты 119 и 120, из которых после *N*-депротектирования образуются 5,6-дигидроизоцитозины 121 и 122⁴⁰ (схема 30).

Среди соединений 108а, 109а, 121 и 122 эффективным ингибитором ВАСЕ-1 является стереоизомер 109а с [(1'R,2'R),6S]-конфигурацией заместителей в положении 6 (IC₅₀ 18.0 ммоль/л, LE 0.34 ккал/моль). Попытка модифицировать структуру соединения-лидера 109а введением (гетеро)ароматических фрагментов в положение 3 фенильного цикла изоцитозина 109b с помощью реакции Сузуки привела к серии производных 123а– j^{40} (схема 31).

Схема 30

К сожалению, несмотря на значительное уменьшение значения IC_{50} , сродство многих из них к ингибируемому ферменту BACE-1 ухудшилось⁴⁰ (табл. 4).

Схема 31

a R = Ph, b R = 2-MeOC₆H₄, c R = 3-MeOC₆H₄, d R = 4-MeOC₆H₄ e R = 4-(n-PrO)C₆H₄, f R = 4-HOCH₂C₆H₄, g R = 4-AcNHC₆H₄

Таблица 4. Полумаксимальная ингибирующая концентрация (IC₅₀) и эффективность лиганда (LE) 1-(2-амино-3,6-диметил-4-оксо-3,4-дигидропиримидин-6-ил)-2-[3-(гет)арил]циклопропанов **123а-с.е.h.i,i**, ингибирующих ВАСЕ-1

-		
Соединение	IC ₅₀ , ммоль/л	LE, ккал/моль
123a	9.3	0.26
123b	7.5	0.26
123c	3.3	0.28
123e	8.4	0.24
123h	6.1	0.30
123i	7.5	0.29
123j	11.8	0.27

4. КОНСТРУИРОВАНИЕ ПРОТИВОРАКОВЫХ ПРЕПАРАТОВ

Причиной возникновения некоторых форм рака служит повышенная активность протеинкиназ, основная функция которых заключается в фосфорилировании группы аминокислот (серина, треонина, тирозина и гистидина). Из разрабатываемых ингибиторов этих ферментов внимание привлекают меридианины (3-(2-аминопиримидин-4-ил)-1*H*-индолы) – алкалоиды, выделяемые из морских организмов класса асцидий, и их синтетические аналоги, мериолины (3-(пиримидин-4-ил)-1*H*-пирроло[2,3-*b*]пиридины)⁴¹ (рис. 4).

Для синтеза меридианинов, мериолинов и их производных 2-аминопиримидин-4(3*H*)-оны предварительно подвергают обменному хлорированию до соответствующих 4-хлорпиримидинов с помощью POCl₃. Из соединения 1 таким образом получают 2-амино-4-хлорпиримидин (**124**).⁴² При желании иметь более

Рисунок 4. Структуры меридианинов и мериолинов.

Таблица 5. Обменное галогенирование 2-аминопиримидин-4-(3*H*)-она (1) и 2-амино-4-хлорпиримидина (124)

Субстрат	Условия	Продукт	Выход, %
1	Кипячение, 3 ч	124	52 ^{42a}
1	ClSO ₃ H, 95°С, 4 ч	124	92 ^{42b}
1	ClSO ₃ H, от –5 до 95°С, 5 ч	124	73 ^{42c}
1	Ру, 180°С, 2 ч	124	95 ^{42d}
1	PhMe, 110°C, 30–40 мин	124	_* ^{42e}
124	H ₂ O, от 0 до 20°C, 3 ч	125	95 ^{43a}
124	NaI, H ₂ O, 20°С, 3.5 ч	125	86 ^{43b}

* Выход не указан.

реакционноспособный субстрат атом хлора в соединении **124** можно обменять на атом иода посредством трансгалогенирования под действием НІ до 2-амино-4-иодпиримидина (**125**)⁴³ (табл. 5).

Как правило, осуществление обменного хлорирования изоцитозина 1 не вызывает затруднений, однако в случае некоторых его производных сообщается об образовании нежелательных продуктов реакции. Так, в результате обработки соединения 6 смесью POCl₃ и PCl₅ до окончания выделения HCl образуются два трудно разделяемых соединения, *O*-(2-амино-6-метил-пиримидин-4-ил)дихлорфосфот (126) и *N*-(6-метил-4-хлорпиримидин-2-ил)дихлорфосфорамид (127)⁴⁴ (схема 32). При более продолжительном времени взаимодействия исходных реагентов (3 ч) об образовании этих продуктов не упоминается.⁴⁵ Для идентификации структур смесь соединений 126 и 127 была переведена щелочным гидролизом в кислоту 128 и минорный амид 129⁴⁴ (схема 32).

Схема 32

Добиться селективности обменного хлорирования изоцитозина 6 с одновременным отказом от использования PCl₅ удается двумя путями. Первый основывается на введении в реакцию *N*-защищенного

субстрата 130,44 второй – на ограничении времени взаимодействия соединения 6 с избытком кипящего POCl₃ непродолжительным (15-20 мин) периодом гомогенизации реакционной смеси.46 Помимо предотвращения N(2)-фосфорилирования защита экзоциклической аминогруппы преследует не менее важную цель уменьшения электронной плотности на атоме кислорода группы С=О посредством изменения направления оказываемого ею мезомерного эффекта. Ввиду отсутствия необходимости последующего деблокирования аминогруппы соединения 131 второй путь синтеза 2-амино-6-метил-4-хлорпиримидина (132) является более предпочтительным (схема 33). Впрочем, для соблюдения объективности следует упомянуть о том, что, судя по сообщениям, соединение 132 может быть получено длительным (2 ч) кипячением изоцитозина 6 с POCl₃, не сопровождающимся образованием побочных продуктов реакции.47

