В. Г. Ненайденко, А. В. Санин, А. В. Чураков, Дж. А. К. Ховард, Е. С. Баленкова

ВЗАИМОДЕЙСТВИЕ ТРИФТОРМЕТИЛСОДЕРЖАЩИХ ЕНОНОВ С ПРОИЗВОДНЫМИ ТИОФЕНОЛА

Изучены реакции трифторметилсодержащих енонов с производными тиофенола. Реакция с 4-метилтиофенолом протекает с образованием либо кетосульфидов, либо производного пирана. Реакция трифторметилсодержащих енонов с 2-меркаптобензальдегидом приводит к 3-трифторацетилзамещенным 2H-тиохроменам.

Фторсодержащие гетероциклические соединения являются предметом многочисленных исследований [1, 2] вследствие их высокой физиологической активности [3]. Трифторметилсодержащие еноны — удобные и перспективные исходные соединения для синтеза гетероциклов с группой СГ3; методы синтеза таких енонов интенсивно разрабатываются в последнее десятилетие [4, 5].

Присоединение тиолов к непредельным кетонам — стандартный метод синтеза кетосульфидов по реакции Михаэля. Продукты присоединения тиофенола и его производных к α , β -непредельным кетонам — S-арилзамещенные β -кетосульфиды — циклизуются под действием кислот (HClO₄, ПФК) с образованием тиохроманов или солей тиохромилия [6] в зависимости от условий реакции и строения исходного кетона.

При изучении взаимодействия CF₃-енонов с 4-метилтиофенолом I установлено, что β -трифторацетилстирол (II) реагирует с 4-метилтиофенолом при комнатной температуре в этаноле в присутствии каталитических количеств триэтиламина с образованием двух соединений. Одно из них представляет собой «обычный» продукт присоединения по Михаэлю — β -кетосульфид III, а второе — производное пирана IV, продукт реакции двух молекул енона II с одной молекулой 4-метилтиофенола и одной молекулой воды.

Соотношение продуктов реакции зависит от условий ее проведения. Так, изменение порядка добавления и соотношения реагентов позволяет добиться преимущественного образования одного из веществ. Например, добавление 4-метилтиофенола к раствору енона II при использовании 2,5-кратного избытка последнего позволяет увеличить выход пирана IV до 68%. В то же время при медленном (в течение 1 ч) добавлении кетона к небольшому (10%) избытку 4-метилтиофенола в результате реакции был выделен β -кетосульфид III с выходом 61%.

Мы предполагаем следующую схему образования пирана IV. В результате присоединения аниона 4-метилтиофенола к енону II образуется енолят-анион, протонирование которого приводит к β -кетосульфиду III. Взаимодействие этого енолят-аниона с еще одной молекулой енона и последующая циклизация интермедиата с присоединением молекулы воды (растворитель 96% этанол) приводят к образованию пирана IV. Последний оказывается устойчивым благодаря стабилизации полуацетальных фрагментов наличием трифторметильных групп.

Согласно данным спектров ЯМР¹Н и ¹³С, соединение IV образуется в виде одного диастереомера из 16 возможных (в молекуле присутствует 5 асимметрических центров). Его конфигурация была однозначно установлена с помощью рентгеноструктурного анализа (рисунок). Оказалось, что наиболее объемные заместители (Ph, CF₃, (4-метилфенилтио)фенилметил)

занимают экваториальные положения [7, 8]. В то же время замечательным является тот факт, что оказывается фиксированной также относительная конфигурация атома углерода, не находящегося в цикле и имеющего фенильный и 4-метилтиофенильный заместители. Таким образом, имеет место эффективная асимметрическая 1,2-индукция. Рассмотрение молекулярных моделей позволяет сделать вывод о том, что такое расположение заместителей является, по-видимому, наиболее выгодным в интермедиате A и сохраняется в продукте реакции — пиране IV.

По данным PCA, в структуре соединения IV содержатся две кристаллографически независимые энантиомерные молекулы (см. рисунок) с весьма близкими геометрическими параметрами, однако конформационные различия приводят к их кристаллографической независимости. Эти молекулы связаны в димеры водородными связями между атомами H_(1A)—H—O₍₁₂₎ (2,062 Å) и H_(11A)—H—O₍₂₎ (2,021 Å) (табл. 1, 2).

