3. В. Войтенко, В. П. Самойленко, В. А. Ковтуненко, В. Ю. Гуркевич, А. К. Тылтин, М. В. Щербаков, О. В. Шишкин

ЦИКЛОПРИСОЕДИНЕНИЕ В КОНДЕНСИРОВАННЫХ ИЗОИНДОЛАХ

1. МЕТОД ПОЛУЧЕНИЯ ПРОИЗВОДНЫХ 2-АРИЛ-3-МЕТИЛ-4-ОКСО-3,4-ДИГИДРОХИНАЗОЛИНА

Исследована реакция 6-метил-5,6-дигидроизоиндоло [2,1-а] хиназолин-5-она с производными малеинимида в условиях термодинамического контроля. Методом РСА показано, что продуктами реакции являются 2{2-[(E)-1-R-2,5-диоксо-пирролидиниденметил]фенил}-3-метил-4-оксо- 3,4-дигидрохиназолины. Высказано предположение, что последние образуются в результате перегруппировки соответствующих аддуктов Дильса—Альдера, образованных по изоиндольной части молекулы.

Заметная локализация кратных связей в изоиндольном фрагменте характерная особенность 6-метил-5,6-дигидроизоиндоло [2,1-а]хиназолин-5-она (I) [1]. На основании анализа статических индексов реакционной способности сделан вывод, что соединение I наиболее близко к родоначальному изоиндолу по способности вступать как диен в реакцию Дильса—Альдера [2]. Данные расчетов методами ППП и CNDO/2 показывают, что циклоприсоединение должно идти по положениям 6а и 11 рассматриваемой системы [2]. Однако в результате взаимодействия соединения I с производными малеинимида (Па-ж) при нагревании или кипячении в различных растворителях (CHCl3, CH2Cl2, C₂H₅OH. *i*-C₃H₇OH, C₆H₅CH₃) нами были неожиданно получены 2-{2-[(E)-1-R-2,5диоксопирролидиниденметил (фенил)-3-метил-4-оксо-3,4-дигидрохиназолины (IIIа--ж). Наиболее высокие выходы последних были достигнуты при кипячении реагентов в изопропаноле в течение 1 ч (в случае имида IIд) или 2 ч (с остальными имидами) (см. табл. 1).

Строение соединений IIIа—ж установлено на основании результатов элементного анализа, спектральных данных, а в случае соединения IIIв — также с помощью РСА.

II, III a R = H, δ R = Ph, B R = CH₂Ph. r R = C₆H₄Me-p, π R = C₆H₄NO₂-p, e R = OC₆H₄Me-p, π R = 2-Npht

В ИК спектрах этих продуктов имеются полосы валентных колебаний групп С=О и скелетных колебаний ароматических связей С=С (табл. 1). УФ спектры соединений Ша-ж однотипны и не противоречат предполагаемому строению (табл. 1), так как в них имеется полоса поглощения, характерная для ароматических сопряженных хромофоров, но отсутствует изоиндольное длинноволновое поглощение. Предлагаемому строению соответствуют и сигналы в спектрах ПМР (табл. 2). Так, спектр соединения Шб, зарегистрированный на приборе с рабочей частотой 500 МГц, позволил идентифицировать все ароматические протоны. В нем, а также в спектрах соединений IIIа, в, снятых при 100 МГп, отчетливо виден сигнал олефинового протона (Нол), имеющий вид триплета с КССВ, равной таковой для дублета группы CH₂ (2,3...2,7 Гц). Интересным оказалось то, что в спектре ПМР соединения IIIж, снятом в ацетоне-D₆ (см. экспериментальную часть), проявляется диастереотопность протонов метиленовой группы, которые наблюдаются в виде двух дублетов с КССВ Ј = 22,0 и 2,7 Гц. Объяснение этому — некопланарность фрагментов фениленового кольца и двойной связи (см. обсуждение данных РСА для соединения IIIв), что, очевидно, имеет значение и в растворе в случае объемных заместителей. В CDCl3 картина расщепления обсуждаемых протонов упрощается: два дублета дублетов вырождаются в дублет. В спектре ЯМР ¹³С соединения Шб имеются сигналы всех 26 атомов углерода (см. экспериментальную часть). Подтверждается также наличие трех из них, связанных с кислородом, идентифицированы атомы экзоциклическлй двойной связи, а в сильном поле — метильной и метиленовой групп. Применение вычислительной программы, позволяющей разделить сигналы углеродных атомов группы CH2 и четвертичных атомов углерода от сигналов метильных и метиновых групп, позволило сделать отнесения в спектре соединения III6 с полной развязкой от протонов.

