

Селективно меченный стабильными изотопами ²H, ¹³C и ¹⁵N противовирусный препарат Триазавирин. Синтез и свойства

Татьяна С. Шестакова¹, Сергей Л. Деев^{1,2}*, Игорь А. Халымбаджа¹, Владимир Л. Русинов¹, Александр С. Парамонов³, Александр С. Арсеньев³, Захар О. Шенкарев³, Валерий Н. Чарушин^{1,2}, Олег Н. Чупахин^{1,2}

¹ Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, ул. Мира, 19, Екатеринбург 620002, Россия; e-mail: deevsl@yandex.ru

² Институт органического синтеза им. И. Я. Постовского УрО РАН, ул. Софьи Ковалевской, 22/20, Екатеринбург 620108, Россия e-mail: chupakhin@ios.uran.ru

³ Институт биоорганической химии им. академиков М. М. Шемякина и Ю. А. Овчинникова РАН, ул. Миклухо-Маклая, 16/10, Москва 117997, Россия; e-mail: aars@nmr.ru

Поступило 28.12.2020 Принято 11.02.2021

Синтезирован меченный изотопами противовирусный препарат Триазавирин, содержащий в своей структуре атомы ²H, ¹³C и ¹⁵N. В качестве доноров изотопов ¹³C были взяты ¹³C²H₃I и KS¹³CN. Использование MeI, содержащего атомы ²H и ¹³C, позволило дополнительно ввести дейтериевые метки в структуру соединения. Включение атомов ¹⁵N проведено с помощью обогащенных изотопом ¹⁵N нитрита натрия, карбоната аминогуанидина и нитроуксусного эфира. Полученный ²H₃, ¹³C₂, ¹⁵N₃- Триазавирин охарактеризован методом спектроскопии ЯМР.

Ключевые слова: азолоазины, стабильные изотопы, константы спин-спинового взаимодействия, противовирусная активность, спектроскопия ЯМР.

Препарат Триазавирин (TZV) (1) используется для лечения заболеваний, вызванных действием различных видов вируса гриппа А и В, включая пандемический штамм H5N1 (вирус гриппа птиц).¹⁻⁶ В настоящее время продолжаются исследования этого лекарственного средства с целью расширения его спектра действия. Полученные данные позволяют отнести TZV (1) к препаратам первой линии при лечении клещевого вирусного энцефалита.⁷ Кроме того, TZV (1) проходит клинические исследования в качестве противовирусного средства в отношении пандемического штамма коронавируса COVID-19.^{8–10}

Для оценки полученных новых данных об активности TZV (1) потребуется более полная информация о механизме его действия, биодоступности и биологической трансформации. Для решения этих задач целесообразно использовать соединения, обогащенные стабильными изотопами (²H, ¹³C и ¹⁵N), которые могут использоваться в качестве внутренних стандартов для хромато-масс-спектрометрии. ^{11,12} Эта стратегия дает возможность проводить исследования крови, сыворотки и других биологических жидкостей на предмет присутствия изучаемых биологически активных соединений и их метаболитов. Возможность анализа концентраций соединения и его метаболитов необходима для проведения фармакокинетических исследований и при подборе эффективных доз лекарственных препаратов.

Ранее нами был предложен синтез меченого TZV (2 H₃, 15 N₃)-1, содержащего в своей структуре атомы 2 H и 15 N (схема 1, меченые атомы выделены жирным шрифтом). Введение стабильных изотопов было основано на взаимодействии соли диазония (2 H, 15 N₂)-2 с нитроуксусным эфиром (15 N)-3. 13 Важно отметить, что это соединение было использовано в качестве внутреннего стандарта при исследовании влияния TZV (1) на агрегацию природных пептидов, склонных к самоассоциации, на примере фрагмента β -амилоидного пептида (β AP), накапливающегося в мозге пациентов с болезнью Альцгеймера, и цитолитического пептида пчелиного яда мелиттина.