В ходе обработки 2-амино-6-циклопентилпиримилин-4(3H)-она (133) избытком POCl₃ в присутствии дополнительного источника хлорид-ионов (Et₄NCl) и основания (PhNEt₂) в реакционной смеси также отмечается наличие нежелательного продукта, N-[4-хлор-6-(циклопентил)пиримидин-2-ил]дихлорфосфорамида (134) (схема 34). Повышению доли целевого 2-амино-4-хлор-6-циклопентилпиримидина (135) среди продуктов обменного хлорирования соединения 133 способствуют сокращение избытка POCl₃, количества основания, снижение температуры и увеличение продолжительности реакции. В результате оптимизации процедуры синтеза хлорпиримидина 135 найдены условия. при которых побочный продукт 134 не образуется (1.2 экв. POCl₃, 2.0 экв. Et₄NCl, 0.1 экв. PhNEt₂, 40°C, 90 мин; выход соединения **135** – 92%).⁴⁸

Схема 34

4.1. Синтез С-(2-аминопиримидин-4-ил)-1*H*-(7-аза)индолов

Из 4-хлорпиримидина 124 через интермедиаты 136 и 137 синтезируют меридианин G (соединение 138а) и его производные 138b-d. Ключевой стадией этой реакционной последовательности служит циклоприсоединение 4-этинилпиримидина 137 к нитрозоаренам, протекающее в относительно мягких условиях и не требующее применения катализаторов^{42a} (схема 35).

Схема 35

i: Pd(PPh₃)₂Cl₂, Cul, Et₃N, DMF, rt, 12 h; *ii*: KOH, MeOH, rt, 30 min; *iii*: PhMe, 80°C, 7 h

Предварительно защищенный изоцитозин 139 трансформацией промежуточных соединений 140–142, в том числе индолизацией арилгидразонов 143а,b, превращают в изостерические аналоги алкалоидов 138а,c, изомеридианин G 144a и изомеридианин C 144b⁴⁹ (схема 36).

i: Boc₂O, Py, 85°C, 4 h; *ii*: H₂C=C(OEt)SnBn₃, Pd(Ph₃P)₄, LiH, THF, Δ, 3.5 h; *iii*: TsOH, Me₂CO, Δ, 1 h; *iv*: 4-RC₆H₄NHNH₂·HCl, NaOAc, MeOH, rt, 1 h; *v*: ZnCl₂, DMF, MW, 9–25 min

Кросс-сочетанием Сузуки 4-хлорпиримидина **124** с *N*-защищенными 5-арил-3-иод-1*H*-пирроло[2,3-*b*]пиридинами **145а–s** через невыделяемые интермедиаты **146а–s** синтезируют 5-арилпроизводные мериолина 1 (соединения **147а–s**)⁵⁰ (схема 37).

i: HBPin, Pd(Ph₃P)₄, Et₃N, 1,4-dioxane, 80°C, 3–4 h *ii*: **124**, Pd(Ph₃P)₄, Cs₂CO₃, MeOH, 100°C, 35–49 h **a** Ar = 4-F₃CC₆H₄, **b** Ar = 4-FC₆H₄, **c** Ar = 4-ClC₆H₄ **d** Ar = 4-F₃COC₆H₄, **e** Ar = 4-MeOC₆H₄, **f** Ar = 4-MeSC₆H₄ **g** Ar = 3-FC₆H₄, **h** Ar = 3-MeC₆H₄, **i** Ar = 3-F₃CC₆H₄ **j** Ar = 2-MeSC₆H₄, **k** Ar = 2-EtC₆H₄

Катализируемая палладием внутримолекулярная циклизация *N*-защищенного 4-иодпиримидина **148** с (гет)арилалкинами **149а–d** и последующий гидролиз легко уходящих групп промежуточных соединений **150а–d** служит унифицированным подходом к получению различных меридианинов и мериолинов (соединений **151а–d**)^{43b} (схема 38).

В ряду ингибиторов циклинзависимых киназ CDK2 и CDK9, входящих в группу протеинкиназ, выделяются аналоги мериолинов **147а–s**. Из них соединениемлидером является гетероцикл **147b** (IC₅₀ 5.5 нмоль/л, LE 0.49 ккал/моль (CDK2) и IC₅₀ 24 нмоль/л, LE 0.45 ккал/моль (CDK9)), который показал высокую

эффективность *in vivo*, вызывая торможение роста клеток трижды негативного рака молочной железы на 90%.⁵⁰

4.2. Синтез *N*-(2-аминопиримидин-4-ил)-1*H*-(5-аза)индолов

В результате *N*-арилирования 5-амино-3(7)-иод-1*H*-индазолов **152а,b** соединением **124** с последующим кросс-сочетанием интермедиатов **153а,b** с бороновыми кислотами получают 5-(2-аминопиримидин-4-ил)-3(7)-(гет)арил-1*H*-индазолы **154а-d** и **155а-d**⁵¹ (схема 39).

Схема 39 H_2N нŃ 78% 153a 152a 154a-d Ŗ R H_2N НŃ ΗŃ 91% År 152b 153b 155a-d i: 124, EtOH, 80°C, 2–2.5 h; ii: ArB(OH)₂, R = NaHCO₃ or Na₂CO₃, Pd(Ph₃P)₄, DMF-H₂O, MW, 150°C, 10-15 min H₂N 154, 155 a Ar b c Ar , **155d** Ar = 154d Ar =

Аналогично из 3-иод-1*H*-пирроло[3,2-*c*]пиридина (156) и соединения 124 синтезируют 1-(2-аминопиримидин-4-ил)-3-иодпирроло[3,2-*c*]пиридин 157, образующий в условиях реакции Сузуки 3-замещенные производные 1*H*-пирроло[3,2-*c*]пиридина 158a-k⁵² (схема 40).