Рис. 1. Общий вид молекулы соединения Шв

Строение соединения IIIв доказано также данными рентгеноструктурного анализа (рис. 1, 2, табл. 3, 4, 5)*. В кристалле оно существует в виде сольвата

^{*} Нумерация молекулы на рис. 1 не совпадает с номенклатурной.

Соеди- нение	Брутто- формула	<u>Найлено. %</u> Вычислено, %			<i>Т</i> пп, °С	Rf	ИК спектр, ${\cal V}$, см $^{-1}$		УФ спектр		Выход, %
		С	н	N		,	C=0	C=C	λ _{max} , нм	lg E	
IIĮa	$C_{20}H_{15}N_{3}O_{3}$	<u>69,12</u> 69,56	<u>4.43</u> 4,38	$\frac{12.41}{12,17}$	225226	0,28	1770, 1715, 1650	16101550, 14801440	277	4,49	70
шб	C26H19N3O3	<u>74,01</u> 74,10	<u>4.60</u> 4,54	<u>9.75</u> 9,97	218219	0,44	1775, 1715, 1670	16201560, 15151460	286	4,46	74
IIIB	C ₂₇ H ₂₁ N ₃ O ₃	<u>74,55</u> 74,47	<u>4,91</u> 4,86	<u>9,54</u> 9,65	193194	0,47	1765, 1700, 1670	16101550, 15001450	285	4,47	72
IIIr	C ₂₇ H ₂₁ N ₃ O ₃	<u>74.32</u> 74,47	<u>4.93</u> 4,86	<u>9,70</u> 9,65	233234	0,46	1770, 1710, 1670	16151550, 15101450	287	4,55	82
шд	$C_{26}H_{18}N_4O_5$	<u>66,81</u> 66,95	<u>3.92</u> 3,89	<u>12.10</u> 12,01	177178	0,46	1760, 1710, 1670	16201570, 15301485	299	4,63	76
IIIe	C ₂₇ H ₂₁ N ₃ O ₄	<u>71,92</u> 71,83	<u>4.63</u> 4,69	<u>9,39</u> 9,31	224225	0,43	1765, 1705, 1670	16101540, 15051450	283	4,46	71
Шж	C ₃₀ H ₂₁ N ₃ O ₃	<u>76,30</u> 76,42	<u>4.57</u> 4,49	<u>8.80</u> 8,91	218219	0,43	1770, 1705, 1640	16101570, 14901440	285	4,52	81

Характеристика синтезированных соединений

Соеди- нение	Химические сдвиги, δ , м. д.							КССВ (<i>J</i> , Гц)		
	N—СН3 3Н, с	СН ₂ 2Н, д	Н _{ол} , 1Н, т	Н _{аром}				4, 11, 611,	31 5 11 6 11	31
				5-н 1н, д	6-,7-,8-,3'-,4'-,5'-,6'-H	R	другие протоны	у, нол, сп2	J, J-11, 0-11	<i>3, 0-</i> n <i>m</i> -n
IIĮa	3,28	3,70	7,32	8,26	7,467,97 (7H, м);		10,10 (1Н, ш. с, NН)	2,7	8,0	
шб	3,22	3,91	7,25	8,23	7,597,95 (7Н, м)	7,30 (2Н, д. д. д. о- Н); 7,47 (2Н, д. д. <i>m</i> -H); 7,39 (1Н, т. т, <i>p</i> -H)		2,3	8,0	8,5*
Шв	3,30	3,58	7,47	8,37	7,207,9	90 (12H, м)* ²	4,71 (2H, c, <u>CH</u> ₂ Ph)	2,5	7,5	•
IIIr	3,34	3,75	*3	8,36	7,447,83 (8H, м)	7,22 (4H, c)	2,36 (3Н, с, СН ₃ С _{аром})	2,5	7,5	·
Шд	3,36	3,81	*3	8,37	7,457,90 (10H, м)*4	8,32 (2Н, д, <i>о</i> -Н)		2,7	8,0	9,0
IIIe	3,30	3,88	*3	8,27	7,328,05 (8H, м)	6,97 (2Н, д, <i>о</i> -Н); 7,24 (2Н, д, <i>m</i> -Н)	3,80 (3H, c, OCH ₃)	2,5	8,0	8,7
Шж	3,37	3,90	*3	8,35	7,158,0	6 (15Н, м)*5		2,5	8,0	·

