Е. Б. Горбунов^{1*}, Р. К. Новикова¹, П. В. Плеханов¹, П. А. Слепухин¹, Г. Л. Русинов¹, В. Л. Русинов¹, В. Н. Чарушин¹, О. Н. Чупахин¹

2-АЗИДО-5-НИТРОПИРИМИДИН: СИНТЕЗ, МОЛЕКУЛЯРНАЯ СТРУКТУРА И РЕАКЦИИ С N-, О- И S-НУКЛЕОФИЛАМИ

Синтезирован 2-азидо-5-нитропиримидин, исследована его азидо-тетразольная таутомерия в различных растворителях и в кристаллическом состоянии. Установлено, что при взаимодействии с N-нуклеофилами происходит атака по C-2 углеродному атому, О- и S-нуклеофилы атакуют положение C-4 пиримидинового цикла, причём в аддуктах происходит замыкание тетразольного цикла.

Ключевые слова: 2-азидо-5-нитропиримидин, 6-нитротетразоло[1,5-*a*]пиримидин, азидо-тетразольная таутомерия, ковалентные сольваты, нуклеофильное присоединение.

Прямая функционализация С–Н-связей в ароматических и азаароматических соединениях при взаимодействии с нуклеофильными агентами (реакции $A_{\rm N}$ и $S_{\rm N}^{\rm H}$) является перспективным методом модификации структур этих соединений. Известно, что нитроазины в качестве объектов нуклеофильного присоединения обладают высокой реакционной способностью, также исследованы реакции 6-нитропиразоло- и 6-нитро-1,2,4-триазоло[1,5-*a*]пиримидинов с широким рядом нуклеофильных агентов. Показано, что с увеличением числа атомов азота в азольном фрагменте молекулы возрастает активность нитроазиновых субстратов в реакциях $A_{\rm N}$, а также стабильность образующихся аддуктов, что позволяет использовать их для получения различных труднодоступных производных этого ряда [1, 2].

Нами использован описанный метод [3] для получения нового представителя ряда азолопиримидинов – 6-нитротетразоло[1,5-*a*]пиримидина (5), который интересен в качестве объекта для изучения азидо-тетразольного равновесия [4, 5] и его влияния на реакционную способность нитропиримидинового цикла по отношению к О-, S- и N-нуклеофилам.

Установлено, что взаимодействие аминотетразола (1) с натриевой солью нитромалонового диальдегида (2) в водном растворе HCl приводит к образованию нестабильного азометина **3**, который претерпевает гетероциклизацию в 7-гидрокси-6-нитро-4,7-дигидротетразоло[1,5-*a*]пиримидин (4).

Рис. 1. Молекулярная структура соеодинения **4** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

В ИК спектре полученного соединения присутствуют полосы поглощения в области 3400, 1575 и 1320 см⁻¹, отвечающие колебаниям групп NH и NO₂, что соответствует структуре **4**. Строение соединения **4** однозначно подтверждено результатами рентгеноструктурного анализа (рис. 1).

Кристаллы соединения **4** являются хиральными и относятся к пространственной группе симметрии $P2_12_12_1$ орторомбической сингонии. Несмотря на то, что атом C(4) является тетраэдральным, что обычно вызывает сильные искажения в гетероциклической системе, дигидропиримидиновый цикл уплощён (Δ_{max} 0.133 Å для атома C(4) по отношению к плоскости пиримидинового фрагмента). Кристаллическая упаковка соединения определяется наличием системы водородных связей и укороченных полярных контактов, формирующих сложную пространственную структуру.

При нагревании соединения **4** в кипящем толуоле происходит элиминирование молекулы воды и образование 2-азидо-5-нитропиримидина (**6**), структура которого была подтверждена данными PCA (рис. 2). В ИК спектре полученного продукта присутствует полоса поглощения нитрогруппы при 1330 см⁻¹ и интенсивная полоса поглощения при 2136 см⁻¹, соответствующая валентным колебаниям азидной группы [6].

Кристаллы соединения 6 соответствуют центросимметричной пространственной группе симметрии $P2_1/n$ моноклинной сингонии. Длины связей и валентные углы соединения 6 близки к стандартным, однако наблюдается существенное искажение валентного угла между атомами азота азидогруппы (171.7(1)° против 180° в HN₃). Данное искажение, по-видимому, обусловлено межмолекулярными взаимодействиями азидогруппы с другими атомами кристаллической упаковки.