Схема 40

i: **124**, Cs₂CO₃, DMSO, heating; *ii*: RB(OH)₂, K₂CO₃, Pd(Ph₃P)₄, PhMe–EtOH–H₂O, 6:3:2, 100°C **a** R = Ph, **b** R = 2-ClC₆H₄, **c** R = 3-ClC₆H₄, **d** R = 4-ClC₆H₄

Подобно меридианинам и мериолинам индазолы 154а–d и 155а–d являются ингибиторами протеинкиназ, в частности протеинкиназы МК2, способствующей возникновению некроза опухоли при ревматоидном артрите.⁵¹ Значения IC₅₀ для этих соединений составляют 0.72–5.4 и 0.16–3.4 мкмоль/л соответственно. Хотя авторам работы⁵¹ удалось достичь достаточно низких значений IC₅₀, они заявили о прекращении дальнейшего изучения серии указанных соединений ввиду трудности повышения их ферментативной и клеточной активности, а также пероральной биодоступности. Гетероциклы 158а–k подавляют экспрессию связанной с 7-м циклом деления клетки протеинкиназы Cdc7 (IC₅₀ 0.007–0.58 мкмоль/л) и пригодны для создания противораковых агентов.⁵²

5. КОНСТРУИРОВАНИЕ ПРОТИВОВОСПАЛИТЕЛЬНЫХ И ГОРМОНАЛЬНЫХ ПРЕПАРАТОВ

Подобно нуклеозидам и их аналогам скаффолд имидазо[1,2-*a*]пиримидин-5(1*H*)-она служит универсальной основой для разработки препаратов различного назначения, среди которых выделяются противовоспалительные и гормональные средства.

Один из синтетических подходов к производным имидазо[1,2-а]пиримидин-5(1*H*)-она заключается в циклизации изоцитозинов под действием алкилгалогенидов, содержащих функциональную группу. При этом, несмотря на утверждение о преимущественном протекании первоначального N-алкилирования субстратов с участием атома N-3,53 в каждом случае необходимо учитывать возможность образования изомерных имидазо[1,2-а]пиримидин-7(1H)-онов. Тем не менее в ряде работ без строгих доказательств продуктам реакции изоцитозинов 159 с α-бромметилкетонами приписывают строение имидазо[1,2-а]пиримидин-5(1*H*)-онов **160**,⁵⁴ а с (адамантан-1-ил)бромметилкетоном - строение 2-(адамантан-1-ил)-5-метилимидазо[1,2-*а*]пиримидин-7(1*H*)-она (**161**)⁵⁵ (схема 41). региоспеци-Попытки обосновать наблюдаемую фичность циклизации изоцитозинов 159 в имидазопиримидины 160 и 161 ни в одной из цитируемых работ не предпринимались, однако в случае субстратов 159 с заместителем R^2 , отличным от водорода, можно принять в расчет стерически затрудненную атаку атома N-1 α-галогенкарбонильными соединениями.53

i: PhC(O)CH₂Br, DMF, Δ, 3 h; *ii*: R³C(O)CHR⁴Br, NaH, DMF, 25–100°C, 12–24 h; *iii*: 1-AdC(O)CH₂Br, EtOH, Δ, 2 h

Помимо образования имидазо[1,2-*a*]пиримидин-(1*H*)-онов циклизация изоцитозинов **159** с α -галогенметилкетонами может осложняться дальнейшим *N*-алкилированием продуктов реакции. В частности, обработка 2-амино-5-бром-6-метилпиримидин-4(3*H*)-она (**162**) бромацетоном приводит к образованию смеси *N*(1)- и *N*(8)-(2-оксопропил)имидазо[1,2-*a*]пиримидин-5(1*H*)-онов **163** и **164** (выходы не указаны)⁵⁶ (схема 42).

Взаимодействие изоцитозинов **159** с производными гидрокси(галоген)уксусных кислот на первом этапе приводит к образованию амидов **165**, циклизующихся затем в 3,3-дизамещенные имидазо[1,2-*a*]пиримидин-2,5(1*H*,3*H*)-дионы **166** в присутствии основания⁵⁷ (схема 43).

 R^1 = H, Hal, Alk, NO₂; R^2 = Hal, haloAlk; R^3 , R^4 = H, Hal, Alk, *cyclo*Alk, CN, NO₂; X = Hal, OSO₂Alk; Y = Hal, OC(O)Alk, OC(O)OAlk

Если функциональная группа уже имеется в боковой цепи 2-аминопиримидин-4(3*H*)-онов, то такие соединения могут подвергаться внутримолекулярной циклизации с образованием соответствующих аннелированных систем. Так, в результате обработки 2-[(гидроксиалкил)амино]пиримидин-4(3*H*)-онов **167** реагентом Мицунобу через невыделяемые этил {[(4-оксо-3,4-дигидропиримидин-2-ил)амино]алкил} карбонаты **168** образуется смесь гидрированных имидазо(пиримидо)[1,2-*а*]пиримидин-5(4)-онов **169** и имидазо(пиримидо)[1,2-*а*]пиримидин-7(2)-онов **170**⁵⁸ (табл. 6).

По табл. 6 видно, что только соединение **167** с третичным экзоциклическим атомом азота ($R^1 = R^2 = Me$, $R^3 = H$, n = 2) претерпевает региоспецифичную циклизацию, образуя аннелированную систему **169** ($R^1 = R^2 = Me$, $R^2 = H$, n = 2). По мнению авторов работы,⁵⁸ причина подобного протекания реакции связана с отсутствием у исходного субстрата **167** вторичной экзоциклической аминогруппы, способной к прототропному обмену с атомом N-1 или N-3. На наш взгляд, наблюдаемая региоспецифичность в данном случае определяется скорее затрудненной атакой атома N-1 электрофильным атомом углерода карбонатного фрагмента интермедиата **168** ($R^1 = R^2 = Me$, $R^3 = H$, n = 2) вследствие стерического влияния заместителя R^2 .

