# К. Б. Абдиреймов<sup>1</sup>, Н. С. Мухамедов<sup>1\*</sup>, Р. Я. Окманов<sup>1</sup>, М. Ж. Айымбетов<sup>1</sup>, Б. Ташходжаев<sup>1</sup>, Х. М. Шахидоятов<sup>1</sup>

## БЕНЗАЗОЛЫ

## 6\*. СИНТЕЗ И АРИЛСУЛЬФОНИЛИРОВАНИЕ 2-ГИДРОКСИМЕТИЛБЕНЗИМИДАЗОЛА

Циклизацией *о*-фенилендиамина с гликолевой кислотой синтезирован 2-гидроксиметилбензимидазол. Взаимодействие его с арилсульфохлоридами в присутствии триэтиламина показало, что, помимо ожидаемых 1-арилсульфонил-2-гидроксиметилбензимидазолов, наблюдается образование 1-арилсульфонил-2-хлорметилбензимидазолов. Выявлено, что увеличение количества арилсульфохлоридов способствует повышению доли 1-арилсульфонил-2-хлорметилбензимидазолов.

Ключевые слова: 1-арилсульфонил-2-гидроксиметилбензимидазолы, 1-арилсульфонил-2-хлорметилбензимидазолы, 2-гидроксиметилбензимидазол, арилсульфонилирование, нуклеофильное замещение.

В ряду производных бензимидазола найдены соединения с разнообразной биологической активностью [2–7]. Среди 2-замещённых бензимидазолов имеются фармакологически активные вещества [2–5], а также фунгициды [6] и регуляторы роста [7].

Ранее нами было обнаружено, что при арилсульфонилировании 1-гидроксиметилбензимидазола происходит деформилирование, приводящее к 1-арилсульфонилбензимидазолам [1]. В настоящей работе изучено арилсульфонилирование 2-гидроксиметилбензимидазола (2).

Соединение 2 синтезировано циклизацией o-фенилендиамина (1) с гликолевой кислотой в присутствии соляной кислоты по известной методике [8]. Изучением взаимодействия соединения 2 с арилсульфохлоридами **3а**-h в присутствии триэтиламина установлено, что наряду с 1-арилсульфонил-2-гидроксиметилбензимидазолами **4а**-h образуются 1-арилсульфонил-2-хлорметилбензимидазолы **5а**-h, то есть вместо предполагаемой реакции диарилсульфонилирования протекает нуклеофильное замещение гидроксильной группы соединений **4а**-h на атом хлора соединений **3а**-h.



**a** Ar = Ph, **b** Ar = 4-MeC<sub>6</sub>H<sub>4</sub>, **c** Ar = 4-MeOC<sub>6</sub>H<sub>4</sub>, **d** Ar = 4-ClC<sub>6</sub>H<sub>4</sub>, **e** Ar = 3-O<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>, **f** Ar = 4-(*t*-Bu)C<sub>6</sub>H<sub>4</sub>, **g** Ar = 2,4-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>, **h** Ar = 3,4-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>

<sup>\*</sup> Сообщение 5 см. [1].

Следует отметить, что увеличение количества соединений 3a-h способствует повышению содержания 1-арилсульфонил-2-хлорметилбензимидазолов 5a-h. При использовании стехиометрических количеств соединений 2 и 3aсоотношение соединений 4a и 5a составляет 8:1, при двукратном избытке соединения 3a содержание продуктов 4a и 5a составляет 7:3, при четырёхкратном избытке – 1:9, а при пятикратном избытке арилсульфохлорида 3aобразуется исключительно соединение 5a.

Строение синтезированных соединений **4**, **5**  $\mathbf{a}$ - $\mathbf{h}$  подтверждено данными спектроскопии ИК, ЯМР <sup>1</sup>Н, масс-спектрометрии, элементного анализа (табл. 1 и 2) и РСА (рис.).