Спектры ЯМР ¹Н синтезированных соединений

³J о-H = 1,3 и ³J m-H, p-H = 7,4 Гц. В мультиплет входят также сигналы 5Наром в заместителе R. Сигнал перекрывается мультплетом 12 (Шг—е) или 15 (Шж) Наром. В мультиплет входят также сигналы Нол и 2m-H в R. в мультиплет входят также сигналы Нол и 2m-H в R.

с ацетоном состава 2 : 1. Хиназолоновый фрагмент плоский. Отклонения атомов от среднеквадратичной плоскости не превышают 0,02 Å. Сопряжение между π-системами бицикла и фениленового фрагмента в значительной степени нарушено вследствие поворота последнего вокруг связи С(1)-С(9) на -71,8(5)° (торсионный угол N(1)-C(1)-C(9)-C(10)), что обусловлено укороченными внутримолекулярными контактами Н(27в)-С(15) 2,82 Å (сумма ван-дер-ваальсовых радиусов 2,87 Å [3]). Это подтверждается также удлинением связи C(1)—C(9) до 1,494(5) Å по сравнению со средним значением 1,470 Å [4]. Описанные особенности строения исследованного соединения предполагают возможность выявления атропоизомерии в ряду производных III. Двойная связь C(15)=C(16) некопланарна фениленовому циклу (торсионный угол С(13)—С(14)—С(15)—С(16) равен -14,2(7)°), что, вероятно, вызвано укороченными внутримолекулярными контактами H(27B)—C(15) 2,82 Å, C(13)—C(19) 3,18 Å (сумма ван-дер-ваальсовых радиусов 3,42 Å), H₍₁₃₎—H₍₁₉₎ 2,24 Å (сумма ван-дер-ваальсовых радиусов Эти неблагоприятные взаимодействия приводят также к 2,32 Å). увеличению валентного угла С(14)-С(15)-С(16) до 129,8(4)°. Пятичленный цикл имеет уплощенную твист-конформацию. Атомы С(18) и С(19) отклоняются от плоскости атомов C(16), C(17), N(3) на -0,05 и 0,05 Å соответственно. Бензильная группа расположена практически перпендикулярно средней плоскости пятичленного цикла (торсионный угол С(17)-N₍₃₎--С₍₂₀₎--С₍₂₁₎ 83,9(5)°). Фенильное кольцо С₍₂₁₎...С₍₂₆₎ повернуто относительно связи N(3)—C(20) на 67,6(5)° (торсионный угол N(3)—C(20)— $C_{(21)} - C_{(26)}$.

В кристалле молекулы соединения IIIв образуют каналы, в которых находятся сольватные молекулы ацетона (рис. 2), разупорядоченные по двум равновероятным положениям, связанным между собой центром симметрии.