Структура соединения IV

Таблица 1

Связь	d, Å	Связь	d, Å
••• ••• •			
S(1)—C(31)	1,766(9)	S(11)-C(131)	1,778(8)
S(1)-C(48)	1,845(7)	S(11)—C(148)	1,839(7)
O(1)-C(45)	1,394(10)	O(11)C(145)	1,387(10)
O(2)-C(41)	1,412(8)	O(12)C(141)	1,392(9)
O(3)-C(45)	1,420(13)	O(13)—C(141)	1,410(11)
O(3)-C(41)	1,421(10)	O(13)-C(145)	1,419(12)
$F_{(1)}-C_{(46)}$	1,339(12)	F(11)-C(146)	1,343(11)
F(2)-C(46)	1,32(2)	F(12)—C(146)	1,350(14)
F(3)-C(46)	1,33(2)	F(13)C(146)	1,321(13)
$F_{(4)}-C_{(47)}$	1,323(9)	F(14)-C(147)	1,326(11)
F(5)—C(47)	1,329(14)	F(15)—C(147)	1,33(2)
F(6)-C(47)	1,344(12)	F(16)-C(147)	1,31(2)
C(41)-C(47)	1,52(2)	C(141)—C(147)	1,54(2)
$C_{(41)}-C_{(42)}$	1,549(9)	$C_{(141)}-C_{(142)}$	1,554(10)
C(42)-C(43)	1,550(11)	$C_{(142)} - C_{(143)}$	1,531(12)
C(42)-C(48)	1,556(11)	$C_{(142)}-C_{(148)}$	1,558(11)
C(43)—C(44)	1,530(11)	C(143)C(144)	1,537(11)
C(44)-C(45)	1,530(11)	C(144)-C(145)	1,512(11)
C(45)—C(46)	1,504(14)	C(145)-C(146)	1,500(14)

Избранные длины связей в соединении IV

Таблица 2

Валентные углы в соединении IV

Угол	ω, град.	Угол	ω, град.
$C_{(31)}$ — $S_{(1)}$ — $C_{(48)}$	101,8(4)	$C_{(131)}$ — $S_{(11)}$ — $C_{(148)}$	102,4(3)
$C_{(41)} - O_{(3)} - C_{(45)}$	119,3(6)	$C_{(141)} - O_{(13)} - C_{(145)}$	119,8(6)
$O_{(2)} - C_{(41)} - O_{(3)}$	109,2(6)	$O_{(12)} - C_{(141)} - O_{(13)}$	109,2(7)
$O_{(2)} - C_{(41)} - C_{(47)}$	105,6(7)	$O_{(12)} - C_{(141)} - C_{(147)}$	106,9(8)
$O_{(3)} - C_{(41)} - C_{(47)}$	100,2(7)	$O_{(13)} - C_{(141)} - C_{(147)}$	100,5(8)
$O_{(2)} - C_{(41)} - C_{(42)}$	113,4(6)	$O_{(12)} - C_{(141)} - C_{(142)}$	112,9(6)
$O_{(3)} - C_{(41)} - C_{(42)}$	113,5(6)	$O_{(13)} - C_{(141)} - C_{(142)}$	112,6(7)
$C_{(47)} - C_{(41)} - C_{(42)}$	113,9(7)	$C_{(147)} - C_{(141)} - C_{(142)}$	113,8(7)
$C_{(41)} - C_{(42)} - C_{(43)}$	109,8(6)	$C_{(143)}$ — $C_{(142)}$ — $C_{(141)}$	111,8(6)
$C_{(41)} - C_{(42)} - C_{(48)}$	110,9(6)	$C_{(143)} - C_{(142)} - C_{(148)}$	114,2(6)
$C_{(43)} - C_{(42)} - C_{(48)}$	115,2(6)	$C_{(141)} - C_{(142)} - C_{(148)}$	112,0(6)
$C_{(11)} - C_{(43)} - C_{(44)}$	108,5(6)	$C_{(111)} - C_{(143)} - C_{(142)}$	114,0(6)
$C_{(11)} - C_{(43)} - C_{(42)}$	114,3(6)	$C_{(111)} - C_{(143)} - C_{(144)}$	109,5(6)
$C_{(44)} - C_{(43)} - C_{(42)}$	111,0(6)	$C_{(142)} - C_{(143)} - C_{(144)}$	109,7(6)
$C_{(45)} - C_{(44)} - C_{(43)}$	110,5(7)	$C_{(145)} - C_{(144)} - C_{(143)}$	110,8(7)
$O_{(1)} - C_{(45)} - O_{(3)}$	113,4(7)	$O_{(11)} - C_{(145)} - O_{(13)}$	113,3(7)
$O_{(1)} - C_{(45)} - C_{(46)}$	110,2(9)	$O_{(11)}-C_{(145)}-C_{(146)}$	110,4(8)
$O_{(3)} - C_{(45)} - C_{(46)}$	103,1(9)	$O_{(13)}-C_{(145)}-C_{(146)}$	102,9(8)
$O_{(1)} - C_{(45)} - C_{(44)}$	107,1(7)	$O_{(11)}-C_{(145)}-C_{(144)}$	108,0(7)
$O_{(3)} - C_{(45)} - C_{(44)}$	111,5(7)	$O_{(13)}-C_{(145)}-C_{(144)}$	110,8(7)
$C_{(46)} - C_{(45)} - C_{(44)}$	111,6(8)	$C_{(146)}-C_{(145)}-C_{(144)}$	111,5(8)
$C_{(21)} - C_{(48)} - C_{(42)}$	113,7(6)	$C_{(121)} - C_{(148)} - C_{(142)}$	113,7(6)
$C_{(21)} - C_{(48)} - S_{(1)}$	114.5(5)	$C_{(121)} - C_{(148)} - S_{(11)}$	114,8(5)
C(42) - C(48) - S(1)	109.8(5)	$C_{(142)} - C_{(148)} - S_{(11)}$	109,2(5)