В данной работе представлено получение меченого TZV (${}^{2}\text{H}_{3}$, ${}^{13}\text{C}_{2}$, ${}^{15}\text{N}_{3}$)-1, содержащего дополнительно два атома ${}^{13}\text{C}$ (схема 2). При этом включение изотопов ${}^{13}\text{C}$ в структуры биологических активных соединений позволяет дополнительно привлекать метод спектроскопии ЯМР ${}^{13}\text{C}$ для исследования путей метаболизма и фармакокинетики. 15,16

В качестве доноров атомов ¹³С использовался обогащенный роданид калия, а также (²H₃,¹³C)-МеІ. При обработке карбоната аминогуанидина (¹⁵N)-4 (¹⁵N, 98%) меченым KSCN (13 C, 95–98%) был получен 5-амино-3-меркаптотриазол (13 C, 15 N)-5 с выходом 60% (схема 2). Наличие атомов 13 C и 15 N в структуре (13 C, 15 N)-5 подтверждено регистрацией молекулярного иона [M+H]⁺ с моноизотопной массой 119.0233 Да в масс-спектре высокого разрешения. Взаимодействие соединения (¹³C, ¹⁵N)-5 с меченым MeI (99.5% ²H, 99% ¹³C) привело к получению аминотриазола (²H₃, ¹³C₂, ¹⁵N)-6 с выходом 61%. Включение дополнительных меток ²Н и ¹³С в данном случае доказано с помощью масс-спектрометрии ([M+H]⁺ m/z 137.0612). Реакция аминотриазола (²H₃, ¹³C₂, ¹⁵N)-6 с ¹⁵N-азотистой кислотой, генерированной из обогащенного NaNO₂ (98%, ¹⁵N), привела к соли диазония (${}^{2}\text{H}_{3}, {}^{13}\text{C}_{2}, {}^{15}\text{N}_{2}$)-2. Дальнейшее сочетание ее с нитроуксусным эфиром (¹⁵N)-3 (¹⁵N, 98%) позволило синтезировать обогащенный изотопами дигидрат натриевой соли триазолотриазина (²H₃, ¹³C₂, ¹⁵N₃)-1 с выходом 43%.

При исследовании соединения (²H₃, ¹³C₂, ¹⁵N₃)-1 методом спектроскопии ЯМР было обнаружено, что в спектре ЯМР ¹³С у сигналов всех углеродных атомов присутствуют дополнительные расщепления, обусловленные константами спин-спинового взаимодействия ¹³С-¹⁵N (*J*_{C-N}) с мечеными атомами ¹⁵N. Количественное измерение J_{C-N} проведено на основании набора одномерных экспериментов ЯМР ¹³С, записанных с селективной развязкой от атомов ²Н и ¹⁵N (рис. S3–S5, файл сопроводительных материалов). Значения измеренных КССВ ¹³С-¹⁵N представлены в табл. 1. Наличие спин-спиновых взаимодействий у атомов ¹³С-2 и ¹³С-2' с атомом ¹⁵N-1 дополнительно подтверждено данными двумерного спектра ¹³C-¹⁵N HMBC, в котором присутствуют соответствующие кросс-пики (рис. 1). Анализ двумерного спектра ¹³С-¹⁵N HMBC также показал наличие дальней константы (⁴J_{C-N}), которая обусловлена взаимодействием между атомами ¹³С-2 и ¹⁵N-5. Кроме того, в спектре ¹³С-¹⁵N НМВС наблюдался набор кросс-пиков с соответствующими константами J_{C-N} между атомами C-3а, C-6 и C-7 с натуральным содержанием изотопа ¹³С и обогащенными изотопом ¹⁵N атомами N-1, N-5 и N-6'.