Рис. 2. Структура молекул соединения Шв в кристалле

673

Таблица З

Связь	<i>d</i> , Å	Связь	d, Å
N(1)-C(1)	1,291 (5)	C(9)-C(14)	1,395(5)
N(1)C(8)	1,397(5)	$C_{(10)}-C_{(11)}$	1,377(6)
$N_{(2)} - C_{(1)}$	1,382(5)	C(11)C(13)	1,373(6)
N(2)-C(2)	1,392(5)	$C_{(12)} - C_{(13)}$	1,380(6)
N(2)—C(27)	1,475(5)	C(13)-C(14)	1,403(5)
N(3)—C(18)	1,385(5)	C(14)-C(15)	1,454(5)
N(3)-C(17)	1,392(5)	C(15)-C(16)	1,334(5)
N(3)-C(20)	1,445(5)	C(16)—C(19)	1,482(6)
O(1)C(2)	1,219(5)	C(16)-C(17)	1,495(5)
O(2)-C(17)	1,211(5)	C(18)-C(19)	1,504(6)
$O_{(3)} - C_{(18)}$	1,211(5)	C(20)-C(21)	1,500(6)
$C_{(1)} - C_{(9)}$	1,494(5)	$C_{(21)} - C_{(22)}$	1,369(7)
$C_{(2)} - C_{(3)}$	1,458(6)	C(21)-C(26)	1,386(6)
$C_{(3)} - C_{(8)}$	1,381(6)	$C_{(22)} - C_{(23)}$	1,387(7)
$C_{(3)} - C_{(4)}$	1,383(6)	C(23)-C(24)	1,378(8)
$C_{(4)} - C_{(5)}$	1,365(7)	C(24)—C(25)	1,368(7)
C(5)—C(6)	1,392(8)	C(25)—C(26)	1,373(7)
C(6)-C(7)	1,363(7)	$O_{(1S)} - C_{(1S)}$	1,22(1)
C(7)—C(8)	1,406(6)	C(1S)-C(3S)	1,50(1)
C(9)-C(10)	1,393(5)	C(1S)-C(2S)	1,50(1)

Длины связей (d) в структуре Шв

Отсутствие укороченных межмолекулярных контактов между молекулами Шв и ацетона позволяет предположить, что в кристалле нет четко фиксированных положений сольватных молекул, а лишь существуют области их преимущественной локализации. Этим объясняются относительно высокие значения тепловых параметров для атомов молекулы ацетона.

Образование столь необычных продуктов в результате присоединения производных малеинимида к системе 6-метил-5,6-дигидроизоиндоло [2,1*а*]хиназолин-5-она может быть объяснено следующим образом. Мы предполагаем, что реакция начинается с циклоприсоединения по Дильсу—Альдеру с промежуточным образованием аддукта IV. Напряженность интермедиата IV приводит к его перегруппировке, происходящей с