В ИК спектрах соединений **4**, **5 a**–**h** имеются характерные полосы поглощения валентных асимметрических (1360–1390 см<sup>-1</sup>) и симметрических (1160–1190 см<sup>-1</sup>) колебаний группы SO<sub>2</sub>. Если в соединениях **4a–h** имеются полосы поглощения валентных колебаний группы OH (3190–3260 см<sup>-1</sup>), то в соединениях **5а–h** эти полосы отсутствуют и появляются полосы поглощения валентных колебаний связи C–Cl (700–710 см<sup>-1</sup>) (табл. 2).

| а | б | Л | И | Ц | а | 1 |
|---|---|---|---|---|---|---|
|---|---|---|---|---|---|---|

Т

|            |                                                                   | *                     |                     |                       |                       |                       | ,       |    |
|------------|-------------------------------------------------------------------|-----------------------|---------------------|-----------------------|-----------------------|-----------------------|---------|----|
| Соеди-     | Брутто<br>формула                                                 | Найдено, %            |                     |                       |                       | Т. пл.*,              | Выход,  |    |
| нение      |                                                                   | Вычислено, %          |                     |                       |                       | °C                    | %       |    |
|            | 115                                                               | C                     | H                   | Cl                    | N                     | S                     |         |    |
| <b>4</b> a | $C_{14}H_{12}N_2O_3S$                                             | <u>58.09</u><br>58.32 | <u>3.93</u><br>4.20 | _                     | $\frac{10.01}{9.72}$  | $\frac{10.92}{11.12}$ | 112–114 | 57 |
| 4b         | $C_{15}H_{14}N_2O_3S$                                             | <u>59.74</u><br>59.59 | <u>4.48</u><br>4.67 | -                     | <u>8.98</u><br>9.27   | <u>10.35</u><br>10.60 | 178–180 | 60 |
| 4c         | $C_{15}H_{14}N_2O_4S$                                             | <u>56.44</u><br>56.59 | <u>4.66</u><br>4.43 | -                     | <u>9.03</u><br>8.80   | <u>9.84</u><br>10.07  | 148–150 | 56 |
| 4d         | C <sub>14</sub> H <sub>11</sub> ClN <sub>2</sub> O <sub>3</sub> S | <u>51.89</u><br>52.10 | <u>3.26</u><br>3.44 | <u>10.81</u><br>10.98 | <u>8.89</u><br>8.68   | <u>10.12</u><br>9.93  | 164–166 | 55 |