Анализ спектра ${}^{13}C{}^{-15}N$ HMBC также указал на возможные частоты сигналов атомов N-3, N-4 и N-8 с натуральным содержанием изотопа ${}^{15}N$ (рис. 1, табл. 1). С помощью одномерного спектра ЯМР ${}^{13}C$, записан-

Таблица 1. Химические сдвиги и КССВ сигналов в спектрах ЯМР ¹³С и ¹⁵N соединения (${}^{2}\text{H}_{3}$, ${}^{13}\text{C}_{2}$, ${}^{15}\text{N}_{3}$)-1

Спектр ЯМР ¹³ С (175 МГц, ДМСО- <i>d</i> ₆)		Спектр ЯМР ¹⁵ N (71 МГц, ДМСО- <i>d</i> ₆)	
Атом	δ, м. д., <i>Ј</i> , Гц*	Атом	δ, м. д., <i>Ј</i> , Гц
C-2	$\begin{array}{l} 166.4 ,,,,,,,, $	N-1	259.1 д. д. ${}^{3}J_{\rm N1-C2'} = 2.6$ ${}^{1}J_{\rm N1-C2} = 4.7$
C-2'	13.3 септет д. д ${}^{1}J_{C2^{-}D} = 21.6$ ${}^{2}J_{C2^{-}C2} = 1.2^{**}$ ${}^{3}J_{C2^{-}N1} = 2.6 (×)$	N-3* ⁴ N-4* ⁴	233.0 с. 294.0 с.
C-3a	160.7 д. д. ${}^{2}J_{C3a-N5} = 2.1$ (×) ${}^{2}J_{C3a-N1} = 0.4$	N-5	397.0 д. ² J _{N5-N6'} = 6.3
C-6	${}^{145.1}_{J_{C6-N5}} = 1.8 (\times)$ ${}^{1}_{J_{C6-N6}} = 23.4 (\times)$ ${}^{3}_{J_{C6-N1}} = 1.6 (\times)$	N-6'	367.9 д. ² J _{N5-N6'} = 6.3
C-7	$ \begin{array}{l} 143.5 \text{ д. д. д. д. д.} \\ {}^{3}J_{C7-C2} = 7.0 \\ {}^{2}J_{C7-N5} = 1.3 \\ {}^{2}J_{C7-N6} = 5.3 \ (\times) \\ {}^{2}J_{C7-N1} = 3.6 \ (\times) \end{array} $	N-8* ⁴	226.0 c.

* Знаком (×) отмечены КССВ, приводящие к появлению кросс-пиков в спектре ${}^{13}C{}^{-15}N$ НМВС (рис. 1).

^{**} КССВ ${}^{13}C-{}^{13}C$ измерена при одновременной развязке от ядер ${}^{2}H-2'$ и ${}^{15}N-1$.

^{***} КССВ не наблюдалась из-за большой полуширины соответствующего сигнала 13 С. Ранее значение $^3J_{\rm C2-D}$ оценивали в 0.7 Гц. 13

^{*&}lt;sup>4</sup> Сигналы атомов с натуральным содержанием изотопа ¹⁵N детектировали в спектре $^{13}C^{-15}N$ HMBC.

Рисунок 1. Фрагменты спектра ${}^{13}C_{-}{}^{15}N$ НМВС соединения (${}^{2}H_{3}, {}^{13}C_{2}, {}^{15}N_{3}$)-1 и соответствующие им участки одномерных спектров ЯМР ${}^{13}C$ и ${}^{15}N$. Интенсивность фрагментов одномерного спектра ЯМР ${}^{13}C$, показанных на панелях справа, увеличена относительно фрагмента на левой панели. Спектр ${}^{13}C_{-}{}^{15}N$ НМВС, показывающий корреляции ядер ${}^{15}N$ с ядром ${}^{13}C_{-}$, накоплен с селективным подавлением сигнала ${}^{15}N$ -1 (область сигнала обведена пунктиром).