Валентные углы (φ) в структуре Шв

Угол	arphi, град.	Угол	arphi, град.
-in			
$C_{(1)}$ — $N_{(1)}$ — $C_{(8)}$	117,1(4)	$C_{(12)} - C_{(13)} - C_{(14)}$	120,9(4)
$C_{(1)}$ $- N_{(2)}$ $- C_{(27)}$	120,9(4)	$C_{(9)}-C_{(14)}-C_{(13)}$	117,7(4)
$C_{(1)} - N_{(2)} - C_{(2)}$	121,6(3)	$C_{(9)}-C_{(14)}-C_{(15)}$	119,8(4)
$C_{(2)}$ —N(2)— $C_{(27)}$	117,4(4)	$C_{(13)} - C_{(14)} - C_{(15)}$	122,5(4)
$C_{(18)}$ —N(3)— $C_{(17)}$	112,6(3)	$C_{(16)} - C_{(15)} - C_{(14)}$	129,8(4)
$C_{(18)} - N_{(3)} - C_{(20)}$	123,2(3)	$C_{(15)}-C_{(16)}-C_{(19)}$	132,5(4)
$C_{(17)} - N_{(3)} - C_{(20)}$	124,2(4)	$C_{(15)}-C_{(16)}-C_{(17)}$	120,3(4)
$N_{(1)}-C_{(1)}-N_{(2)}$	124,6(4)	$C_{(19)}-C_{(16)}-C_{(17)}$	107,2(3)
N(1) - C(1) - C(9)	116,9(4)	O(2)-C(17)-N(3)	123,8(4)
N(2) - C(1) - C(9)	118,6(3)	$O_{(2)} - C_{(17)} - C_{(16)}$	129,3(4)
O(1) - C(2) - N(2)	120,6(4)	$N_{(3)}-C_{(17)}-C_{(16)}$	106,9(4)
O(1) - C(2) - C(3)	124,7(4)	$O_{(3)} - C_{(18)} - N_{(3)}$	124,4(4)
N(2) - C(2) - C(3)	114,7(4)	$O_{(3)}-C_{(18)}-C_{(19)}$	127,6(4)
C(8) - C(3) - C(4)	120,4(4)	$N_{(3)}-C_{(18)}-C_{(19)}$	108,1(3)
C(8) - C(3) - C(2)	119,1(4)	$C_{(16)} - C_{(19)} - C_{(18)}$	104,7(3)
$C(\alpha) - C(\alpha) - C(\alpha)$	120,5(5)	$N_{(3)}-C_{(20)}-C_{(21)}$	114,3(4)
C(5) - C(4) - C(3)	120,2(5)	$C_{(22)} - C_{(21)} - C_{(26)}$	117,7(5)
C(0) = C(0) = C(0)	120,0(5)	$C_{(22)} - C_{(21)} - C_{(20)}$	121,4(4)
C(3) - C(3) - C(5)	120,4(5)	$C_{(26)} - C_{(21)} - C_{(20)}$	120,8(4)
$C_{(7)} = C_{(7)} = C_{(8)}$	119,8(5)	$C_{(21)} - C_{(22)} - C_{(23)}$	121,3(5)
$C_{(3)} - C_{(8)} - N_{(1)}$	122,7(4)	$C_{(24)} - C_{(23)} - C_{(22)}$	120,3(5)
C(3) - C(8) - C(7)	119,1(4)	$C_{(25)} - C_{(24)} - C_{(23)}$	118,6(5)
N(1) - C(8) - C(7)	118,1(4)	$C_{(24)} - C_{(25)} - C_{(26)}$	121,0(5)
$C_{(10)} = C_{(0)} = C_{(14)}$	120.8(4)	$C_{(25)} - C_{(26)} - C_{(21)}$	121,1(5)
$C_{(10)} - C_{(0)} - C_{(1)}$	117,9(4)	$O_{(1S)} - C_{(1S)} - C_{(3S)}$	117,0(4)
C(14) - C(0) - C(1)	121.2(3)	$O_{(1S)} - C_{(1S)} - C_{(2S)}$	110,0(3)
$C_{(14)} = C_{(9)} = C_{(1)}$	120.2(4)	$C_{(3S)} - C_{(1S)} - C_{(2S)}$	132,0(5)
$C_{(11)} = C_{(10)} = C_{(9)}$	119 9(4)	$C_{(11)} - C_{(12)} - C_{(13)}$	120,6(4)
	1		•

разрывом мостиковых С—С и С—N и образованием двух сопряженных двойных связей (экзоциклической и в диазиновом кольце).

Альтернативное образование аддукта Михаэля на первой стадии реакции не создает предпосылок для перегруппировки, ибо напряжение в таком аддукте отсутствует. Кроме того, в случае образования IIIа—ж из аддуктов Михаэля должна была бы образоваться смесь их (Z)- и (E)-изомеров, чего не наблюдается ни в одном случае. Значение аллильной константы (2,3...2,5 Гц) четко указывает на взаимное *транс*-расположение группы CH₂ пирролидинового кольца и олефинового протона [5]. Именно такая структура должна получаться при перегруппировке с разрывом связей аддукта Дильса—Альдера 6-метил-5,6-дигидроизоиндоло [2,1-а]хиназолин-5-она и производных малеинимида.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н записаны на приборах Bruker-500 для соединений Шб, на приборе Bruker-100 в CDCl₃ для соединений Шв—д,ж и в ацетоне-D₆ для Ша,е,ж относительно ТМС. Спектр ЯМР ¹³С соединения Шб в ДМСО-D₆ зарегистрирован на приборе Bruker-500 с рабочей частотой 125,75 МГц. ИК спектры записаны на спектрометре Руе Unicam SP3-300 в таблетках КВг. УФ спектры измерены на приборе Specord UV-vis в 1,2-дихлорэтане. Температуры плавления определены на приборе Boetius. Масс-спектр соединения Шб зарегистрирован на спектрометре Finnigan