Перспективным путем повышения региоселективности внутримолекулярной циклизации изоцитозинов 167

Таблица 6. Состав смеси региоизомерных продуктов циклизации 2-[(гидроксиалкил)амино]пиримидин-4(3*H*)-онов 167

\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	n	Соотношение региоизомеров 169:170	Общий выход, %
Н	Н	Н	1	12:88	91
Н	Н	Н	2	23:77	95
Me	Н	Н	2	27:73	91
Me	Н	Bn	1	42:58	78
Me	Me	Н	2	100:0	96

имидазопиримидины 169 является обработка в 2-[(гидроксиалкил)амино]-4-изопропоксипиримидинов 171, предварительно получаемых алкоксилированием соответствующих хлорпиримилинов, концентрированной H₂SO₄ с одновременным О-деалкилированием⁵⁸ (табл. 7). Предположительно региоспецифичность этой реакции заключается в том, что атом N-1 соединений 171 как наиболее основный блокируется по причине протонирования H₂SO₄. Во всяком случае, в образовании ассоциатов 2-амино-4-метил-6-метоксипиримидина с органическими кислотами принимает участие атом N-1.59

В результате присоединения фенилизоцианата к 2-[(2-гидроксиэтил)амино]-6-метилпиримидин-4(3*H*)-ону (172) образуется промежуточный фенилкарбамат 173,

Таблица 7. Выходы продуктов тандемных

циклизации–О-деалкилирования 2-[(гидроксиалкил)амино]-4-изопропоксипиримидинов **171**

	HO HO n R 11		H ₂ S R ¹ 90° 45 mir	60₄ → 169 ¹ C, 1 – 1 h
\mathbb{R}^1	\mathbb{R}^2	R ³	n	Выход соединения 169 , %
Me	Н	Н	1	95
Me	Н	Н	2	73
Me	Me	Н	1	99
Me	(CH	$I_2)_3$	1	76

который, в отличие от интермедиатов **168**, не циклизуется в имидазопиримидины **169** и **170**, но подвергается внутримолекулярной перегруппировке в *N*-фениламид {2-[(2-гидроксиэтил)амино]-6-метил-4-оксо-3,4-дигидропиримидин-5-ил}карбоновой кислоты (**174**) при гидролизе под действием HCl⁶⁰ (схема 44).

Схема 44

Региоспецифичным подходом к синтезу имидазо-[1,2-*a*]пиримидин-5(1*H*)-онов служит циклизация 3-(проп-2-ин-1-ил)изоцитозинов под действием алкилирующих агентов в присутствии основания. В таких условиях из соединения **175**, основного продукта алкилирования 2-амино-6-(трифторметил)пиримидин-4(3*H*)-она 3-бромпроп-1-ином, образуется серия 1-алкил-2-метил-7-(трифторметил)имидазо[1,2-*a*]пиримидин-5(1*H*)-онов **176а–n**⁶¹ (схема 45).

 $\begin{array}{l} {\bf a} \; {\bf R} = {\bf E} {\bf t}, \; {\bf b} \; {\bf R} = {\bf B} {\bf u}, \; {\bf c} \; {\bf R} = ({\bf C} {\bf H}_2)_7 {\bf M} {\bf e}, \; {\bf d} \; {\bf R} = ({\bf C} {\bf H}_2)_9 {\bf M} {\bf e} \\ {\bf e} \; {\bf R} = {\bf C} {\bf H}_2 {\bf C} {\bf H} = {\bf H}_2 {\bf C}, \; {\bf f} \; {\bf R} = {\bf C} {\bf H}_2 {\bf C} \equiv {\bf C} {\bf H}, \; {\bf g} \; {\bf R} = {\bf C} {\bf H}_2 {\bf A} {\bf c}, \; {\bf h} \; {\bf R} = {\bf C} {\bf H}_2 {\bf B} {\bf z}, \\ {\bf i} \; {\bf R} = 4 {\bf -} {\bf C} {\bf I} {\bf C} {\bf 0} {\bf C} {\bf H}_2, \; {\bf j} \; {\bf R} = 4 {\bf -} {\bf F} {\bf C} {\bf 6} {\bf H}_4 {\bf C} ({\bf 0}) {\bf C} {\bf H}_2, \\ {\bf k} \; {\bf R} = 4 {\bf -} {\bf F}_3 {\bf C} {\bf C} {\bf 6} {\bf H}_4 {\bf C} ({\bf 0}) {\bf C} {\bf H}_2, \; {\bf I} \; {\bf R} = {\bf B} {\bf n} \\ {\bf m} \; {\bf R} = 4 {\bf -} {\bf F} {\bf C} {\bf 6} {\bf H}_4 {\bf C} {\bf H}_2, \; {\bf n} \; {\bf R} = 4 {\bf -} {\bf C} {\bf I} {\bf C} {\bf 6} {\bf H}_4 {\bf C} {\bf H}_2 \end{array}$

Базируясь на представлениях авторов работы,⁶¹ механизм этой реакции можно описать следующим образом. В результате депротонирования аминогруппы исходного соединения **175** образуется анион **A**. Благодаря сдвигу электронной плотности в сторону терминального атома углерода ацетиленового фрагмента этот анион подвергается внутримолекулярной циклизации в анион **B**. Диссоциация связи N(1)–H, миграция высвобождающегося протона к экзоциклическому атому углерода и, наконец, локализация избыточного заряда на атоме N-1 в новообразованном анионе приводят к возникновению аниона **C**. При алкилировании этого аниона образуется интермедиат **D**, изомеризация которого и приводит к соединениям **176а–n** (схема 46).

5.1. Синтез 3-замещенных имидазо[1,2-*a*]пиримидин-5(1*H*)-онов

Последовательной модификацией структуры соединения **177**, полученного циклизацией изоцитозина **6** с (бромметил)фенилкетоном, через интермедиаты **178–180** синтезируют кислоту **181** с потенциальным противовоспалительным и анальгезирующим действием⁶² (схема 47).

Продукты циклизации изоцитозина 6 и замещенных α-бромацетофенонов, соединения 182, через промежуточный альдегид 183 образуют азометины 184 (схема 48), ингибирующие циклооксигеназу-2 (ЦОГ-2), которая участвует в возникновении воспалительных и болевых состояний. При этом уровень анальгетической активности некоторых соединений 184 превышает таковой известного препарата ибупрофен^{54b} (табл. 8).