ного с развязкой от атомов ²H и ¹⁵N, была зафиксирована геминальная КССВ ¹³C–¹³C (² J_{C-C}) между мечеными атомами ¹³C-2 и ¹³C-2' (табл. 1). В то же время запись одномерного спектра ЯМР ¹³C с развязкой только от атомов ¹⁵N позволила оценить гетероядерное взаимодействие ²H–¹³C (¹ J_{C-D}). Наличие константы ¹ J_{C-D} у сигнала атома C-2' (табл. 1), однозначно доказывает наличие атомов дейтерия в структуре (²H₃, ¹³C₂, ¹⁵N₃)-1. Сигнал группы 2'-¹³C²H₃ наблюдался в виде дублета в одномерном спектре ЯМР ²H при ~2.65 м. д. (рис. S1). Сильнопольный компонент дублета был частично перекрыт сигналом растворителя ДМСО- d_6 .

В одномерном спектре ЯМР ¹⁵N соединения (${}^{2}H_{3}$, ${}^{13}C_{2}$, ${}^{15}N_{3}$)-1 регистрировалось три сигнала меченых атомов азота ¹⁵N (табл. 1, рис. 1), представленных в виде дублета дублетов при 259.1 м. д. (N-1) и двух дублетов при 397.0 и 367.9 м. д. (N-5 и N-6' соответственно). Отнесение сигналов в одномерном спектре ЯМР ¹⁵N было проведено на основании измерения КССВ ¹³C–¹⁵N и анализа химических сдвигов.¹³ Спинспиновое взаимодействие ¹⁵N–¹⁵N отражено в структуре сигналов атомов N-5 и N-6'. Мультиплетность резонансного сигнала для атома ¹⁵N-1 объясняется наличием двух КССВ ¹³C–¹⁵N с мечеными атомами углерода. Этот вывод был подтвержден записью одномерных спектров ЯМР ¹⁵N, зарегистрированных с селективной развязкой от атомов ¹³C-2 и ¹³C-2' (рис. S2). Эти эксперименты позволили количественно измерить прямую константу ${}^{1}J_{C2-N1}$ (табл. 1).

Таким образом, нами разработан метод, позволяющий дополнительно к атомам ²H и ¹⁵N селективно включать изотопы ¹³C в структуру противовирусного препарата Триазавирин. В результате был получен образец, содержащий сразу три типа стабильных изотопов, который был охарактеризован методом спектроскопии ЯМР. Практическое использование меченого Триазавирина может существенно расширить возможности в комплексном изучении биодоступности, фармакокинетики и путей метаболизма этого противовирусного препарата с помощью масс-спектрометрии и спектроскопии ЯМР. Это, в свою очередь, может способствовать более рациональному выбору тактики лечения.

Экспериментальная часть

Спектры ЯМР ¹H, ¹³С и ¹⁵N (700, 175 и 71 МГц сответственно) и ¹³С-¹⁵N НМВС соединения (²Н₃, ¹³С₂, ¹⁵N₃)-1 записаны на спектрометре Avance 700 фирмы Bruker, укомплектованном датчиком тройного резонанса (¹H, ¹³С, ¹⁵N), в ДМСО-*d*₆, внутренний стандарт – остаточные сигналы растворителя (2.50 м. д. для ядер ¹Н) или сигналы растворителя (40.11 м. д. для ядер ¹³С), внешний стандарт – жидкий NH₃ (для ядер ¹⁵N). Для измерения КССВ ¹³С-¹³С и ¹³С-¹⁵N использован ранее разработанный метод¹⁷ нелинейной аппроксимации форм линий в одномерных спектрах ЯМР ¹³С, записанных с развязкой от ядер ²Н и ¹⁵N и без нее. Для селективной развязки ядер ¹⁵N использованы адиабатические импульсы (WURST-20) длиной 10-20 мс и с шириной диапазона инверсии ~ 1 кГц (14 м. д.) для ядер ¹⁵N. Развязка ядер ²Н осуществлена широкополосной последовательностью WALTZ-16. Двумерные спектры ¹³С-¹⁵N HMBC записаны, используя задержки на передачу намагниченности между ядрами ¹³С и ¹⁵N в диапазоне 50-100 мс. Для селективного подавления сигнала ядра ¹⁵N-1 в некоторых случаях использовано насыщение соответствующей частоты во время передачи намагниченности и детектировании ядра ¹³С. Спектры ЯМР ¹H, ¹³С и ¹⁵N для соединений (¹³C, ¹⁵N)-5 и (²H₃,¹³C,¹⁵N)-6 записаны на спектрометре Bruker Avance II (400, 100, и 41 МГц соответственно), растворитель ДМСО-*d*₆, внутренний стандарт ТМС (для ядер ¹³С, ¹Н), и внешний стандарт – жидкий NH₃ (для ядер ¹⁵N). Масс-спектры высокого разрешения записаны на масс-спектрометре Finnigan LTQ FT, оборудованном сверхпроводящим магнитом с напряженностью поля 7 Тесла и электрораспылителем Ion Max. Температуры плавления определены в открытых капиллярах на аппарате Stuart SMP3.