| <b>4</b> e | $C_{14}H_{11}N_3O_5S$                                             | $\frac{50.22}{50.45}$ | $\frac{3.14}{3.33}$ | -                     | <u>12.38</u><br>12.61 | <u>9.79</u><br>9.62   | 160–161 | 76 |
| 4f         | $C_{18}H_{20}N_2O_3S$                                             | <u>63.01</u><br>62.77 | <u>6.03</u><br>5.85 | _                     | <u>7.85</u><br>8.13   | <u>9.14</u><br>9.31   | 158–159 | 70 |
| 4g         | $C_{16}H_{16}N_2O_3S$                                             | <u>61.04</u><br>60.74 | <u>4.87</u><br>5.10 | -                     | <u>9.12</u><br>8.85   | <u>9.89</u><br>10.13  | 120–122 | 90 |
| 4h         | $C_{16}H_{16}N_2O_3S$                                             | <u>60.56</u><br>60.74 | <u>5.27</u><br>5.10 | _                     | <u>9.15</u><br>8.85   | <u>10.31</u><br>10.13 | 150–152 | 65 |
| 5a         | $C_{14}H_{11}ClN_2O_2S$                                           | <u>55.14</u><br>54.81 | <u>3.80</u><br>3.61 | <u>11.29</u><br>11.56 | <u>8.89</u><br>9.13   | <u>10.71</u><br>10.45 | 90–92   | 8  |
| 5b         | $C_{15}H_{13}ClN_2O_2S$                                           | <u>56.04</u><br>56.16 | $\frac{3.88}{4.08}$ | <u>10.91</u><br>11.05 | <u>9.01</u><br>8.73   | <u>9.85</u><br>10.00  | 148–150 | 7  |
| 5c         | $C_{15}H_{13}ClN_2O_2S$                                           | <u>53.69</u><br>53.49 | $\frac{4.08}{3.89}$ | $\frac{10.71}{10.53}$ | <u>8.53</u><br>8.32   | <u>9.70</u><br>9.52   | 138–140 | 6  |
| 5d         | $C_{14}H_{10}Cl_2N_2O_2S$                                         | <u>49.65</u><br>49.28 | $\frac{2.81}{2.95}$ | $\frac{20.71}{20.78}$ | <u>7.93</u><br>8.21   | <u>9.67</u><br>9.40   | 150–152 | 7  |
| 5e         | $C_{14}H_{10}ClN_3O_4S$                                           | <u>47.65</u><br>47.80 | <u>2.63</u><br>2.87 | <u>9.87</u><br>10.08  | <u>12.08</u><br>11.95 | <u>8.93</u><br>9.12   | 128–130 | 9  |
| 5f         | $C_{18}H_{19}ClN_2O_2S$                                           | <u>59.73</u><br>59.58 | <u>4.90</u><br>5.28 | <u>10.02</u><br>9.77  | <u>8.01</u><br>7.72   | <u>9.04</u><br>8.84   | 135–137 | 8  |
| 5g         | C <sub>16</sub> H <sub>15</sub> ClN <sub>2</sub> O <sub>2</sub> S | <u>57.69</u><br>57.40 | <u>4.69</u><br>4.52 | <u>10.78</u><br>10.59 | <u>8.14</u><br>8.37   | <u>9.73</u><br>9.58   | 162–164 | 9  |
| 5h         | C <sub>16</sub> H <sub>15</sub> ClN <sub>2</sub> O <sub>2</sub> S | <u>57.19</u><br>57.40 | $\frac{4.64}{4.52}$ | <u>10.84</u><br>10.59 | <u>8.48</u><br>8.37   | <u>9.76</u><br>9.58   | 126–128 | 6  |