Схема 48

Таблица 8. Ингибирование ЦОГ-2 2-арил-3-[(арилимино)метил]-7-метилимидазо[1,2-*а*]пиримидин-5(1*H*)-онами **184***

\mathbf{R}^1	R ²	Ингибирование ЦОГ-2, %
Cl	Me	63.8
MeO	Н	50.0
NO_2	Cl	51.8
Ибупр	оофен	44.3

* Концентрация соединений 184 – 0.25 мг/кг (мыши).

5.2. Синтез 8-замещенных имидазо[1,2-*а*]пиримидин-5(8*H*)-онов

N-Алкилированием имидазопиримидинов **160** различными (гетарил)алкилгалогенидами получают соединения **185** (схема 49) – антагонисты высвобождающего гонадотропин гормона (gonadotropin-releasing hormone, GnRH), способствующего развитию гормональнозависимых опухолей.⁶³

Схема 49

 $\begin{array}{l} \mathsf{R}^1 = \mathsf{XAr} \; (\mathsf{X} = \mathsf{O}, \mathsf{S}, \mathsf{SO}, \mathsf{SO}_2, \mathsf{CO}, \mathsf{COO}, \mathsf{OCO}, \mathsf{etc.}) \\ \mathsf{R}^2 = \mathsf{H}, \; \mathsf{Hal}, \; \mathsf{CN}, \; \mathsf{Alk}, \; \mathsf{OAlk}, \; \mathsf{SAlk}, \; \mathsf{NHAlk}; \; \mathsf{R}^3 = \mathsf{Alk}, \; \mathsf{arylalkyl} \\ \mathsf{R}^4 = \mathsf{H}, \; \mathsf{Alk}, \; \mathsf{Ar}, \; \mathsf{arylalkyl}, \; (\mathsf{het})\mathsf{Ar}, \; \mathsf{OH}, \; \mathsf{OAlk}, \; \mathsf{SAlk}, \; \mathsf{NHAlk}, \; \mathsf{etc.} \\ \mathsf{R}^5 = \mathsf{Alk}, \; \mathsf{Ar}, \; (\mathsf{het})\mathsf{arylalkyl} \\ \end{array}$

В ходе *N*-бензилирования имидазопиримидинов **186а,b** 2-фторбензилбромидом (**187**) образуется смесь основных и минорных изомеров **188а,b** и **189а,b** соответственно, из которых соединения **188а,b** в условиях реакции Сузуки образуют гетероциклы **190а,b**⁵⁶ (схема 50).

Иногда кросс-сочетание бромимидазопиримидинов **188а,b** с бороновыми кислотами может сопровождаться дегалогенированием исходного субстрата, которое в отдельных случаях становится преобладающим направлением реакции. О преимущественном дебромировании соединения **185** ($\mathbb{R}^1 = \mathbb{Br}$, $\mathbb{R}^2 = \mathbb{Me}$, $\mathbb{R}^3 = 4$ -MeOC₆H₄, $\mathbb{R}^4 = H$, $\mathbb{R}^5 = 2$ -FC₆H₄CH₂) без экспериментальных подробностей упоминается в работе.⁶⁴ В этом обнаруживается схожесть обсуждаемых гетероциклов с их предшественниками, 5-бромизоцитозинами. В частности, выход продукта дебромирования соединения **162** в ходе его реакции с бензолбороновой кислотой составляет 85%.⁶⁵

Аминометилирование имидазопиримидинов **190а,b** приводит к серии оснований Манниха **191а–h** и **192а–k**⁵⁶ (схема 51).

Альтернативный путь синтеза соединений **191а–h** и **192а–k** состоит в формилировании имидазопиримидина **190а** реагентом Вильсмайера–Хаака с последующим восстановительным аминированием промежуточного альдегида **193** до гетероциклов **194а–e**⁵⁶ (схема 52).

Анализ констант образования комплексов лигандрецептор (K_i) в ряду оснований Манниха **191а-h**, **192а-k** и **194а-е** указывает на то, что потенциальными антагонистами GnRH являются имидазопиримидины **191b** (K_i 5.2 ± 0.6 нмоль/л) и **192a** (K_i 1.2 ± 0.2 нмоль/л).⁵⁶

Таким образом, из представленных выше данных явствует, что в каждом из разделов 1-5 можно выделить весьма перспективные разработки. К ним относятся изыскания антилейкемических препаратов на основе пролекарств **45а–f**,¹⁷ ингибиторов ксантин-оксидазы, фермента ВАСЕ-1 и протеинкиназ в ряду 2-амино-6-арилпиримидинов 69а-t и 70,³² соединения 83³⁷ и 5-арилпроизводного мериолина 1, гетероцикла 147b⁵⁰ и, наконец, вероятных анальгетиков среди имидазопиримидинов 184.^{54b} Без сомнения, к перечисленным соединениям следует присовокупить антагонисты GnRH, гетероциклы 191b и 192a, однако по неизвестной причине сведения об их дальнейшем изучении не появлялись в литературе более полутора десятков лет.⁶⁶ Напротив, о результатах модификации структур 2-амино-6-арилпиримидинов 69d,t и 70 сообщалось неоднократно. Так, изостерические аналоги этих соединений, пиримидины 195 и 196, не проявили ингибирующих свойств по отношению к ксантиноксидазе, а соединение 197 оказалось менее эффективным в сравнении с 2-амино-4-арилпиримидином 70⁶⁷ (рис. 5).

Посредством совместного анализа значений –lgIC₅₀ и рассчитанных энергий связывания с биомишенью удалось выявить структурные элементы соединений

Рисунок 5. Изостерические аналоги 2-амино-6-арилпиримидинов 69d,t и 70.

Рисунок 6. Структурные элементы ингибиторов ксантиноксидазы на основе 6-арилизоцитозинов.

69а-t и их аналогов, необходимые для эффективного взаимодействия с активным сайтом фермента. К таким элементам относятся аминогруппа, связанная с атомом углерода С-2, липофильный заместитель в ароматическом цикле и, возможно, атом галогена в одном или в нескольких положениях молекулы⁶⁸ (рис. 6).