Нитроуксусный эфир (15 N)-**3**¹³ (обогащение по 15 N 98%) и аминогуанидин (15 N)-**4**¹⁸ (обогащение по 15 N 98%) были синтезированы по описанным ранее методам. Использовавшийся в работе меченый MeI (2 H, 99.5% и 13 C, 99%) – коммерческий препарат фирмы Aldrich. Обогащенные стабильными изотопами нитрат натрия (15 N, 98%) и роданид калия (13 C, 95-98%) приобретены в Cambridge Isotope Laboratories.

5-Амино-3-меркапто-1,2,4-(3-¹³**С,2-**¹⁵**N)триазол** ((¹³**С,**¹⁵**N)-5**). Смешивают 0.56 г (4.00 ммоль) карбоната (¹⁵N)-аминогуанидина (¹⁵N)-4, 0.40 г (4.00 ммоль) KS¹³CN (¹³С, 95–98%), 0.05 г (0.80 ммоль) NH₄Cl и 0.18 мл H₂O. Смесь нагревают и перемешивают при 90°С в течение 2 ч, затем по каплям в течение 2 ч добавляют 2.70 ммоль (0.46 мл) концентрированной HCl и нагревают при 100°С еще в течение 1 ч. Далее к реакционной смеси добавляют раствор 0.25 г (4.40 ммоль) КОН в 0.25 мл H₂O и нагревают при 100°С в течение 2 ч, охлаждают, фильтруют и подкисляют концентрированной HCl до pH 2. Образовавшийся осадок отфильтровывают и промывают H₂O. Полученный меченый продукт (¹³C, ¹⁵N)-5 (0.283 г, 60%, ¹³C 95–98%, ¹⁵N 98%) используют далее без дополнительной очистки. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 5.74 (2H, уш. с, NH₂); 12.06 (1H, уш. с, NH); 12.25 (1H, д. д, ¹*J*_{HN} = 107.6, ²*J*_{HC} = 10.0, NH). Спектр ЯМР ¹³С, δ , м. д. (*J*, Гц): 152.5 (CNH₂, ²*J*_{CC} = 5.5); 162.8 (CS, ¹*J*_{CN} = 12.5). Спектр ЯМР ¹⁵N, δ , м. д. (*J*, Гц): 192.2 (¹*J*_{CN} = 12.5). Найдено, *m/z*: 119.0233 [M+H]⁺. С¹³CH₅N₃¹⁵NS. Вычислено, *m/z*: 119.0233.