Физико-химические характеристики синтезированных соединений 4, 5 a-h

<sup>\*</sup> Растворители для перекристаллизации: EtOH (соединения 4, 5 а,b,e-h), EtOH-H<sub>2</sub>O, 1:1 (соединения 4, 5 с,d).

Таблица 2

# Спектральные характеристики соединений 4, 5 а-h

| Соеди-    | . ИК спектр, v, см <sup>-1</sup> |                       | <i>v</i> , см <sup>-1</sup> | Chevro $\text{SMP}^{1}$ H $\delta$ M $\mu$ ( <i>I</i> $\Gamma$ $\mu$ )                                                                                                                                                                                                                                                                                          |                      |
|-----------|----------------------------------|-----------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| нение     | $SO_2(ac)$                       | SO <sub>2</sub> (сим) | O–H, C–Cl                   |                                                                                                                                                                                                                                                                                                                                                                 | $[M]^+(I_{OTH}, \%)$ |
| 4a        | 1376                             | 1172                  | 3255                        | 7.97–7.86 (2Н, м, Н-4,5); 7.64 (1Н, д. д, <i>J</i> = 9.2, <i>J</i> = 2.2, Н-6); 7.58 (1Н, д. д, <i>J</i> = 9.2, <i>J</i> = 2.2, Н-7); 7.52–7.38                                                                                                                                                                                                                 | 288 (36)             |
| 4b        | 1372                             | 1174                  | 3234                        | (2H, м, H-2,6 Ph); 7.38–7.25 (3H, м, H-3,4,5 Ph); 5.10 (2H, с, CH <sub>2</sub> ); 3.65 (1H, уш. с, OH)<br>7.89 (1H, д. д. <i>J</i> = 8.7, <i>J</i> = 2.1, H-4); 7.86–7.70 (2H, м, H-5,6); 7.55 (1H, д. д. <i>J</i> = 9.2, <i>J</i> = 2.2, H-7); 7.34–7.26 (4H, м, H Ar); 5.05 (2H, с, CH <sub>2</sub> ); 3.55 (1H, уш. с, OH); 2.32 (3H, с, ArCH <sub>2</sub> ) | 302 (41)             |
| 4c        | 1379                             | 1168                  | 3246                        | 7.92-7.78 (3H, M, H-4,5,6); 7.60 (1H, J. J. J. = 9.1, $J = 2.1$ , H-7); 7.34–7.28 (2H, M, H-2,6 Ar); 6.91–6.75 (2H, M, H-3.5 Ar); 5.07 (2H, c, CH <sub>3</sub> ); 3.93 (1H, VIII, c, OH); 3.75 (3H, c, OCH <sub>3</sub> )                                                                                                                                       | 318 (39)             |
| 4d        | 1374                             | 1176                  | 3232                        | 7.92–7.80 (3H, м, H-4,5,6); 7.60 (1H, д. д, <i>J</i> = 8.7, <i>J</i> = 2.1, H-7); 7.45–7.27 (4H, м, H Ar); 5.06 (2H, c, CH <sub>2</sub> ); 3.75 (1H, уш. с, OH)                                                                                                                                                                                                 | 322 (33)             |
| <b>4e</b> | 1389                             | 1182                  | 3293                        | 8.84 (1H, т, <i>J</i> = 4.1, H-2 Ar); 8.46–8.38 (1H, м, H-4 Ar); 8.34–8.22 (1H, м, H-6 Ar); 7.90 (1H, д. д. <i>J</i> = 9.6, <i>J</i> = 2.2, H-4); 7.72–7.62 (2H, м, H-6,7); 7.41–7.31 (2H, м, H-5, H-5 Ar); 5.10 (2H, c, CH <sub>2</sub> ); 3.75 (1H, уш. c, OH)                                                                                                | 333 (38)             |
| 4f        | 1382                             | 1176                  | 3218                        | 7.94 (1H, д. д, <i>J</i> = 8.7, <i>J</i> = 2.1, H-4); 7.91–7.78 (2H, м, H-5,6); 7.64 (1H, д. д, <i>J</i> = 8.7, <i>J</i> = 2.1, H-7); 7.51–7.41 (2H, м, H-2,6 Ar); 7.35–7.28 (2H, м, H-3,5 Ar); 5.06 (2H, с, CH <sub>2</sub> ); 3.68 (1H, уш. с, OH); 1.21 (9H, с, C(CH <sub>3</sub> ) <sub>3</sub> )                                                           | 344 (42)             |
| 4g        | 1366                             | 1178                  | 3195                        | 7.80–7.62 (2H, M, H-4,5); 7.62 (1H, $\pi$ , $J = 8.1$ , H-6); 7.31–7.21 (2H, M, H-7, H-6 Ar); 7.09 (1H, $\pi$ , $J = 8.0$ , H-5 Ar); 7.03 (1H, c, H-3 Ar); 5.09 (2H, c, CH <sub>2</sub> ); 3.65 (1H, ym. c, OH); 2.31 (3H, c, 2'-CH <sub>3</sub> ); 2.24 (3H, c, 4'-CH <sub>3</sub> )                                                                           | 316 (29)             |