Остается надеяться на то, что разработки, направленные на поиск ингибиторов ВАСЕ-1 и протеинкиназ на основе 5,6-дигидроизоцитозина **83** и пирролопиридина **147b**, а также противовоспалительных препаратов, производных соединений **184**, пополнятся новыми результатами уже в ближайшее время.

Список литературы

- (a) Helene, C.; Douzou, P. Compt. Rend. 1964, 259, 4387.
 (b) Brown, D. J.; Teitei, T. Aust. J. Chem. 1965, 18, 559.
- (a) Sharma, B. D.; McConnell, J. F. Acta Crystallogr. 1965, 19, 797. (b) Portalone, G.; Colapietro, M. Acta Crystallogr., Sect. E.: Crystallogr. Commun. 2007, 63, o1869.
- Wierenga, W.; Skulnick, H. I.; Stringfellow, D. A.; Weed, S. D.; Renis, H. E.; Eidson, E. E. J. Med. Chem. 1980, 23, 237.
- Lotzova, E.; Savary, C. A.; Khan, A.; Stringfellow, D. A. J. Immunol. 1984, 132, 2566.
- (a) Koroleva, E. V.; Gusak, K. N.; Ignatovich, Zh. V. *Russ. Chem. Rev.* 2010, *79*, 655. [*Vcnexu xumuu* 2010, *79*, 720.]
 (b) Goel, R.; Luxami, V.; Paul, K. *RSC Adv.* 2015, *5*, 81608.
 (c) Dolzhenko, A. V. *Heterocycles* 2011, *83*, 1489.
- Sharma, V.; Chitranshi, N.; Agarwal, A. K. Int. J. Med. Chem. 2014, 202784. DOI: 10.1155/2014/202784.
- Verbitskiy, E. V.; Rusinov, G. L.; Charushin, V. N.; Chupakhin, O. N. Russ. Chem. Bull., Int. Ed. 2019, 68, 2172. [*U36. AH, Cep. xum.* 2019, 2172.]
- Novakov, I. A.; Navrotskii, M. B.; Zakharova, E. K.; Brunilina, L. L. Russ. Chem. Bull., Int. Ed. 2015, 64, 2545. [*U36. AH, Cep. xum.* 2015, 2545.].
- (a) Mai, A.; Artico, M.; Rotili, D.; Tarantino, D.; Clotet-Codina, I.; Armand-Ugon, M.; Ragno, R.; Simeoni, S.; Sbardella, G.; Nawrozkij, M. B.; Samuele, A.; Maga, G.;

Esté, J. A. *J. Med. Chem.* **2007**, *50*, 5412. (b) Навроцкий, М. Б. Автореф. дис. докт. хим. наук, Москва, 2012.

- Holý, A.; Günter, J.; Dvořáková, H.; Masojídková, M.; Andrei, G.; Snoeck, R.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1999, 42, 2064.
- (a) Holý, A.; Votruba, I.; Masojídková, M.; Andrei, G.; Snoeck, R.; Naesens, L.; De Clercq, E.; Balzarini, J. J. Med. Chem. 2002, 45, 1918. (b) De Clercq, E.; Desire, A.; Holy, A.; Balzarini, J. AU Patent 2002315625.
- 12. Custelcean, R.; Craciun, L. Tetrahedron 2000, 56, 5067.
- 13. De Clercq, E. Antiviral. Res. 2002, 55, 1.
- 14. Abdel-Rahman, A. A. H. J. Chem. Res. 2007, 332.
- Burchenal, J. H.; Ciovacco, K.; Kalaher, K.; O'Toole, T.; Kietner, R.; Dowling, M. D.; Chu, C. K.; Watanabe, K. A.; Wempen, I.; Fox, J. J. *Cancer Res.* **1976**, *36*, 1520.
- Woodcock, T. M.; Chou, T.-C.; Tan, C. T. C.; Sternberg, S. S.; Philips, F. S.; Young, C. W.; Burchenal, J. H. *Cancer Res.* 1980, 40, 4243.
- Serpi, M.; De Biasi, R.; Pertusati, F.; Slularczuk, M.; McGuigan, C. ChemistryOpen 2017, 6, 424.
- Wellington, K. W.; Ooi, H. C.; Benner, S. A. Nucleosides, Nucleotides Nucleic Acids 2009, 28, 275.
- Mayer, A.; Häberli, A.; Leumann, C. J. Org. Biomol. Chem. 2005, 3, 1653.
- Doi, Y.; Chiba, J.; Morikawa, T.; Inouye, M. J. Am. Chem. Soc. 2008, 130, 8762.
- Chu, C. K.; Wempen, I.; Watanabe, K. A.; Fox, J. J. J. Org. Chem. 1976, 41, 2793.
- Bilbao, N.; Vázquez-González, V.; Teresa Aranda, M.; González-Rodríguez, D. *Eur. J. Org. Chem.* 2015, 7160.
- 23. Fox, K. R. Curr. Med. Chem. 2000, 7, 17.
- 24. (a) Promel, R.; Cardon, A.; Daniel, M.; Jacques, G.; Vandersmissen, A. *Tetrahedron Lett.* **1968**, *9*, 3067.
 (b) Hirota, K.; Yamada, Y.; Kitade, Y.; Senda, S. J. Chem. Soc., Perkin Trans. 1 **1981**, 2943.
- 25. Filichev, V. V.; Pedersen, E. B. Tetrahedron 2001, 57, 9163.
- Liu, L. J.; Hong, J. H. Nucleosides, Nucleotides Nucleic Acids 2010, 29, 257.
- 27. Liu, J.; Liu, W.; Zhang, Z.; Cheng, Z.; Ma, X.; Wang, X.; Liu, J. Synth. Commun. 2009, 39, 2244.
- Singh, K.; Singh, K.; Balzarini, J. Eur. J. Med. Chem. 2013, 67, 428.
- 29. Xu, C.; Liu, S.; Song, F.; Liu, Z. Curr. Tradit. Med. 2015, 1, 41.
- Patel, A.; Lewis, W.; Searle, M. S.; Stevens, M. F. G.; Moody, C. J. *Tetrahedron* 2015, 71, 7339.
- B-Rao, C.; Kulkarni-Almeida, A.; Katkar, K. V.; Khanna, S.; Ghosh, U.; Keche, A.; Shah, P.; Srivastava, A.; Korde, V.; Nemmani, K. S. V.; Deshmukh, N. J.; Dixit, A.; Brahma, M. K.; Bahirat, U.; Doshi, L.; Sharma, R.; Sivaramakrishnan, H. *Bioorg. Med. Chem.* 2012, 20, 2930.
- 32. Khanna, S.; Burudkar, S.; Bajaj, K.; Shah, P.; Keche, A.; Ghosh, U.; Desai, A.; Srivastava, A.; Kulkarni-Almeida, A.; Deshmukh, N. J.; Dixit, A.; Brahma, M. K.; Bahirat, U.; Doshi, L.; Nemmani, K. V. S.; Tannu, P.; Damre, A.; B-Rao, C.; Sharma, R.; Sivaramakrishnan, H. *Bioorg. Med. Chem. Lett.* 2012, *22*, 7543.
- 33. Bajaj, K.; Burudkar, S.; Shah, P.; Keche, A.; Ghosh, U.; Tannu, P.; Khanna, S.; Srivastava, A.; Deshmukh, N. J.; Dixit, A.; Ahire, Y.; Damre, A.; Nemmani, K. S. V.; Kulkarni-Almeida, A.; B-Rao, C.; Sharma, R.; Sivaramakrishnan, H. *Bioorg. Med. Chem. Lett.* **2013**, *23*, 834.
- 34. Taylor, E. C.; Young, W. B. J. Org. Chem. 1995, 60, 7947.
- 35. Rodrigues, M. V. N.; Barbosa, A. F.; da Silva, J. F.; dos Santos, D. A.; Vanzolini, K. L.; de Moraes, M. C.; Corrêa, A. G.; Cass, Q. B. *Bioorg. Med. Chem.* **2016**, *24*, 226.