620

Кристаллографические данные, параметры съемки эксперимента и уточнения структуры для соединения IV

C27H24F6O3S1

 $0,6 \times 0,4 \times 0,4$

Орторомбическая

Бесцветные параллелепипеды

542.52

Pn21a

19,560(4)

Брутто-формула Молекулярная масса Размер кристалла Цвет, габитус Сингония Пространственная группа a(E)h(E)c(E) $V(E^3)$ ZВычисленная плотность (г/см³) F(000) Коэффициент поглощения (мм⁻¹) Область сканирования (град.) Тип сканирования Ширина сканирования Интервалы индексов отражений

Кол-во отражений с $I > 2\sigma(I)$ Число переменных уточнения R-факторы ($I > 2\sigma(I)$) R-факторы (все отражения) Весовая схема, w^{-1}

Собрано отражений

Добротность по F² Параметр Флака Коэффициент экстинкции Остаточная электронная плотность, min/max (e • E⁻³) 26.039(5) 10,367(2) 5280(2) 8 1.365 2240 1.714 3,39 < q < 74,95 w $1,47 + 0,15 \tan q$ -1 < h < 24-1 < k < 32-1 < l < 125458 3402 675 $R_1 = 0,0766, wR_2 = 0,1895$ $R_1 = 0,1057, wR_2 = 0,2224$ $s^2 (F_0^2) + (0.157 IP)^2$, где $P = (F_0^2 + F_c^2)/3$ 1,038 0,32(8) 0.0030(4)

-0,331 / 0,909

С целью получения производного тиохромана мы изучили циклизацию β -кетосульфида III под действием хлорной и трифторметансульфоновой кислот. Оказалось, что в первом случае при комнатной температуре реакция не протекает, а при нагревании (100 °C), как и под действием трифторметансульфоновой кислоты при комнатной температуре, образуется трудноидентифицируемая смесь продуктов реакции. Это связано, по-видимому, с тем, что протонирование атома кислорода карбонильной группы с образованием карбокатиона — интермедиата в реакции циклизации — затруднено вследствие наличия электроноакцепторной группы CF₃.

Енон V реагирует с 4-метилтиофенолом в присутствии каталитических количеств триэтиламина, приводя с хорошим выходом к β -кетосульфиду VI. Изменение порядка добавления реагентов или их соотношения приводит к образованию сложной смеси соединений. По-видимому, в основной среде вследствие конденсации соединения VI с исходным еноном частично происходит олигомеризация, а также самоконденсация кетона V, поэтому введение в реакцию избытка енона V не приводит к селективному образованию продукта двойного присоединения, аналогичного образованию пирана IV.

В отличие от енонов II и V трифторметилсодержащий енон VII не вступает в реакцию с 4-метилтиофенолом ни при комнатной температуре, ни при нагревании, а также при применении других основных катализаторов (таких, как EtONa) или в их отсутствие. Наличие метильной группы в положении 4 енона VII приводит, возможно, к тому, что вследствие стерических затруднений образование аддукта с 4-метилтиофенолом является термодинамически невыгодным.