Молекулярная упаковка соединения не слоевая, а образует развитую трёхмерную структуру. Укороченные π - π -контакты ароматических систем отсутствуют. Особенностью упаковки является наличие сильно укороченного контакта между атомом H(2) связи C(2)–H(2) и атомами кислорода нитрогруппы: H(2)…O(1) (-0.5 - x, 0.5 + y, 0.5 - z) d_1 2.499 Å, H(2)…O(1) (0.5 + x, 1.5 - y, 0.5 + z) d_2 2.518 Å (соответственно на 0.221 и 0.202 Å меньше суммы радиусов Ван-дер-Ваальса). Помимо этого, атомы кислорода нитрогруппы Oбразуют укороченный полярный контакт с концевым атомом азота азидогруппы N(6)…O(1) (-x, 1 - y, -z) d_3 3.061 Å, N(6)…O(1) (1 + x, y, z) d_4 3.014 Å (соответственно на 0.009 и 0.056 Å меньше суммы радиусов Ван-дер-Ваальса).

Рис. 2. Молекулярная структура соединения **6** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

Соединение **6** – типичный азид, что подтверждается химическими реакциями, характерными для азидной группы [7]. Так, восстановление азидогруппы под действием сульфида натрия легко протекает в водной среде с образованием 2-амино-5-нитропиримидина (7). Также гладко проходит циклоприсоединение диметилового эфира ацетилендикарбоновой кислоты по азидной группе, давая 2-(4,5-дикарбометокси-1,2,3-триазол-1-ил)-5-нитропиримидин (**8**). Кроме того, ранее были описаны реакции азида **6** с [60]фуллереном, приводящие к образованию различных типов моноаддуктов, различающихся строением фуллеренового каркаса и внесферических циклов [8, 9].

Изучение спектров ЯМР ¹Н показало, что соединение 6 в трифторуксусной кислоте существует в азидной форме, присутствие циклической формы – тетразолопиримидина 5 – зафиксировано не было. В апротонных растворителях (CDCl₃ и CD₃CN) также обнаружена лишь открытоцепная азидная форма 6. При записи спектров соединения 6 в ДМСО-d₆, содержащем 0.6% воды, было зарегистрировано образование продукта присоединения воды – соединения 4. Различные алифатические спирты также присоединяются к азиду 6, образуя соответствующие аддукты тетразолопиримидина 9, что было обнаружено нами при записи спектров ЯМР в смесях ДМСО-d₆ с соответствующими спиртами (табл. 1, 2). Процесс присоединения спиртов к азиду 6 является равновесным, положение равновесия зависит от природы спирта. Попытки препаративного выделения ковалентных сольватов 9 не имели успеха. Так, при кипячении азида 6 в метаноле быстро образуется аддукт 9 (R = Me), но после отгонки растворителя регенерируется исходное соединение 6.

Таблица 1

Спектры ЯМР ¹Н 2-азидо-5-нитропиримидина (6) и аддуктов воды и спиртов 4, 9 в различных растворителях

Растворитель	Сигнал азида 6 , δ, м. д. (с, H-4,6)	Ковалентные сольваты 4, 9			
		Химические сдвиги, δ, м. д. (<i>J</i> , Гц)	Содержание, %		
CDCl ₃	9.34	_	_		
CD ₃ CN	9.32	_	_		
CD ₃ OD	9.35	8.49 (1H, д, <i>J</i> = 0.5, H-5); 7.06 (1H, д, <i>J</i> = 0.5, 7-CH)	98.5		
ДМСО-d ₆ H ₂ О	9.47	12.50 (1H, уш. с, NH); 8.60 (1H, д, J = 0.6, H-5); 8.10 (1H, уш. с, OH); 7.22 (1H, д, J = 0.6, 7-CH)	56		
ДМСО-d ₆ —EtOH	9.48	8.68 (1H, μ , $J = 0.5$, H-5); 7.25 (1H, μ , J = 0.5, 7-CH); 3.98–3.84 (2H, M, OC <u>H</u> ₂ CH ₂); 1.13 (3H, T, $J = 7.1$, OCH ₂ C <u>H₃</u>)	98		
ДМСО-d ₆ —2-РгОН	9.49	8.66 (1H, μ , $J = 0.6$, H-5); 7.29 (1H, μ , $J = 0.6$, 7-CH); 3.78 (1H, cent, $J = 6.1$, CHMe ₂) 1.23 (3H, μ , $J = 6.1$, CH ₃); 1.10 (3H, μ , $J = 6.2$, CH ₃)	96		
ДМСО-d ₆ - <i>t</i> -BuOH	9.48	8.63 (1H, д, <i>J</i> = 0.5, H-5); 7.46 (1H, д, <i>J</i> = 0.5, 7-CH); 1.34 (9H, с, C(CH ₃) ₃)	30		
CF ₃ COOD	9.13	_	—		

Иначе протекает взаимодействие 2-азидо-5-нитропиримидина (6) с *N*-нуклеофилами. Аммиак, первичные и вторичные алифатические амины легко замещают азидную группу, давая соответствующие 2-замещённые 5-нитропиримидины 7, 10, 11а,b. В тех же условиях анилин реагирует с азидом 6, вызывая деструкцию пиримидинового цикла, что приводит к основанию Шиффа 12.