675

Атом	<i>x</i>	у	2	Ueq
N(1)	4223(4)	6007(4)	8178(2)	51(1)
N(2)	5141(4)	5186(4)	6951 (2)	46(1)
N(3)	10(4)	4489(4)	2922(2)	47(1)
O(1)	7331(4)	6663(4)	6717(3)	72(1)
O(2)	1980(4)	6382(3)	4260(2)	54(1)
O(3)	-1831 (4)	2211(4)	1906(2)	83(1)
C(1)	4095(5)	5004(4)	7453(3)	43(1)
C(2)	6447(6)	6512(5)	7191(3)	49(1)
C(3)	6641 (5)	7646(4)	8033(3)	47(1)
C(4)	7947(6)	8975(5)	8399(4)	71(2)
C(5)	8134(7)	10022(6)	9199(4)	83(2)
C(6)	7000(7)	9762(5)	9640(4)	77(2)
C ₍₇₎	5711(6)	8453(5)	9292(3)	68(2)
C(8)	5524(6)	7360(4)	8480(3)	49(1)
C(9)	2711(5)	3553(4)	7143(3)	42(1)
C(10)	2630(6)	2643(5)	7843(3)	58(1)
C(11)	1354(6)	1318(5)	7609(4)	66(2)
C(12)	153(6)	901 (5)	6690(4)	61(1)
C(13)	208(5)	1803(4)	5997(3)	52(1)
C(14)	1496(5)	3155(4)	6209(3)	44(1)
C(15)	1581 (5)	4149(4)	5510(3)	44(1)
C(16)	700(5)	3906(4)	4522(3)	45(1)
C(17)	1035(5)	5103(5)	3944(3)	45(1)
C(18)	-930(6)	2999(5)	2751 (3)	55(1)
C(19)	-626(5)	2576(4)	3783(3)	54(1)
C(20)	-45(6)	5294(5)	2111(3)	59(1)
C(21)	1076(6)	5394(5)	1568(3)	53(1)
C(22)	2271(7)	6714(6)	1665(4)	72(2)
C(23)	3273(7)	6811(6)	1132(4)	84(2)
C(24)	3100(7)	5564(7)	504(4)	74(2)
C(25)	1922(7)	4240(6)	419(3)	69(2)
C(26)	923(6)	4149(5)	939(3)	62(1)
C(27)	4944(6)	3953(5)	6167(3)	62(1)
O(1S)	3648(28)	10195(20)	5610(21)	233(10)
C(1S)	4632(32)	10056(21)	5327(20)	164(15)
C(2S)	4556(32)	10478(26)	4301 (23)	187(14)
C(3S)	5420(85)	9247(70)	5910(47)	680(102)

Координаты ($\times 10^4$) и эквивалентные изотропные тепловые параметры ($Å^2 \times 10^3$) неводородных атомов в структуре Шв

MAT-8200. Контроль за ходом реакции и чистотой полученных соединений осуществляли с помощью TCX на пластинках Silufol UV-254 в системе бензол—ацетон, 2 : 1. Характеристики полученных соединений приведены в таблицах 1, 2.

6-Метил-5,6-дигидроизоиндоло[2,1-а]хиназолин-5-он получен по известной методике [6].

Рентгеноструктурное исследование сольвата Шв. 0,5 С3H₆O (С₂₇H₂IN₃O₃). Кристаллы сольвата дигидрохиназолина Шв триклинные. При 20 °С a = 10,149(3), b = 10,158(3), c = 13,699(4) Å, $\alpha = 95,69(3)$ °, $\beta = 106,13(2)$ °, $\gamma = 113,29(2)$ °, V = 1210,7(6) Å³, $d_{\text{выч}} = 1,283$ г/см³, пространственная группа Р1, Z = 2. Параметры элементарной ячейки и интнесивности 2912 независимых отражений ($R_{\text{int}} = 0,031$) измерены на автоматическом дифрактометре Siemens РЗ/РС (λ МоК α , графитовый монохроматор, $\theta/2\theta$ -сканирование, $2\theta_{\text{max}} = 50^\circ$).