5-Амино-3-(²H₃)метилмеркапто-1,2,4-(3-¹³C,2-¹⁵N)-триазол ((²H₃, ¹³C, ¹⁵N)-6). К раствору 0.062 г (1.10 ммоль) КОН в 2.00 мл H₂O добавляют 0.118 г (1.00 ммоль) меченого 5-амино-3-меркапто-1,2,4-триазола (¹³C, ¹⁵N)-5. Затем раствор охлаждают до 0°С, добавляют 0.160 г (1.10 ммоль) ¹³С²Н₃I (²Н 99.5%, ¹³С 99%) и перемешивают в течение 6 ч. После упаривания H₂O при пониженном давлении при температуре не выше 60°С до половины первоначального объема, выпавший осадок отфильтровывают, промывают ледяной Н2О и сушат. Полученный 5-амино-3-метилмеркапто-1,2,4-триазол (²H₃, ¹³C, ¹⁵N)-6 (0.082 г, 61%, ²Н 99.5%, ¹³C 99%, ¹⁵N 98%) используют далее без дополнительной очистки. Спектр ЯМР ¹Н, б, м. д.: 5.94 (2Н, уш. с, NH₂); 11.88 (1H, уш. с, NH). Спектр ЯМР ¹³С, б, м. д. (*J*, Гц): 13.0 (center, ${}^{1}J_{CD} = 21.4$, $C^{2}H_{3}$); 156.3 (CS); 157.9 (CNH₂). КССВ ¹³С-¹⁵N не наблюдается из-за уширения сигнала. Спектр ЯМР ¹⁵N, δ, м. д.: 261.4. Найдено, *m/z*: 137.0612 [M+H]⁺. C¹³C₂H₄²H₃N₃¹⁵NS. Вычислено, *m/z*: 137.0612.

Дигидрат натриевой соли 2-(²H₃)метилсульфанил-6-(¹⁵N)нитро(2-¹³C,1,5-¹⁵N₂)[1,2,4]триазоло[5,1-c][1,2,4]-триазин-7(4*H*)-она ((²H₃,¹³C₂,¹⁵N₃)-1). К смеси 2.00 мл H₂O и 0.25 мл концентрированной HCl добавляют 0.2 г (1.47 ммоль) меченого 5-амино-3-метилмеркапто-1,2,4-триазола (²H₃,¹³C₂,¹⁵N)-6, реакционную смесь охлаждают до -5°С и прикапывают к ней раствор 1.50 ммоль (0.111 г) Na¹⁵NO₂ в 1.00 мл H₂O. Затем реакционную смесь перемешивают в течение 10 мин и добавляют к охлажденному до 0°С раствору 0.30 мл ¹⁵N-этилнитроацетата ((¹⁵N)-3) в 4.00 мл 17% водного раствора Na₂CO₃. Реакционную смесь перемешивают в течение 2 ч при комнатной температуре, образовавшийся осадок отфильтровывают и перекристаллизовывают из 50% АсОН. Выход 0.185 г (43%, ²Н 99%, ¹³С 99%, ¹⁵N 98%), желтые кристаллы, т. пл >300°С. Найдено, *m/z*: 259.0090 [М+Н]. С₃¹³С₂Н²Н₃N₃¹⁵N₃O₃SNa. Вычислено, *m/z*: 259.0124. Найдено, %: С 20.99; Н 3.41; N 29.31. $C_3^{13}C_2^{2}H_3N_3^{15}N_3O_3SNa \cdot 2H_2O$. Вычислено, %: С 21.09; H 3.42; N 29.58.

Файл сопроводительных материалов, содержащий спектры ЯМР ²H, ¹³C и ¹⁵N соединения (${}^{2}H_{3}$, ${}^{13}C_{2}$, ${}^{15}N_{3}$)-1, доступен на сайте журнала http://hgs.osi.lv.

Работа выполнена при поддержке РФФИ (грант 20-03-00842) и Министерства науки и высшего образования Российской Федерации (проект № FEUZ-2020-0058 (H687.42Б.223/20)).