Таблица 2

О-Нуклеофил	Химические сдвиги, б, м. д. (Ј, Гц)					
(растворитель)	C-3a	C-5	C-6	C-7	R	
ОН (ДМСО-d ₆)	148.2 (д. д., ${}^{3}J_{C3a,H5} = 9.0,$ ${}^{3}J_{C3a,H7} = 2.3)$	136.2 (д. д., ${}^{1}J_{C5,H5} = 186.0,$ ${}^{3}J_{C5,H7} = 1.9$)	125.5 (д. д., ${}^{2}J_{C6,H7} = 6.0,$ ${}^{2}J_{C6,H5} = 1.4)$	74.2 (π . π , ¹ $J_{C7,H7} = 174.5$, ³ $J_{C7,H5} = 4.9$)	_	
OCD ₃ (CD ₃ OD)	149.7 (д. д, ${}^{3}J_{C3a,H5} = 8.9,$ ${}^{3}J_{C3a,H7} = 2.5$)	137.0 (д. д, ${}^{1}J_{C5,H5} = 185.1,$ ${}^{3}J_{C5,H7} = 2.0)$	125.3 (д, ${}^{2}J_{C6,H7} = 6.3$)	83.3 (д. д, ${}^{1}J_{C7,H7} = 174.6,$ ${}^{3}J_{C7,H5} = 4.9$)	58.4 (септ. д, ${}^{1}J_{C7',D7'} = 21.9,$ ${}^{3}J_{C7',H7} = 4.8,$ OCD ₃)	
OEt (ДМСО-d ₆)	148.2 (π . π , ³ $J_{C3a,H5} = 9.0$, ³ $J_{C3a,H7} = 2.4$)	137.1 (π . π , ¹ $J_{C5,H5} = 186.6$, ³ $J_{C5,H7} = 1.8$)	123.5 (π . π , ² $J_{C6,H7} = 6.3$, ² $J_{C6,H5} = 1.0$)	80.3 (\square , \square , Π , Π , ¹ $J_{C7,H7} = 174.8$, ³ $J_{C7,H5} = 4.6$, ³ $J_{C7,OCH2} = 3.6$)	66.5 (T. J. K, ${}^{1}J_{T} = 144.0,$ ${}^{3}J_{\pi} = {}^{2}J_{\kappa} = 4.6,$ OCH ₂); 14.7 (K. T, ${}^{1}J_{\kappa} = 126.6,$ ${}^{2}J_{T} = 2.8,$ CH ₃)	
O- <i>i</i> -Pr (ДМСО-d ₆)	148.2 (π , π , ³ $J_{C3a,H5} = 9.0$, ³ $J_{C3a,H7} = 2.6$)	136.9 (π . π , ¹ $J_{C5,H5} = 186.4$, ³ $J_{C5,H7} = 2.0$)	124.0 (π , ² $J_{C6,H7} = 6.7$)	79.1 ($\square, \square, \square$	73.5 (π . π . κ , ${}^{1}J_{\pi} = 143.5$, ${}^{3}J_{\pi} = {}^{3}J_{\kappa} = 4.4$, OCH); 22.6 (κ . κ . π , ${}^{1}J_{\kappa} = 126.0$, ${}^{3}J_{\kappa} = 4.8$, ${}^{2}J_{\pi} = 1.7$, CH ₃); 21.5 (κ . κ . π , ${}^{1}J_{\kappa} = 125.7$, ${}^{3}J_{\kappa} = 4.6$, ${}^{2}J_{\pi} = 1.1$, CH ₃)	
О- <i>t</i> -Bu (ДМСО-d ₆)	148.5	136.4	124.9	78.0	75.4 (OC); 26.4 (CH ₃)	

Спектры ЯМР ¹³С О-аддуктов 6-нитротетразолопиримидинов 4, 9

По данным рентгеноструктурного анализа, кристаллы соединений 10 и 11b принадлежат центросимметричным пространственным группам P1 триклинной сингонии и C2/c моноклинной сингонии соответственно (рис. 3).