Изучение взаимодействия ряда трифторметилсодержащих енонов с 2-меркаптобензальдегидом показало, что соединения, имеющие фрагмент HSC=CCHO, являются весьма перспективными синтонами для синтеза серусодержащих гетероциклов, так как содержат в молекуле как нуклеофильный, так и электрофильный центры. Однако подобные реакции 2-меркаптобензальдегида с непредельными кетонами ранее не были изучены, вероятно, потому, что удобный способ получения этого соединения взаимодействием дилитиевого производного тиофенола с ДМФА был разработан совсем недавно [9].

Для получения трифторметилсодержащих тиопиранов была изучена реакция енонов с 3-трифторметил-3-меркаптоакролеином [10], протекающая как присоединение по Михаэлю с последующей кротоновой конденсацией.

Нами было найдено, что еноны II, VII, VIII и IX, содержащие группу СF3, реагируют с 2-меркаптобензальдегидом при комнатной температуре в этаноле в присутствии основного катализатора — триэтиламина. В результате реакции образуется смесь двух соединений — тиохроманов X и продуктов их дегидратации — 2H-тиохроменов XI. Кипячение реакционной смеси в течение 1 ч приводит к образованию последних с хорошими выходами. Промежуточно образующийся тиохроман был выделен только в случае енона II.

II, X, XI a \mathbb{R}^1 = Ph, \mathbb{R}^2 = H; VII, XI б \mathbb{R}^1 = тиенил-2, \mathbb{R}^2 = H; VIII, XI в \mathbb{R}^1 = N-метилпирролил-2, \mathbb{R}^2 = H; IX, XI г \mathbb{R}^1 , \mathbb{R}^2 = -(CH₂)₃-

Тиохроман X, согласно данным спектров ЯМР ¹Н и ¹³С, образуется в виде диастереомера с экваториальным расположением всех заместителей. Кипячение его в бензоле в присутствии *п*-толуолсульфокислоты с азеотропной отгонкой воды или в спирте в присутствии триэтиламина практически с количественными выходами приводит к 2H-тиохромену XIa.

Таким образом, взаимодействие трифторметилсодержащих енонов с производными тиофенола протекает как присоединение по Михаэлю. В случае 2-формилтиофенола реакция идет с последующей внутримолекулярной альдольной конденсацией с образованием тиохроманов, легко превращающихся в 2H-тиохромены. В результате реакции β -трифторацетилстирола с 4-метилтиофенолом образуются β -кетосульфид III или пиран IV, причем образование последнего протекает стереоспецифично.

Таблица З

Соеди-	Брутто-	<u>Найдено. %</u> Вычислено, %		Т _{ШЛ} , °С	Выход, %
	формуна	с	Н		
X	C17H13F3O2S	<u>60,19</u> 60,35	<u>3,79</u> 3,87	154155 (разл.)	65
XIa	C17H11F3OS	<u>63.86</u> 63,74	<u>3.55</u> 3,46	45	86
ХІб	C14H11F3OS	<u>59.13</u> 59,15	<u>3.85</u> 3,90	6970	69
ХІв	C ₁₆ H ₁₂ F ₃ NOS	<u>59,37</u> 59,44	<u>3.67</u> 3,74	111112	64
XIr	C15H9F3OS2	<u>55,39</u> 55,21	<u>2.82</u> 2,78	5354	70

Характеристики синтезированных соединений

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С регистрировали на спектрометрах Varian VXR-400, Bruker AMX 400 (рабочая частота на ядрах ¹³С 100 МГц) в CDCl₃, CD₃COCD₃ и C₆D₆, в качестве внутреннего стандарта использовали ТМС. Спектры ИК получены на спектрометре UR-20 в вазелиновом масле. TCX анализ проводили на пластинах Silufol UV-254, проявление в подкисленном растворе KMnO₄ и парами иода. Трифторметилсодержащие еноны были получены по литературным методикам [11—15].

Рентгеноструктурное исследование соединения IV проведено на автоматическом четырехкружном дифрактометре RIGAKU AFC6S при комнатной температуре ∂ Cu K α (1,54184 Å), графитовый монохроматор).

Расшифровка структуры проведена прямыми статистическими методами [16]. Все неводородные атомы уточнены в полноматричном анизотропном МНК по F^2 [17]. Все атомы водорода были помещены в рассчитанные положения ($d_{O-H} = 0.82$ Å; $d_{C-H} = 0.93$ Å для ароматических H; $d_{C-H} = 0.97$ Å для всех остальных) и уточнены по схеме «наездника» с учетом вращения для метильных (AFIX 137) и гидроксильных (AFIX 147) групп. Исследованный кристалл соединения IV оказался рацемическим двойником и при уточнении (SHELXL-93) была использована инструкция TWIN.