| 4h        | 1368                             | 1166                  | 3218                        | 7.89 (1Н, д. д. <i>J</i> = 8.7, <i>J</i> = 2.1, H-4); 7.67–7.57 (2Н, м, H-5,6); 7.38–7.25 (3Н, м, H-7, H-2,6 Ar); 7.18 (1Н, д, <i>J</i> = 8.0, H-5 Ar); 5.07 (2H, c, CH <sub>2</sub> ); 3.73 (1H, уш. с, OH); 2.39 (3H, с, 3'-CH <sub>3</sub> ); 2.31 (3H, с, 4'-CH <sub>3</sub> )                                                                              | 316 (34)             |
| 5a        | 1383                             | 1184                  | 701                         | 8.46–8.34 (2H, м, H-4,5); 7.98–7.84 (1H, м, H-6); 7.73–7.64 (1H, м, H-7); 7.59–7.50 (2H, м, H-2,6 Ph); 7.42–7.28 (3H, м, H-3,4,5 Ph); 5.11 (2H, с, CH <sub>2</sub> )                                                                                                                                                                                            | 306 (44)             |
| 5b        | 1385                             | 1188                  | 704                         | 7.98–7.84 (3H, м, H-4,5,6); 7.62 (1H, д, J = 8.8, H-7); 7.39–7.23 (4H, м, H Ar); 5.10 (2H, с, CH <sub>2</sub> ); 2.33 (3H, с, ArCH <sub>3</sub> )                                                                                                                                                                                                               | 320 (37)             |
| 5c        | 1379                             | 1192                  | 702                         | 8.08–7.94 (2H, м, H-4,5); 7.88 (1H, д, <i>J</i> = 7.8, H-6); 7.67 (1H, д, <i>J</i> = 7.8, H-7); 7.36–7.27 (2H, м, H-2,6 Ar); 7.00–6.84 (2H, м, H-3,5 Ar); 5.11 (2H, c, CH <sub>2</sub> ); 3.81 (3H, c, OCH <sub>3</sub> )                                                                                                                                       | 336 (34)             |
| 5d        | 1387                             | 1184                  | 703                         | 8.05–7.84 (2H, м, H-4,5); 7.86 (1H, д. д, <i>J</i> = 7.8, <i>J</i> = 2.3, H-6); 7.69 (1H, д. д, <i>J</i> = 7.8, <i>J</i> = 2.3, H-7); 7.49–7.39 (2H, м, H-2,6 Ar); 7.41–7.30 (2H, м, H-3,5 Ar); 5.10 (2H, с, CH <sub>2</sub> )                                                                                                                                  | 340 (28)             |
| 5e        | 1380                             | 1184                  | 709                         | 8.98 (1H, т, <i>J</i> = 3.9; H-2 Ar); 8.52–8.31 (2H, м, H-4,6 Ar); 7.92 (1H, д. д, <i>J</i> = 9.1, <i>J</i> = 1.8, H-4); 7.78–7.68 (2H, м, H-6,7); 7.51–7.33 (2H, м, H-5, H-5 Ar); 5.12 (2H, с, CH <sub>2</sub> )                                                                                                                                               | 351 (18)             |
| 5f        | 1379                             | 1180                  | 702                         | 8.01–7.41 (6H, м, H-4,5,6,7, H-2,6 Ar); 7.40–7.28 (2H, м, H-3,5 Ar); 5.11 (2H, с, CH <sub>2</sub> ); 1.22 (9H, с, C(CH <sub>3</sub> ) <sub>3</sub> )                                                                                                                                                                                                            | 362 (27)             |
| 5g        | 1378                             | 1170                  | 704                         | 7.74 (1H, д. д. <i>J</i> = 9.1, <i>J</i> = 2.0, H-4); 7.70–7.61 (2H, м, H-5,6); 7.32 (1H, д. д. <i>J</i> = 8.7, <i>J</i> = 2.1, H-7); 7.34–7.23 (1H, м, H-6 Ar); 7.11–6.99 (2H, м, H-3,5 Ar); 4.97 (2H, с, CH <sub>2</sub> ); 2.36 (3H, с, 2'-CH <sub>3</sub> ); 2.30 (3H, с, 4'-CH <sub>3</sub> )                                                              | 334 (31)             |
| 5h        | 1377                             | 1171                  | 705                         | 7.94–7.61 (4H, м, H-4,5,6,7); 7.39–7.16 (3H, м, H Ar); 5.11 (2H, с, CH <sub>2</sub> ); 2.29 (3H, с, 3-CH <sub>3</sub> ); 2.20 (3H, с, 4'-<br>CH <sub>3</sub> )                                                                                                                                                                                                  | 334 (29)             |