Молекулярная упаковка соединения **10** формируется за счёт слоёв, образованных парами молекул, связанными укороченными контактами: N(2)…H(3A) d 2.607 Å (–x, 1 – y, –z) (на 0.143 Å меньше суммы радиусов Ван-дер-Ваальса). Пары формируются за счёт межмолекулярных водородных связей N(3)–H(3)…N(1) d 2.217 Å (N(3)–H(3) d 0.84(2) Å, N(3)…N(1) (1 - x, -y, -z) d 3.047 Å, угол N(3)–H(3)–N(1) 175.6°). Также следует отметить небольшое перекрывание π -гетеросистем C(2)…C(3) d 3.372 Å (1 - x, 1 - y, -z) (на 0.028 Å меньше суммы радиусов Ван-дер-Ваальса).

Молекулярная упаковка соединения **11b** также слоистая, слои ориентированы вдоль плоскости (1 0 0). Данная упаковка определяется наличием укороченного контакта между атомами N и H соседних пиримидиновых фрагментов H(2A)…N(1) (x, y-1, z) d 2.689 Å (на 0.061 Å меньше суммы радиусов Ван-дер-Ваальса). Связь между слоями реализуется за счёт укороченного контакта между атомом кислорода O(1) нитрогруппы и атомом водорода H(8A) морфолинового фрагмента H(8A)…O(1) (1.5 - x, 0.5 - y, 1 - z) d 2.670 Å (на 0.050 Å меньше суммы радиусов Ван-дер-Ваальса).

Рис. 3. Молекулярные структуры соединений 10 (а) и 11b (b) в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

Взаимодействие 2-азидо-5-нитропиримидина (6) с S-нуклеофилами (ароматические и алифатические тиолы) протекает гладко и приводит к образованию с хорошими выходами устойчивых продуктов присоединения по положению 7 гетероциклической системы **13а–с**, существующих исключительно в форме тетразолопиримидинов. При попытке получения аддукта с сульфитом натрия, как и в случае с сульфидом, был выделен продукт восстановления азидной группы **7**.

Согласно данным рентгеноструктурного анализа (рис. 4), кристаллические структуры соединений **13а**, с принадлежат центросимметричным пространственным группам *P*1 триклинной сингонии и $P2_1/n$ моноклинной сингонии соответственно. Геометрические параметры молекул соединений **13а**, с близки к стандартным.

Молекулярная упаковка соединений **13а,с** слоистая. Слои в кристалле соединения **13а** сформированы парами молекул, связанными межмолекулярными водородными связями димерного типа между атомами азота азола N(4) и азина N(5), и ориентированы вдоль кристаллографической плоскости (0 1 0). Для кристаллической упаковки соединения **13с** также характерно наличие формирующих слои пар молекул, объединённых межмолекулярной водородной связью N(5)–H(5C)…N(4) и укороченными контактами.

Таким образом, для 2-азидо-5-нитропиримидина установлено, что, благодаря наличию в цикле сильного электроотрицательного заместителя – нитрогруппы, равновесие между тетразольным и азидным таутомерами практически полностью смещено в сторону азида. Тем не менее потенциальное наличие тетразолопиримидинового таутомера существенно сказывается на реакционной способности: наряду с типичными свойствами азидов (циклоприсое-

Puc 4. Молекулярные структуры соединений **13a** (*a*) и **13c** (*b*) в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

динение, восстановление и замещение азидогруппы), 2-азидо-5-нитропиримидин вступает в реакции, характерные для 6-нитроазоло[1,5-*a*]пиримидинов, – легко образует σ^H-аддукты с О- и S-нуклеофилами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на ИК фурье-спектрометре Perkin-Elmer Spectrum One в виде эмульсий в вазелиновом масле. Спектры ЯМР ¹Н и ¹³С зарегистрированы на спектрометре Bruker DRX-400 (400 и 100 МГц соответственно), внутренний стандарт ТМС. Элементный анализ выполнен на анализаторе Perkin-Elmer PE 2400 II CHNS/O. Температуры плавления определены в открытых капиллярах на аппарате для определения точки плавления Stuart SMP3. В работе использовали моногидрат 5-аминотетразола (1) фирмы Merck, моногидрат натриевой соли нитромалонового диальдегида (2) синтезирован по описанному методу [10].