β-Кетосульфиды. Раствор соответствующего енона (5,0 ммоль) в 10 мл этанола в течение 1 ч добавляют по каплям при перемешивании к раствору 4-метилтиофенола (0,68 г, 5,5 ммоль) и Et3N (0,10 г, 1,0 ммоль) в 15 мл этанола. Полученный раствор оставляют на 1 ч при комнатной температуре, после чего упаривают в вакууме. Продукт реакции выделяют колоночной хроматографией на силикагеле (20 г), избыток 4-метилтиофенола элюируют гексаном, а продукт реакции — бензолом, *R*_f 0,30...0,35 (гексан—EtOAc, 9 : 1). Кетосульфид III кристаллизуют из гексана при охлаждении до -20 °C, кетосульфид V перегоняют в вакууме.

Спектры ИК, ЯМР (CDCl₃) ¹Н и ¹³С тиохромана Х и 2Н-тиохроменов XIa—г

Соеди- нение	ИК спектр, ν , см ⁻¹	Спектр ЯМР 1Н, δ , м. д.	Спектр ЯМР ¹³ С, δ , м. д.
x	1710 (CO); 33003500 (OH)	7,727,68 (1H, м, 5-Н или 8-H); 7,457,12 м (8H, 5H Ph, 3H аром. тиохроман.); 5,57 (1H, д, ${}^{3}J = 8,0$ Гц, 2-H); 5,15 (1H, д. д, ${}^{3}J = 8,0$, ${}^{3}J = 10,0$ Гц, 3-H); 4,94 (1H, д, ${}^{3}J = 11,2$ Гц, OH); 4,08 (1H, т, ${}^{3}J = 10,6$ Гц, 4-H)*	195,39 (κ , CO, ² <i>J</i> _{C-F} = 35,4 Γ _{II}); 138,22; 137,75; 133,48 (C(1a), C(4a), C(1), Ph); 129,69 (3C); 129,54; 129,18 (2C); 128,69; 125,71; 125,49 (C(5)C(8), 5C Ph); 115,43 (κ , CF ₃ , ¹ <i>J</i> _{C-F} = 289 Γ _{II}); 73,42; 56,04; 47,57 (C(2)C(4))*
XIa	1700 (CO)	7,95 (1H, д, ⁴ <i>J</i> = 1,6 Гц, 4-Н); 7,437,40 (1H, м, 5-Н или 8-Н); 7,287,16 (8H, м, 5H Ph, 3H аром. тиохроман.); 5,36 (1H, с, 2-Н)	179,34 (κ , CO, ² <i>J</i> _{C-F} =34,3 F _{II}); 142,90 (C(4), κ , ⁴ <i>J</i> _{C-F} = 3,6 F _{II}); 140,95 (C(1), Ph); 133,84 (C(1a)); 132,77 κ 132,42 (C(5), C(7)); 129,56 (C(3)); 128,84 (2C Ph); 128,16 κ 127,93 (C(6), C(8)); 126,88 (C(4a)); 126,53 (2C Ph); 126,17 (C(4) Ph); 116,84 (κ , CF3, ¹ <i>J</i> _{C-F} = 292 F _{II}); 38,96 (C(2))
ХІб	1710 (CO)	7,44 (1H, с, 4-H); 7,407,19 (4H, м, 5-H ÷ 8-H); 3,032,92 (2H, м, CH ₂ цикло- бут.); 2,352,13 (3H, м, CH ₂ циклобут.); 2,131,98 (1H, м, CH ₂ циклобут.)	180,04 (к, СО, ² <i>J</i> _{C-F} = 34,4 Гц); 140,50 (С(4)); 135,94 (С(1а)); 132,00 (С(4а)); 131,62 и 131,40 (С(5), С(7)); 130,16 (С(3)); 127,52; 125,91 (С(6), С(8)); 116,27 (к, СF3, ¹ <i>J</i> _{C-F} = 291 Гц); 47,31 (С(2)); 34,96 (2СН ₂ циклобут.); 15,62 (СН ₂ циклобут.)
ХІв	1700 (CO)	7,97 (1H, c, 4-H); 7,567,53 (1H, м, 5-H); 7,377,32 (1H, м, 7-H); 7,327,23 (2H, м, 6-H и 8-H); 6,64 (1H, д, ${}^{3}J = 3,0$ Гц, 5-H пиррол); 5,89 (1H, т, ${}^{3}J = 3,0$ Гц, 4-H пиррол); 5,75 (1H, д, ${}^{3}J = 3,0$ Гц, 3-H пиррол) 5,44 (1H, c, 2-H); 3,80 (3H, c, CH ₃)	179,06 (к, CO, ² <i>J</i> _{C-F} = 34,3 Гц); 142,32 (С(4)); 132,81 (С(1а)); 132,28; 132,09 (С(5), С(7)); 129,76 (С(4а)); 128,54 (С(6) или С(8)); 128,16 (С(3)); 126,09 (С(8) или С(6) и С(2) пиррол); 124,25 (С(5) пиррол); 116,68 (к, CF3, ¹ <i>J</i> _{C-F} = 290 Гц); 109,21; 106,80 (С(3), С(4) пиррол); 33,83 (СН ₃); 31,36 (С(2))
XIr	1700 (CO)	7,85 (1H, c, 4-H); 7,47 (1H, π , ${}^{3}J$ = 7,2 F μ , 5-H); 7,387,32 (2H, M, 6-H M 8-H); 7,277,22 (1H, M, 7-H); 7,05 (1H, π , ${}^{3}J$ = 5,2 F μ , 5-H тиофен); 6,85 (1H, π , ${}^{3}J$ = 3,6 F μ , 3-H тиофен); 6,79 (1H, π , π , ${}^{3}J$ = 5,2, ${}^{3}J$ = 36 F μ , 4-H тиофен); 5,61 (1H, c, 2-H)	178,92 (к, CO, ${}^{2}J_{C-F}$ = 34,9 Гц); 143,87 (С(2) тиофен); 142,07 (к, С(4), ${}^{4}J_{C-F}$ = 3,5 Гц); 133,43 (С(1a)); 132,65; 132,35 (С(5), С(7)); 129,27 (С(4a)); 128,15 (С(5)); тиофен); 127,35 (С(3)); 126,58; 126,26 (С(6); С(8)); 125,17; 125,05 (С(3), С(4) тиофен); 116,61 (к, СF3, ${}^{1}J_{C-F}$ = 290 Гц); 34,47 (С(2))