- 36. Huang, W.-H.; Sheng, R.; Hu, Y.-Z. Curr. Med. Chem. 2009, 16, 1806.
- 37. Edwards, P. D.; Albert, J. S.; Sylvester, M.; Aharony, D.; Andisik, D.; Callaghan, O.; Campbell, J. B.; Carr, R. A.; Chessari, G.; Congreve, M.; Frederickson, M.; Folmer, R. H. A.; Geschwindner, S.; Koether, G.; Kolmodin, K.; Krumrine, J.; Mauger, R. C.; Murray, C. W.; Olsson, L.-L.; Patel, S.; Spear, N.; Tian, G. J. Med. Chem. 2007, 50, 5912.
- 38. Yonezawa, S.; Yamamoto, T.; Yamakawa, H.; Muto, C.; Hosono, M.; Hattori, K.; Higashino, K.; Yutsudo, T.; Iwamoto, H.; Kondo, Y.; Sakagami, M.; Togame, H.; Tanaka, Y.; Nakano, T.; Takemoto, H.; Arisawa, M.; Shuto, S. J. Med. Chem. 2012, 55, 8838.
- 39. Yonezawa, S.; Yamakawa, H.; Muto, C.; Hosono, M.; Yamamoto, T.; Hattori, K.; Sakagami, M.; Togame, H.; Tanaka, Y.; Nakano, T.; Takemoto, H.; Arisawa, M.; Shuto, S. *Bioorg. Med. Chem. Lett.* **2013**, *23*, 2912.
- 40. Yonezawa, S.; Fujiwara, K.; Yamamoto, T.; Hattori, K.; Yamakawa, H.; Muto, C.; Hosono, M.; Tanaka, Y.; Nakano, T.; Takemoto, H.; Arisawa, M.; Shuto, S. *Bioorg. Med. Chem.* 2013, 21, 6506.
- Pauletti, P. M.; Cintra, L. S.; Braguine, C. G.; da Silva Filho, A. A.; e Silva, M. L. A.; Cunha, W. R.; Januário, A. H. *Mar. Drugs.* 2010, *8*, 1526.
- 42. (a) Tibiletti, F.; Simonetti, M.; Nicholas, K. M.; Palmisano, G.; Parravicini, M.; Imbesi, F.; Tollari, S.; Penoni, A. *Tetrahedron* 2010, 66, 1280. (b) Cheng, G.; Cushing, T. D.; Fisher, B.; He, X.; Li, K.; Li, Z.; McGee, L. R.; Pattaropong, V.; Faulder, P.; Seganish, J. L.; Shin, Y. WO Patent 2009158011. (c) Pan, L.; Jiang, Y.; Liu, Z.; Liu, X.-H.; Liu, Z.; Wang, G.; Li, Z.-M.; Wang, D. *Eur. J. Med. Chem.* 2012, 50, 18. (d) Sun, Z.; Wang, H.; Wen, K.; Li, Y.; Fan, E. J. Org. Chem. 2011, 76, 4149. (e) Patel, S.; Modi, P.; Ranjan, V.; Chhabria, M. *Bioorg. Chem.* 2018, 78, 258.
- 43. (a) Reichelt, A.; Bailis, J. M.; Bartberger, M. D.; Yao, G.; Shu, H.; Kaller, M. R.; Allen, J. G.; Weidner, M. F.; Keegan, K. S.; Dao, J. H. *Eur. J. Med. Chem.* 2014, *80*, 364.
 (b) Walker, S. R.; Czyz, M. L.; Morris, J. C. *Org. Lett.* 2014, *16*, 708.
- 44. Erkin, A. V.; Krutikov, V. I. Russ. J. Gen. Chem. 2012, 82, 1567. [Журн. общ. химии 2012, 82, 1532.]
- 45. Okafor, C. O. J. Org. Chem. 1973, 38, 4386.
- 46. Erkin, A. V.; Gurzhii, V. V.; Krutikov, V. I. Russ. J. Gen. Chem. 2015, 85, 79. [Журн. общ. химии 2015, 85, 86.]
- 47. (a) Aydıner, B.; Seferoğlu, Z. *Eur. J. Org. Chem.* 2018, 5921.
 (b) Santoso, K. T.; Cheung, C.-Y.; Hards, K.; Cook, G. M.; Stocker, B. L.; Timmer, M. S. M. *Chem.–Asian J.* 2019, *14*, 1278.
- 48. Savall, B. M.; Chavez, F.; Tays, K.; Dunford, P. J.; Cowden, J. M.; Hack, M. D.; Wolin, R. L.; Thurmond, R. L.; Edwards, J. P. *J. Med. Chem.* **2014**, *57*, 2429.
- 49. Hernández Franco, L.; Palermo, J. A. Chem. Pharm. Bull. 2003, 51, 975.
- 50. Singh, U.; Chashoo, G.; Khan, S. U.; Mahajan, P.; Nargotra, A.; Mahajan, G.; Singh, A.; Sharma, A.; Mintoo, M. J.; Guru, S. K.;