7-Гидрокси-6-нитро-4,7-дигидротетразоло[**1**,**5**-*а*]пиримидин (**4**). К раствору 10.9 г (0.1 моль) моногидрата 5-аминотетразола (**1**) в 70 мл 2 н. НСІ добавляют раствор 13.0 г (0.1 моль) моногидрата натриевой соли нитромалонового диальдегида (**2**) в 100 мл H₂O. Реакционную смесь перемешивают в течение 30 мин. Выпавший осадок фильтруют, затем промывают H₂O и сушат на воздухе. Выход 11.7 г (63%), жёлтый порошок, т. пл. 125–130 °C (с разл.). ИК спектр, v, см⁻¹: 3400 (O–H), 3170 (C-H), 3140 (C–H), 1650 (C=C), 1575 (C–NO₂), 1320 (C–NO₂). Спектр ЯМР ¹Н (ДМСО-d₆ + 0.6% H₂O), δ , м. д.: 12.50 (1H, уш. с, NH); 8.60 (1H, уш. с, H-5); 8.10 (1H, уш. с, OH); 7.22 (1H, с, 7-CH). Найдено, %: C 26.15; H 2.33; N 45.45. C₄H₄N₆O₃. Вычислено, %: C 26.09; H 2.19; N 45.65.

2-Азидо-5-нитропиримидин (6). Раствор 7.70 г (42 ммоль) соединения **4** в 50 мл PhMe кипятят с насадкой Дина–Старка в течение 30 мин. Растворитель отгоняют при пониженном давлении, полученный маслообразный продукт кристаллизуется при охлаждении и может использоваться в дальнейших синтезах без очистки. Выход 6.25 г (90%), светло-жёлтые кристаллы, т. пл. 56–58 °C. Аналитически чистый азид **6** получен возгонкой технического продукта при 130–150 °C (5 мм рт. ст.). ИК спектр, v, см⁻¹: 3030 (C–H), 2136 (–N=N=N), 1586 (C=C), 1572 (С–NO₂), 1330 (С–NO₂). Спектр ЯМР ¹H (CD₃CN), δ , м. д.: 9.32 (2H, с, H-4,6). Найдено, %: С 28.84; H 1.25; N 50.82. С₄H₂N₆O₂. Вычислено, %: С 28.93; H 1.21; N 50.60.

2-Амино-5-нитропиримидин (7). А. 1.000 г (6.0 ммоль) азида **6** добавляют одной порцией к раствору 6.000 г (77.0 ммоль) Na₂S в 50 мл воды. Реакционную смесь пере-

мешивают в течение 2 ч. Выпавший осадок отфильтровывают, затем перекристаллизовывают из H₂O. Выход 0.352 г (42%), бесцветные кристаллы, т. пл. 234–235 °C (т. пл. 236 °C [11]).

Б. 0.083 г (0.5 ммоль) азида 6 растворяют в 3 мл MeCN, через раствор пропускают ток аммиака в течение 5 мин. Реакционную смесь оставляют на ночь при комнатной температуре. Выпавший осадок отфильтровывают, затем перекристаллизовывают из H₂O. Выход 0.043 г (61%), бесцветные кристаллы, т. пл. 233–235 °C. Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д.: 9.02 (2H, с, NH₂); 8.21 (2H, с, H-4,6). Найдено, %: С 34.22; Н 3.01; N 40.14. C₄H₄N₄O₂. Вычислено, %: С 34.29; Н 2.88; N 39.99.

Диметиловый эфир 1-(5-нитропиримидин-2-ил)-1*H*-[1,2,3]триазол-4,5-дикарбоновой кислоты (8). Раствор 1.66 г (10 ммоль) азида 6 и 1.23 мл (10 ммоль) диметилового эфира ацетилендикарбоновой кислоты в 10 мл PhMe кипятят в колбе с обратным холодильником в течение 7 ч. Реакционную смесь охлаждают, выпавший осадок отфильтровывают, перекристаллизовывают из PhMe. Выход 2.10 г (68%), светло-жёлтые кристаллы, т. пл. 178–180 °С. Спектр ЯМР ¹Н (ДМСО-d₆), б, м. д.: 9.82 (2H, с, H-4,6); 4.02 (3H, с, СООСН₃); 3.97 (3H, с, СООСН₃). Найдено, %: С 38.96; H 2.68; N 27.01. C₁₀H₈N₆O₆. Вычислено, %: С 38.97; H 2.62; N 27.27.