* В ацетоне-D6.

624

4-[(4-Метилфенил)тио]-4-фенил-1,1,1-трифтор-2-бутанон (III). Выход 1,0 г (61%), T_{IIII} 56...57 °С. ИК спектр: 1765 см⁻¹ (СО). Спектр ЯМР ¹Н (ацетон-D₆): 7,29 (2H, д, ³J = 8,0 Гц, 4-MeC₆H4); 7,25...7,16 (5H, м, Ph); 7,04 (2H, д, ³J = 8,0 Гц, 4-MeC₆H4); 4,72 (1H, д. д, ³J = 7,8, ³J = 6,7 Гц, 1-H); 3,55 (1H, д. д, ²J = 18,8, ³J = 7,8 Гц, 2-H); 3,47 (1H, д. д, ²J = 18,8, ³J = 6,7 Гц, 2-H); 2,21 м. д. (3H, с, CH3). Спектр ЯМР ¹³С (ацетон-D₆): 189,35 (к, CO, ²J с-F = 36,1 Гц); 141,08 и 139,01 (С(1) и С(4), 4-MeC₆H4); 134,37 (2C, 4-MeC₆H4); 130,54 (2C, 4-MeC₆H4); 129,26 (С(1), Ph); 129,21 (2C, Ph); 128,52 (2C, Ph); 128,38 (С(4), Ph); 118,07 (к, CF3, ¹J с-F = 286 Гц); 47,78 (С(1)); 43,17 (С(2)); 21,06 м. д. (CH₃). Найдено, %: C 62,88; H 4,56. C₁₇H₁₅F₃OS. Вычислено, %: C 62,95; H 4,66.

4-[(4-Метилфенил)тио]-4,4-триметилен-1,1,1-трифтор-2-бутанон (VI). Выход 0,86 г (60%), $T_{\text{КИП}}$ 99...101 °C (1 мм рт. ст.). ИК спектр: 1770 см⁻¹ (СО). Спектр ЯМР ¹Н (СDСl₃): 7,37 (2H, д, ${}^{3}J$ = 8,0 Гц, 4-МеС6H4); 7,17 (2H, д, ${}^{3}J$ = 8,0 Гц, 4-МеС6H4); 3,09 (2H, с, 2-H); 2,39...2,18 (5H, м, 3CH₂ циклобут.); 2,37 (3H, с, CH₃); 2,01...1,94 м. д. (1H, м, CH₂ циклобут.). Спектр ЯМР ¹³С (CDCl₃): 188,54 (к, CO, ${}^{2}J$ с-F = 34,5 Гц); 139,03 (С(1) или С(4), 4-МеС6H4); 135,72 (2C, 4-МеС6H4); 129,73 (2C, 4-МеС6H4); 128,65 (С(4) или С(1), 4-МеС6H4); 115,06 (к, CF₃, ${}^{1}J$ с-F = 291 Гц); 49,39 (С(1)); 45,17 (С(2)); 33,94 (2CH₂ циклобут.); 21,04 (CH₃); 16,46 м. д. (CH₂ циклобут.). Найдено, %: C 58,17; H 5,31. С14H₁₅F₃OS. Вычислено, %: C 58,32; H 5,24.