 $\frac{2}{5}$  \* Для соединений 4d, 5а–h приведены значения *m/z* для изотопа <sup>35</sup>Cl.

815

Спектры ЯМР <sup>1</sup>Н соединений **4**, **5** а–h (табл. 2) содержат характерные для бензимидазольного фрагмента сигналы протонов H-4,5,6,7 в виде дублета дублетов и мультиплетов в области 7.26–8.01 м. д. В спектрах также имеются сигналы протонов ароматических заместителей (7.22–7.45 м. д.), уширенные сигналы протона группы ОН (в спектрах соединений **4**а–h: 3.55–3.93 м. д.), синглеты группы CH<sub>2</sub> (5.09–5.11 м. д.) и алкильных заместителей в ароматическом фрагменте (1.21–3.75 м. д.). В спектрах 2-гидроксиметил-1-(3-нитробензолсульфонил)бензимидазола (**4**е) и 1-(3-нитробензолсульфонил)-2-хлорметилбензимидазола (**5**е) под действием электроноакцепторного заместителя NO<sub>2</sub> сигналы протонов H-2,4,6 в ароматическом заместителе сдвинуты в более слабое поле (8.28–8.98 м. д.) по сравнению с другими соединениями.

В масс-спектрах соединений 4, 5 а–h обнаружены пики молекулярных ионов и фрагментов, полностью подтверждающие предложенные структуры. Направление фрагментации молекулярных ионов соединений 4, 5 а–h зависит от природы заместителя в положении 2 и не зависит от характера ароматического заместителя. Масс-спектры соединений 4а–h показывают однотипную фрагментацию с разрывом связи CH<sub>2</sub>–OH, а соединений 5а–h – с разрывом связи CH<sub>2</sub>–Cl, затем ArSO<sub>2</sub>–Het, приводящую последовательно к фрагментам с m/z 132 и 116.



Для достоверного установления строения 1-(4-метилбензолсульфонил)-2-хлорметилбензимидазола (5b) мы провели рентгеноструктурный анализ (рисунок).



Молекулярное строение соединения **5b** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

Длины валентных связей в исследуемой структуре соответствуют стандартным значениям [9] и наблюдаемым в родственном соединении [10]. В кристаллической структуре соединения **5b** бензимидазольный и бензольный фрагменты плоские с точностью  $\pm 0.009$  и  $\pm 0.005$  Å соответственно. Угол между плоскими фрагментами составляет 89.2(3)°. В кристаллической структуре имеются слабые межмолекулярные водородные связи типа С–H···Cl со следующими параметрами: расстояния C(5)···Cl(1) 2.580(7), H···Cl(1) 2.80 Å, угол C(5)–H···Cl(1) 142°.

Таким образом, арилсульфонилирование 2-гидроксиметилбензимидазола приводит к образованию 1-арилсульфонил-2-гидроксиметилбензимидазолов и 1-арилсульфонил-2-хлорметилбензимидазолов.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры суспензий соединений в вазелиновом масле зарегистрированы на Фурье-спектрометре Perkin-Elmer 2000. Спектры ЯМР <sup>1</sup>Н записаны на спектрометре Unity 400<sup>+</sup> (400 МГц) в CDCl<sub>3</sub>, внутренный стандарт ТМС. Масс-спектры зарегистрированы на приборе Kratos MS-30 с непосредственным вводом образца в источник ионов (энергия ионизации 70 эВ). Элементный анализ проведён в лаборатории физических методов исследования Института химии растительных веществ АН Республики Узбекистан. Температуры плавления определены на аппарате Mel-Temp 30. Контроль за ходом реакций и чистотой синтезированных соединений осуществлён методом ТСХ на пластинах Silufol UV-254 в системе бензол–ацетон, 10:1, проявитель – пары иода.

2-Гидроксиметилбензимидазол (2) был получен по методике [8].

**1-Арилсульфонил-2-гидроксиметилбензимидазолы 4а-h и 1-арилсульфонил-2-хлорметилбензимидазолы 5а-h** (общая методика). К раствору 10 ммоль арилсульфохлорида **3а-h** в 20 мл ацетона добавляют по каплям раствор 1.48 г (10 ммоль) соединения **2** и 1.01 г (10 ммоль) Еt<sub>3</sub>N в 30 мл ацетона. Реакционную смесь перемешивают при комнатной температуре в течение 4 ч, затем ацетон отгоняют, к остатку добавляют 50 мл H<sub>2</sub>O, отфильтровывают, промывают водой, сушат, смесь хроматографируют на колонке с  $Al_2O_3$ , элюент – бензол. Полученные соединения **4**, **5 а-h** очищают перекристаллизацией из соответствующего растворителя (табл. 1).

Соединение 4a. Масс-спектр, m/z ( $I_{\text{отн}}$ , %): 288 [M]<sup>+</sup> (36), 271 [M–OH]<sup>+</sup> (57), 132 [M–OH–C<sub>6</sub>H<sub>5</sub>SO<sub>2</sub>]<sup>+</sup> (100), 116 [M–C<sub>7</sub>H<sub>8</sub>O<sub>3</sub>S]<sup>+</sup> (64).