2-Бензиламино-5-нитропиримидин (10). К раствору 83 мг (0.5 ммоль) азида 6 в 3 мл MeCN добавляют 120 мкл (1.1 ммоль) бензиламина. Реакционную смесь оставляют при комнатной температуре на 30 мин. Выпавший осадок отфильтровывают, перекристаллизовывают из EtOH. Выход 76 мг (66%), бесцветные кристаллы, т. пл. 164–166 °C (т. пл. 165–167 °C [3]). Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д.: 11.21 (1H, уш. с, NH); 9.09 (2H, с, H-4,6); 7.46–7.23 (5H, м, H Ph); 4.90 (2H, с, C<u>H</u>₂Ph). Найдено, %: С 57.42; H 4.36; N 24.30. С₁₁H₁₀N₄O₂. Вычислено, %: С 57.39; H 4.38; N 24.34.

5-Нитро-2-пиперидинопиримидин (11а). К раствору 83 мг (0.5 ммоль) азида **6** в 3 мл 2-РгОН добавляют 100 мкл (1.0 ммоль) пиперидина, реакционную смесь кипятят в течение 5 мин, затем охлаждают, выпавший осадок отфильтровывают. Выход 72 мг (70%), светло-жёлтые кристаллы, т. пл. 145–148 °C (т. пл. 147–148 °C [12]). Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д. (*J*, Гц): 9.09 (2H, с, H-4,6); 3.92 (4H, т, J = 5.6, 2', 6'-CH₂); 1.71–1.55 (6H, м, 3',4',5'-CH₂). Найдено, %: С 51.82; Н 5.87; N 27.05. С₉H₁₂N₄O₂. Вычислено, %: С 51.92; Н 5.81; N 26.91.

2-Морфолино-5-нитропиримидин (11b). К раствору 50 мг (0.3 ммоль) азида **6** в 3 мл ЕtOH добавляют 50 мкл (0.6 ммоль) морфолина. Реакционную смесь кипятят в течение 5 мин, затем охлаждают, выпавший осадок отфильтровывают и перекристаллизовывают из EtOH. Выход 35 мг (55%), бесцветный порошок, т. пл. 141–142 °C (т. пл. 142 °C [3]). Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д. (*J*, Гц): 9.13 (2H, с, H-4,6); 3.92 (4H, т, J = 4.4, CH₂OCH₂); 3.69 (4H, т, J = 4.8, CH₂NCH₂). Найдено, %: C 45.83; H 5.03; N 26.70. C₈H₁₀N₄O₃. Вычислено, %: C 45.71; H 4.80; N 26.65.

2-Нитро-1,3-бис(фенилимино)пропан (12). К раствору 83 мг (0.5 ммоль) азида **6** в 3 мл MeCN добавляют 100 мкл (1.1 ммоль) анилина. Реакционную смесь оставляют на ночь при комнатной температуре. Затем раствор упаривают досуха, экстрагируют CH₂Cl₂, экстракт упаривают, остаток перекристаллизовывают из MeOH. Выход 70 мг (53%), жёлтые кристаллы, т. пл. 90–92 °C (т. пл. 90–91 °C [3]). Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д.: 13.48 (1H, уш. с, 2-CH); 9.17 (2H, с, 1,3-CH); 7.54–7.45 (8H, м, H Ph); 7.31–7.27 (2H, м, H Ph). Найдено, %: С 67.27; Н 4.69; N 16.10. C₁₅H₁₃N₃O₂. Вычислено, %: С 67.41; H 4.90; N 15.72.

6-Нитро-7-фенилсульфанил-4,7-дигидротетразоло[1,5-*а***]пиримидин (13а). К раствору 166 мг (1 ммоль) азида 6 в 3 мл МеСN добавляют 103 мкл (1 ммоль) тиофенола, реакционную смесь кипятят в колбе с обратным холодильником в течение 1 ч. Затем раствор упаривают досуха, добавляют 2–3 мл PhMe, кристаллический остаток отфильтровывают и промывают небольшим количеством CHCl₃. Выход 227 мг (82%), светло-жёлтые кристаллы, т. пл. 122–123 °C. Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д.: 12.30 (1H, уш. с, NH); 8.36 (1H, с, H-5); 7.57 (1H, с, 7-CH); 7.34–7.31 (1H, м, H Ph); 7.28–7.24**