Тетрагидро-3-{[(4-Метилфенил)тио](фенил)метил}-4-фенил-2,6-бис (трифторметил)-2H-ширан-2,6-диол (IV). Раствор 4-метилтиофенола (0,62 г, 5,0 ммоль) в 10 мл этанола добавляют по каплям при перемешивании к раствору енона II (2,5 г, 12,5 ммоль) и Et₃N (0,10 г, 1,0 ммоль) в 15 мл этанола. Полученный раствор оставляют на 1 ч при комнатной температуре, после чего упаривают в вакууме. Продукт реакции выделяют методом колоночной хроматографии на силикагеле (20 г). Избыток енона II элюируют гексаном, а продукт реакции — бензолом (Rf 0,18, гексан—ЕtOAc, 9:1), после чего кристаллизуют из гексана. Выход 1,8 г (68%), Тил 156...157 °С (разл.). ИК спектр: 2800....3500 см⁻¹ (ОН). Спектр ЯМР ¹Н (бензол-D₆): 7,17 (2Н, д, ³J = 8,0 Гц, 4-MeC₆H₄); 6,94...6,67 (8H, м, 2Ph); 6,55 (2H, д, ³J = 8,0 Гц, 4-MeC₆H₄); 6,48 (2H, д, ³J = 7,0 Гц, Ph); 5,18 (1H, c, -SCH); 4,27 (2H, ym. c, 2OH); 3,88 (1H, r. π , ${}^{3}J = 12,2$, ${}^{3}J = 3,9 \Gamma \pi$, 4-H); 3,17 $(1H, \pi, {}^{3}J = 11.9 \Gamma \pi, 3-H); 1.98 (1H, \pi, \pi, {}^{2}J = 13.5, {}^{3}J = 3.9 \Gamma \pi, 5-He); 1.86 (1H, \pi, {}^{2}J = {}^{3}J = 12.9 \Gamma \pi, 5-He); 1.86 (1H, \pi, {}^{3}J = 12.9 \Gamma \pi, 5-He); 1.86 (1H, \pi, {}^{3}J = 12.9 \Gamma \pi, 5-He); 1.86 (1H, \pi, {}^{3}J = 12.9 \Gamma \pi, 5-He); 1.86 (1H, \pi, {}^{3}J = 12.9 \Gamma \pi, 5-He); 1.86 (1H, \pi, {}^{3}J = 12.9 \Gamma \pi, 5-He); 1.86 (1H, \pi, {}^{3}J = 12.9 \Gamma \pi, 5-He); 1.86 (1H, \pi, {}^{3}J = 12.9 \Gamma \pi, 5-He); 1.86 (1H, \pi, {}^{3}J = 12.9 \Gamma \pi, 5-He); 1.86 (1H, \pi, {}^{3}J = 12.9 \Gamma \pi, 5-He); 1.86 (1H, \pi, {}^{3}J = 12.9 \Gamma \pi, 5-He); 1.86 (1H, \pi, {}^{3}J = 12.9 \Gamma \pi, 5-He); 1.86 (1H, \pi, {}^{3}J = 12.9 \Gamma \pi, 5-He); 1.86 (1H, \pi, {}^{3}J =$ 5-На); 1,77 м. д. (3H, с, CH3). Спектр ЯМР¹³С (ацетон-D6): 142,18; 141,20 (С(1) и С(4), 4-МеС6Н4); 137,87 (C(1), Ph); 132,98 (C(1), Ph'); 131,58 (2C, 4-MeC₆H₄); 130,54 (2C, 4-MeC₆H₄); 129,54; 128,97; 128,55; 128,11 (4 × 2C, Ph); 127,82 (C₍₄₎, Ph); 126,65 (C₍₄₎, Ph'); 124,33 (K, CF₃, ${}^{1}J_{C-F}$ = 287 Гц); 123,33 (к, CF₃, ¹*J* с.ғ = 283 Гц); 98,84 (к, C₍₂₎ или С₍₆₎, ²*J* с.ғ = 29,4 Гц); 95,18 (к, С₍₆₎ или $C_{(2)}$, ${}^{2}J_{C-F} = 32,5 \Gamma_{II}$; 54,75 (-SCH-); 49,64 ($C_{(4)}$); 37,85 ($C_{(3)}$); 36,03 ($C_{(5)}$); 20,88 m. g. (CH₃). Найдено, %: C 59,57; H 4,46. C₂₇H₂₄F₆O₃S. Вычислено, %: C 59,77; H 4,46.