Aruri, H.; Thatikonda, T.; Sahu, P.; Chibber, P.; Kumar, V.; Mir, S. A.; Bharate, S. S.; Madishetti, S.; Nandi, U.; Singh, G.; Mondhe, M. D.; Bhushan, S.; Malik, F.; Mignani, S.; Vishwakarma R. A.; Singh, P. P. *J. Med. Chem.* **2017**, *60*, 9470.

- 51. Harris, C. M.; Ericksson, A. M.; Argiriadi, M. A.; Barberis, C.; Borhani, D. W.; Burchat, A.; Calderwood, D. J.; Cunha, G. A.; Dixon, R. W.; Frank, K. E.; Johnson, E. F.; Kamens, J.; Kwak, S.; Li, B.; Mullen, K. D.; Perron, D. C.; Wang, L.; Wishart, N.; Wo, X.; Zhang, X.; Zmetra, T. R.; Talanian, R. V. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 334.
- Bryan, M. C.; Falsey, J. R.; Frohn, M.; Reichelt, A.; Yao, G.; Bartberger, M. D.; Bailis, J. M.; Zalameda, L.; Miguel, T. S.; Doherty, E. M.; Allen, J. G. *Bioorg. Med. Chem. Lett.* **2013**, *23*, 2056.
- 53. Мазур, И. А.; Мандриченко, Б. Е.; Каткевич, Р. И. Успехи химии **1977**, 46, 1233.
- (a) Zhu, Y.-F.; Gross, T. D.; Gao, Y.; Connors, P. J., Jr.; Guo, Z.; Chen, C. WO Patent 2001029044; *Chem. Abstr.* 2001, *134*, 311224. (b) Zhou, J. P.; Ding, Y. W.; Zhang, H. B.; Xu, L.; Dai, Y. *Chin. Chem. Lett.* 2008, *19*, 669.
- 55. Matschay, A.; Skwarski, D.; Sobiak, S. Pol. J. Chem. 2000, 74, 1707.
- 56. Zhu, Y.-F.; Guo, Z.; Gross, T. D.; Gao, Y.; Connors, P. J., Jr.; Struthers, R. S.; Xie, Q.; Tucci, F. C.; Reinhart, G. J.; Wu, D.; Saunders, J.; Chen, C. J. Med. Chem. **2003**, *46*, 1769.
- 57. Hirai, K.; Uchida, A.; Okano, N.; Yoshizawa, T.; Yoshino, Y.; Ota, C.; Natsume, F.; Katagiri, N.; Ikeda, O.; Kawaguchi, S. JP Patent 2000264888; *Chem. Abstr.* **2000**, *133*, 252502.
- Font, D.; Linden, A.; Heras, M.; Villalgordo, J. M. *Tetrahedron* 2006, 62, 1433.
- 59. Aakeröy, C. B.; Beffert, K.; Desper, J.; Elisabeth, E. Cryst. Growth Des. 2003, 3, 837.
- Erkin, A. V.; Krutikov, V. I.; Kosykh, A. V. Russ. J. Gen. Chem. 2005, 75, 1812. [*Журн. общ. химии* 2005, 75, 1898.]
- Nagender, P.; Reddy, G. M.; Rao, P. S.; Kurumurthy, C.; Rao, P. S.; Narsaiah, B. *Chem. Lett.* **2013**, *42*, 1018.
- Laneri, S.; Sacchi, A.; Abignente, E. J. Heterocycl. Chem. 2000, 37, 1265.
- Zhu, Y.-F.; Gross, T. D.; Gao, Y.; Connors, P. J., Jr.; Guo, Z.; Chen, C. WO Patent 2001029044; *Chem. Abstr.* 2001, 134, 311224.
- 64. Gross, T. D.; Zhu, Y.-F.; Saunders, J.; Wilcoxen, K. M.; Gao, Y.; Connors, P. J., Jr.; Guo, Z.; Struthers, R. S.; Reinhart, G. J.; Chen, C. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 2185.
- Hannah, D. R.; Sherer, E. C.; Davies, R. V.; Titman, R. B.; Laughton, C. A.; Stevens, M. F. G. *Bioorg. Med. Chem.* 2000, 8, 739.
- Tukun, F.-L.; Olberg, D. E.; Riss, P. J.; Haraldsen, I.; Kaass, A.; Klaveness, J. *Molecules* 2017, 22, 2188.
- Khanna, S.; B-Rao, S.; Ghosh, U.; Rizvi, Z.; Bajaj, K.; Kulkarni-Almeida, A.; Sharma, R. *Biointerface Res. Appl. Chem.* 2016, 6, 1422.
- Roy, S.; Narang, B. K.; Gupta, M. K.; Abbot, V.; Singh, V.; Rawal, R. K. Drug Des. 2018, 68, 395.