Параметр	Соединение						
Параметр	4	6	10	11b	13a	13c	
Растворитель для кристаллизации	РhMe-гексан, 1:1	H ₂ O	EtOH	EtOH	CHCl ₃	MeCN	
Брутто-формула	$C_4H_4N_6O_3$	$C_4H_2N_6O_2$	$C_{11}H_{10}N_4O_2$	$C_8H_{10}N_4O_3$	$C_{10}H_8N_6O_2S$	$C_{11}H_{10}N_6O_2S$	
Молекулярная масса	184.13	166.12	230.23	210.20	276.28	290.31	
Т, К	295(2)	112(2)	295(2)	295(2)	295(2)	295(2)	
Кристаллическая система	Орторомбическая	Моноклинная	Триклинная	Моноклинная	Триклинная	Моноклинна	
Пространственная группа	$P2_{1}2_{1}2_{1}$	$P2_1/n$	<i>P</i> 1	C2/c	<i>P</i> 1	$P2_1/n$	
a, Å	6.6135(9)	9.8556(14)	5.6633(5)	13.184	6.5258(13)	10.1108(10)	
b, Å	8.0429(11)	6.2595(9)	9.4701(11)	6.0940(10)	7.2397(9)	11.2310(8)	
<i>c</i> , Å	13.1355(18)	11.5071(18)	10.4272(10)	22.709(4)	13.0414(10)	11.2418(14)	
α, град.	90	90	80.040(9)	90	101.344(9)	90	
β, град.	90	113.872(14)	87.993(7)	91.14(2)	102.151(13)	92.507(9)	
ү, град.	90	90	85.029(8)	90	94.116(13)	90	
V, \dot{A}^3	698.70(17)	649.16(17)	548.6(1)	1824.2(4)	586.44(14)	1275.3(2)	
Ζ	4	4	2	8	2	4	
$d_{\rm BHY}$, Γ/\rm{cm}^3	1.750	1.700	1.394	1.531	1.565	1.512	
μ, мм ⁻¹	0.151	0.142	0.101	0.120	0.285	0.266	
Интервал сканирования по θ, град.	3.10-26.41	3.52-33.78	3.20-26.32	3.09-26.36	2.89-26.43	2.71-26.38	
Полнота массива отражений, %	95.2 (θ 26.0°)	98.7 (θ 26.0°)	95.7	96.4	99.4	98.9	
Число измеренных отражений	2435	5457	5114	4501	5093	5014	
Число независимых отражений (R _{int})	1277 (0.0213)	2350 (0.0147)	2123 (0.0375)	1797 (0.0308)	2403 (0.0169)	2577 (0.0216	
Количество отражений с $I > 2\sigma(I)$	785	1683	1061	952	1674	1486	
		Конечные значения п	параметров уточнен	ия			
Добротность, S	1.014	1.000	1.000	1.000	1.000	1.000	
R_1 по отражениям с $I > 2\sigma(I)$	0.0426	0.0327	0.0432	0.0333	0.0392	0.0350	
wR_2 по отражениям с $I > 2\sigma(I)$	0.1039	0.0861	0.0732	0.0576	0.1083	0.0726	
<i>R</i> ₁ по всем отражениям	0.0812	0.0492	0.1103	0.0875	0.0582	0.0674	
<i>wR</i> ₂ по всем отражениям	0.1120	0.0908	0.0818	0.0633	0.1150	0.0756	
Остаточная электронная плотность, $e \cdot Å^{-3}$, max/min	0.321 / -0.164	0.315 / -0.267	0.227 / -0.163	0.097 / -0.142	0.359 / -0.263	0.209 / -0.24	

Основные параметры рентгеноструктурного эксперимента и кристаллографические характеристики соединений 4, 6, 10, 11b, 13a,с

Таблица З

(2H, м, H Ph); 6.98–6.96 (2H, м, H Ph). Найдено, %: С 43.63; H 2.98; N 30.56. С₁₀H₈N₆O₂S. Вычислено, %: С 43.47; H 2.92; N 30.42.

7-Изопропилсульфанил-6-нитро-4,7-дигидротетразоло[1,5-*а*]пиримидин (13b). К раствору 166 мг (1 ммоль) азида 6 в 3 мл МеСN добавляют 190 мкл (2 ммоль) изопропилмеркаптана, реакционную смесь кипятят в колбе с обратным холодильником в течение 1 ч. Затем раствор упаривают досуха, остаток перекристаллизовывают из PhMe. Выход 121 мг (50%), бесцветные кристаллы, т. пл. 171–172 °C. Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д.: 12.50 (1H, уш. с, NH); 8.55 (1H, с, H-5); 7.31 (1H, с, 7-CH); 1.29– 1.25 (7H, м, CH(CH₃)₂). Найдено, %: С 34.86; Н 3.97; N 34.59. С₇Н₁₀N₆O₂S. Вычислено, %: С 34.71; Н 4.16; N 34.69.