Соединение 5а. Масс-спектр, m/z ( $I_{\text{отн}}$ , %): 306 [M]<sup>+</sup> (44), 271 [M–Cl]<sup>+</sup> (59), 132 [M–Cl–C<sub>6</sub>H<sub>5</sub>SO<sub>2</sub>]<sup>+</sup> (100), 116 [M–C<sub>7</sub>H<sub>8</sub>ClO<sub>3</sub>S]<sup>+</sup> (59).

Рентгеноструктурное исследование соединения 5b. Кристаллы 1-(4-метилбензолсульфонил)-2-хлорметилбензимидазола (5b),  $C_{15}H_{13}ClN_2O_2S$ , *M* 320.78, выращены медленным испарением из EtOH при комнатной температуре. Параметры элементарной ячейки кристаллов определены и уточнены на дифрактометре CCD Xcalibur (Oxford Diffraction) с использованием CuKα-излучения. Кристаллографические данные: сингония моноклинная, пространственная группа *Cc*, *a* 12.561(3), *b* 15.434(3), *c* 8.3813(17) Å; β 113.51(3)°; *V* 1490.0(5) Å<sup>3</sup>; *Z* 4; *d*<sub>выч</sub> 1.430 г/см<sup>3</sup>; µ 3.630, область сканирования 4.79  $\leq \theta \leq$  75.8°, размеры кристалла 0.32  $\times$  0.20  $\times$  0.18 мм. Трёхмерный набор (1796 независимых отражений) получен на том же дифрактометре. Поправка на поглощение вводилась методом Multi-scan.

Структура расшифрована прямым методом в рамках комплекса программ SHELXS-97 [11]. Расчёты по уточнению структур выполнены по программе SHELXL-97. Все неводородные атомы уточнены МНК (по  $F^2$ ) в полноматричном анизотропном приближении до  $R_1$  0.0548,  $wR_2$  0.1509 (S 1.047). Положения атомов водорода установлены геометрически и уточнены с фиксированными параметрами

изотропного смещения  $U_{iso} = nU_{eq}$ , где n = 1.2 для метиленовых групп и ароматического кольца, а  $U_{eq}$  – эквивалентный изотропный параметр смещения соответствующих атомов углерода. Полная кристаллографическая информация по соединению **5b** депонирована в Кембриджском банке структурных данных (депонент CCDC 830069).

#### СПИСОК ЛИТЕРАТУРЫ

- К. Б. Абдиреймов, Н. С. Мухамедов, М. Ж. Айымбетов, Х. М. Шахидоятов, XГС, 488 (2012). [Chem. Heterocycl. Compd., 48, 458 (2012).]
- H. M. Guardiola-Diaz, L. A. Foster, D. Mushrush, D. N. Vaz, *Biochem. Pharmacol.*, 61, 1463 (2001).
- J. Kočí, V. Klimešová, K. Waisser, J. Kaustová, H.-M. Dahse, U. Möllmann, *Bioorg. Med. Chem. Lett.*, 12, 3275 (2002).
- 4. O. Geban, H. Ertepinar, S. Oezden, *Pharmazie*, 51, 34 (1996).
- 5. V. Klimesova, J. Koi, K. Waisser, J. Kaustova, Farmaco, 57, 259 (2002).
- 6. А. А. Умаров, Бензимидазолы, их регуляторные свойства и функции, ФАН Узбекской ССР, Ташкент, 1990, с. 132.
- 7. А. А. Умаров, Н. П. Лой, Ч. Ш. Кадыров, А. Т. Аюпова, Агрохимия, 123 (1973).
- А. Ф. Пожарский, В. А. Анисимова, Е. Б. Цупак, Практические работы по химии гетероциклов, Изд-во. Рост. ун-та, Ростов н/Д, 1988, с. 80.
- 9. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, S1 (1987).
- K. B. Abdireymov, N. S. Mukhamedov, R. Ya. Okmanov, M. J. Ayimbetov, Kh. M. Shakhidoyatov, *Acta Crystallogr.*, *Sect. E: Struct. Rep. Online*, E67, 0709 (2011).
- 11. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., A64, 112 (2008).

<sup>1</sup> Институт химии растительных веществ, им. акад. С. Ю. Юнусова АН Республики Узбекистан, пр. Мирзо Улугбека, 77, Ташкент 100170, Узбекистан e-mail: nasirxon@rambler.ru

Поступило 20.06.2011