2H-Тиохромены XI. К раствору 2-меркаптобензальдегида (0,69 г, 5,0 ммоль) в 25 мл этанола добавляют соответствующий енон (5,0 ммоль) и Et₃N (0,10 г, 1,0 ммоль), полученный раствор кипятят 1 ч, после чего упаривают в вакууме. К остатку добавляют гексан (10 мл) и смесь пропускают через короткую колонку с силикагелем (~10 г), продукт реакции дополнительно элюируют гексаном (30 мл). Растворитель упаривают в вакууме, 2H-тиохромены XI кристаллизуют из гексана при охлаждении до -20 °C.

Для выделения промежуточно образующегося тиохромана X (в случае реакции с еноном II) реакционную смесь выдерживают при комнатной температуре 15 мин, после чего добавляют воду (15 мл). Выпавший осадок (соединение X) отфильтровывают, промывают водой и сушат в вакууме (данные о синтезированных соединениях X и XI см. в табл. 3, 4).

Исследование выполнялось при частичной поддержке Российского фонда фундаментальных исследований (грант № 97-03-32959а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Соединения фтора. Синтез и применение / Под ред. Н. Исикава. М.: Мир, 1990. 405 с.
- 2. *Ягупольский Л. М.* Ароматические и гетероциклические соединения с фторсодержащими заместителями. Киев: Наукова думка, 1988. 320 с.
- 3. Welch J. T. // Tetrahedron. 1987. Vol. 43. P. 3123.
- 4. Begue J.-P., Bonnet-Delpon D. // Tetrahedron. 1991. Vol. 47. P. 3207.
- 5. Nenajdenko V. G., Sanin A. V., Balenkova E. S. // Molecules. 1997. Vol. 2. P. 186.
- Houben-Weyl // Methoden der organischen Chemie. Bd E7a. Hetarene II. Teil 1. Stuttgart; New York: Georg Thieme Verlag, 1991. — S. 215.

- 7. Ненайденко В. Г., Санин А. В., Кузьмин В. С., Баленкова Е. С. // ЖОрХ. 1996. Т. 32. — С. 1579.
- Sanin A. V., Nenajdenko V. G., Kuz'min V. S., Balenkova E. S. // J. Org. Chem. 1996. Vol. 61. P. 1986.
- 9. Toste F. D., Lough A. J., Still I. W. J. // Tetrah. Lett. 1995. Vol. 36. P. 6619.
- Hoffmann R., Greif D., Pulst M., Weissenfels M., Laurent A. // Z. Chem. 1990. Bd 30. S. 247.
- 11. Ненайденко В. Г., Баленкова Е. С. // ЖОрХ. 1992. Т. 28. С. 600.
- Nenajdenko V. G., Gridnev I. D., Balenkova E. S. // Tetrahedron. 1994. Vol. 50. -P. 11023.
- 13. Gorbunova M. G., Gerus I. I., Kukhar V. P. // J. Fluor. Chem. 1993. Vol. 65. P. 25.
- Sanin A. V., Nenajdenko V. G., Smolko K. I., Denisenko D. I., Balenkova E. S. //Synthesis. 1998. — N 6.—P. 842.
- 15. Sheldrick G. M. // Acta crystallogr. A. 1990. Vol. A46. P. 467.
- 16. Sheldrick G. M. SHELXL-93. Program for the Refinement of Crystal Structures. University of Gottingen, Germany, 1993.

Московский государственный университет им. М. В. Ломоносова, Москва 119899, Россия e-mail: sanin@elorgl.chem.msu.su

Поступило в редакцию 02.03.98

Институт общей и неорганической химии им. Н. С. Курнакова РАН, Москва 117907, Россия

Department of Chemistry, University of Durham, South Road, Durham, Great Britain, DH1 3LE