7-Бензилсульфанил-6-нитро-4,7-дигидротетразоло[1,5-а]пиримидин (13с). К раствору 166 мг (1 ммоль) азида **6** в 3 мл МеСN добавляют 118 мкл (1 ммоль) бензилмеркаптана, полученную смесь кипятят в колбе с обратным холодильником в течение 1 ч. Затем реакционную смесь охлаждают, выпавший осадок отфильтровывают. Выход 232 мг (80%), жёлтые кристаллы, т. пл. 161–162 °C. Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д. (*J*, Гц): 12.20 (1H, уш. с, NH); 8.51 (1H, с, H-5); 7.28–7.23 (6H, м, 7-CH, H Ph); 3.95 (1H, д, *J* = 10.4) и 3.84 (1H, д, *J* = 10.4, CH₂). Найдено, %: С 45.65; Н 3.33; N 28.90. С₁₁H₁₀N₆O₂S. Вычислено, %: С 45.51; Н 3.47; N 28.95.

Рентгеноструктурное исследование соединений 4, 6, 10, 11b и 13a,с проведено на монокристальном автоматическом четырёхкружном дифрактометре Xcalibur 3 с CCDдетектором по стандартной процедуре (λ (Мо $K\alpha$) 0.71073 Å, графитовый монохроматор, ω -сканирование, шаг сканирования 1°). Поправка на поглощение не вводилась. Структуры расшифрованы прямым методом и уточнены МНК с помощью пакета программ SHELXTL [13] в анизотропном приближении для неводородных атомов. Некоторые атомы водорода локализованы по пикам пространственной электронной плотности и уточнены независимо. Позиции остальных атомов Н рассчитаны геометрически и включены в уточнение по модели "наездник" с зависимыми тепловыми параметрами. Основные параметры рентгеноструктурных экспериментов приведены в табл. 3. Полная кристаллографическая информация по соединениям 4, 6, 11b и 13a,с депонирована в Кембриджском банке структурных данных (депоненты ССDC 924425, ССDC 924426, ССDC 924423 и ССDC 924424 соответственно).

Работа выполнена при финансовой поддержке программ РАН (проекты 12-П-3-1030, 12-П-3-1014, 12-С-3-1023, 12-Т-3-1031), а также Совета по грантам президента РФ для поддержки ведущих научных школ (грант НШ-5505.2012.3).

СПИСОК ЛИТЕРАТУРЫ

- 1. В. Л. Русинов, О. Н. Чупахин, Нитроазины, Наука, Новосибирск, 1991, с. 281.
- 2. V. L. Rusinov, O. N. Chupakhin, H. C. van der Plas, Heterocycles, 40, 441 (1995).
- В. Л. Русинов, И. Я. Постовский, А. Ю. Петров, Е. О. Сидоров, Ю. А. Азев, XTC, 1554 (1981). [Chem. Heterocycl. Compd., 17, 1139 (1981).]
- 4. В. П. Криволапов, В. И. Маматюк, В. П. Мамаев, XГС, 1648 (1990). [Chem. Heterocycl. Compd., 26, 1369 (1990).]
- 5. I. Alkorta, F. Blanco, J. Elguero, R. M. Claramunt, Tetrahedron, 66, 2863 (2010).
- 6. Л. Беллами, Новые данные по ИК-спектрам сложных молекул, Мир, Москва, 1971, с. 70.
- Общая органическая химия, под ред. Д. Бартона, У. Д. Оллиса, Химия, Москва, 1981, т. 3, с. 313.
- I. P. Romanova, V. V. Kalinin, D. G. Yakhvarov, A. A. Nafikova, V. I. Kovalenko, P. V. Plekhanov, G. L. Rusinov, O. G. Sinyashin, *Mendeleev Commun.*, 12, 51 (2002).

- И. П. Романова, В. В. Калинин, А. А. Нафикова, Д. Г. Яхваров, В. В. Зверев, В. И. Коваленко, Г. Л. Русинов, П. В. Плеханов, В. Н. Чарушин, О. Н. Чупахин, О. Г. Синяшин, Изв. АН, Сер. хим., 163 (2003).
- 10. Синтезы органических препаратов, сб. 4, под ред. акад. Б. А. Казанского, Изд-во иностр. лит., Москва, 1953, с. 345.
- 11. G. P. Bean, P. J. Brignell, C. D. Johnson, A. R. Katritzky, B. J. Ridgewell, H. O. Tarhan, A. M. White, J. Chem. Soc. B, 1222 (1967).
- 12. M. P. V. Boarland, J. F. W. McOmie, J. Chem. Soc., 1218 (1951).
- 13. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., A64, 112 (2008).

¹ Институт органического синтеза им. И. Я. Постовского УрО РАН, ул. С. Ковалевской, 22 / Академическая, 20, Екатеринбург 620990, Россия e-mail: nitro@ios.uran.ru Поступило 2.11.2012