Список литературы

- Karpenko, I.; Deev, S.; Kiselev, O.; Charushin, V.; Rusinov, V.; Ulomsky, E.; Deeva, E.; Yanvarev, D.; Ivanov, A.; Smirnova, O.; Kochetkov, S.; Chupakhin, O.; Kukhanova, M. *Antimicrob. Agents Chemother.* **2010**, *54*, 2017.
- Киселев, О. И.; Деева, Э. Г.; Мельникова, Т. И.; Козелецкая, К. Н.; Киселев, А. С.; Русинов, В. Л.; Чарушин, В. Н.; Чупахин, О. Н. Вопросы вирусологии 2012, 57(6), 9.
- Логинова С. Я.; Борисевич, С. В.; Максимов, В. А.; Бондарев, В. П.; Котовская, С. К.; Русинов, В. Л.; Чарушин, В. Н.; Чупахин, О. Н. Антибиотики и химиотерапи 2011, 56(1-2), 10.
- Логинова, С. Я.; Борисевич, С. В.; Максимов, В. А.; Бондарев, В. П.; Котовская, С. К.; Русинов, В. Л.; Чарушин, В. Н.; Чупахин, О. Н. Антибиотики и химиотерапия 2010, 55(9–10), 25.
- 5. Ратникова, Л. И. Экспериментальная и клиническая фармакология **2018**, 81(3), 24.
- 6. Токин, И. И.; Цветков, В. В.; Голобоков, Г. С. Журнал инфектологии **2018**, 10(2), 110.
- Тихонова, Е. П.; Кузьмина, Т. Ю.; Анисимова, А. А.; Калинина, Ю. С. Экспериментальная и клиническая фармакология 2018, 81(9), 21.
- Wu, X.; Yu, K.; Wang, Y.; Xu, W.; Ma, H.; Hou, Y.; Li, Y.; Cai, B.; Zhu, L.; Zhang, M.; Hu, X.; Gao, J.; Wang, Y.; Qin, H.; Wang, W.; Zhao, M.; Wu, X.; Zhang, Y.; Li, L.; Li, K.; Du, Zh.; Mol, B. W. J.; Yang, B. *Engineering* **2020**, *6*, 1185.
- Сабитов, А. У.; Белоусов, В. В.; Един, А. С; Олейниченко, Е. В.; Гладунова, Е. П.; Тихонова, Е. П.; Кузьмина, Т. Ю.; Калинина, Ю. С.; Сорокин, П. В. Антибиотики и химиотерапия 2020, 65(7–8), 27.
- Wu, X.; Yu, K.; Wang, Y.; Xu, W.; Ma, H.; Hou, Y.; Li, Y.; Cai, B.; Zhu, L.; Zhang, M.; Hu, X.; Gao, J.; Wang, Y.; Qin, H.; Zhao, M.; Zhang, Y.; Li, K.; Du, Zh.; Yang, B. *Engineering* **2020**, *6*, 1199.
- 11. Hesk, D.; McNamar, P. J. Labelled Compd. Radiopharm. 2007, 50, 875.
- Knebel, N. G.; Sharp, S. R.; Madigan, M. J. J. Mass Spectrom. 1995, 30, 1149.
- Shestakova, T. S.; Khalymbadzha, I. A.; Deev, S. L.; Eltsov, O. S.; Rusinov, V. L.; Shenkarev, Z. O.; Arseniev, A. S.; Chupakhin, O. N. *Russ. Chem. Bull.*, *Int Ed.* **2011**, *60*, 729. [*M36. AH, Cep. xum.* **2011**, 714.]
- Mirgorodskaya, O. A.; Kozmin, Y. P.; Protasov, A. D.; Toropygin, I. Y.; Oleinikov V. A. *Russ. J. Bioorg. Chem.* 2018, 44, 665. [Биоорган. химия 2019, 45(1), 40.]
- 15. Unkefer, C. J.; Martinez, R. A. Drug Test. Analysis 2012, 4, 303.
- Artemov, D.; Bhujwalla, Z. M.; Maxwell, R. J.; Griffiths, J. R.; Judson, I. R.; Leach, M. O.; Glickson, J. D. *Magn. Reson. Med.* **1995**, *34*, 338.
- Deev, S. L.; Shenkarev, Z. O.; Shestakova, T. S.; Chupakin, O. N.; Rusinov, V. L.; Arseniev, A. S. J. Org. Chem. 2010, 75, 8487.
- Chupakhin, O. N.; Ulomsky, E. N.; Deev, S. L.; Rusinov, V. L. Synth. Commun. 2001, 31, 2351.