Структура расшифрована прямым методом с использованием комплекса программ SHELXTL PLUS [7]. Положения атомов водорода рассчитаны геометрически и уточнены по модели «наездника» с фиксированным $U_{R30} = n U_{eq}$ неводородного атома, связанного с данным атомом водорода (n=1,5) для метильных групп и 1,2 для остальных атомов водорода). Сольватная молекула ацетона уточнялась с наложением требований равенства длин связей С—С 1,50(1) Å и С—О 1,21(1) Å. Уточнение по F^2 полноматричным МНК в анизотропном приближении по 2514 отражениям для неводородных атомов проведено до $wR_2 = 0,168$ ($R_1 = 0,072$ по 2302 отражениям с $F > 4\sigma(F)$, S = 1,21). Координаты неводородных атомов приведены в табл. 5.

Общая методика получения 2-{2-[(Е)-1-R-2,5-диоксонирролидиниденметил]фенил}-3метил-4-оксо-3,4-дигидрохиназолинов (Ша—ж). Смесь 2 ммоль соответствующего малеинимида II и 2 ммоль соединения I кипятят в 15...20 мл пропанола-2 1 (исходное IIд)...2 ч (исходные IIа—г,е,ж). Реакционную массу охлаждают, выпавший осадок продукта III отфильтровывают и перекристаллизовывают из смеси ацетон—пропанол-2.

Соединение Шж, спектр ЯМР ¹Н в ацетоне-D₆: 3,35 (3H, c, N—CH₃); 3,97 (1H, д. д, ²J = 22,0 и ⁴J = 2,7 Гц, C<u>H</u>_aH_b); 4,26 (1H, д. д, ⁴J = 2,7 Гц, CH_a<u>H_b</u>); 7,35...8,15 (15H, м); 8,26 м. д. (1H, д, ³J = 7,8 Гц, 5-H).

Соединение III6, спектр ЯМР ¹³С: 32,904 (N—CH₃); 33,948 (CH₂); 95,367; 120,249; 126,163; 126,928; 126,965; 127,255; 127,339; 127,716; 128,036; 128,208; 128,632; 128,694; 128,931; 129,932 130,213; 131,469; 132,327; 134,578 (C=C); 136,436; 146,764 (С_{аром}—N); 154,548 (C₍₂₎); 161,209; 169,416 и 173,210 м. д. (C=O). Масс-спектр, *m/z* (*I*, %): 421 (100); 406 (3); 392 (19); 330 (4); 301 (7); 274 (85); 259 (10); 248 (31); 233 (9); 229 (4); 216 (4); 205 (4); 151 (6); 140 (4); 137 (6); 124 (4); 77 (4).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ковтуненко В. А., Войтенко З. В., Шептун В. Л., Савранский Л. И. // Укр. хим. журн. 1985. Т. 51. С. 976.
- Ковтуненко В. А., Войтенко З. В., Савранский Л. И., Тылтин А. К., Бабичев Ф. С. // ХГС. — 1988. — № 2. — С. 216.
- 3. Зефиров Ю. В., Зоркий П. М. // Успехи химии. 1995. Т. 64. С. 446.
- 4. Burgi H. B., Dunitz J. D. // Structure Correlation. 1994. Vol. 2. VCH, Weinheim.
- 5. Сергеев Н. М. // Спектроскопия ЯМР. М.: МГУ, 1981. С. 91.
- 6. Бабичев Ф. С., Тылтин А. К. // Укр. хим. журн. 1970. Т. 36. С. 175.
- Sheldrick G. M. // SHELXTL PLUS. —PC Version. A system of computer programs for the determination of crystal structure from X-ray diffraction data. — Rev. 5. 02. 1994.

Киевский университет им. Тараса Шевченко, Киев 252033, Украина e-mail: olya@serv.biph.kiev.ua Поступило в редакцию 13.03.98 После переработки 08.09.98