С. М. Десенко, Н. В. Гетманский, В. Н. Черненко, И. М. Землин, О. В. Шишкин, В. Д. Орлов

АРИЛЗАМЕЩЕННЫЕ 1,10*b*-ДИГИДРО-5Н-ПИРАЗОЛО[1,5-*c*]-1,3-БЕНЗОКСАЗИНЫ

Конденсацией 5-(2-гидроксифенил)-3-фенилпиразола с ароматическими альдегидами получены замещенные 1,10*b*-дигидро-5H-пиразоло[1,5-*c*]-1,3-бензоксазины. Пространственное строение полученных соединений обсуждается на основе данных спектров ПМР, с использованием ядерного эффекта Оверхаузера, сделанные выводы подтверждены результатами рентгеноструктурного анализа.

Реакция 2-гидроксизамещенных азолов с карбонильными соединениями является удобным методом получения продуктов с частично гидрированной азолобензоксазиновой системой, привлекающих внимание, прежде всего, своей физиологической активностью [1, 2]. В настоящей работе таким путем синтезированы некоторые 2-замещенные 1,10*b*-дигидро-5H-пиразоло[1,5-*c*]-1,3-бензоксазины, выявлены факторы, влияющие на их образование, рассмотрены особенности их пространственного строения. Синтез целевых соединений был осуществлен кипячением эквимолярных количеств 5-(2-гидроксифенил)-3-фенилпиразолина (I) и соответствующего ароматического альдегида IIа—м в метаноле, изопропаноле, пиридине или диметилформамиде.

II, III a R = C₆H₅, 6 R = 4-CH₃C₆H₄, μ R = 4-FC₆H₄, μ R = 2-O₂NC₆H₄, π R = 2-CF₃C₆H₄, e R = 2-ClC₆H₄, κ 2,4-Cl₂C₆H₃, 3 R = 4-HOC₆H₄, μ R = 2-HOC₆H₄, κ R = 2,4-(CH₃O)₂C₆H₃, π R = 3,4-(OCH₂O)C₆H₃, μ R = 3-CH₃O-4-HOC₆H₃

Продолжительность процесса и выходы продуктов IIIа—м существенным образом зависели как от условий реакции, так и от природы заместителя в исходном карбонильном соединении. Альдегиды IIв—ж, содержащие электроноакцепторные заместители, конденсировались с *о*-оксифенилпиразолином I в метаноле за 5...10 мин, образуя целевые продукты с выходами, близкими к количественным. В тех же условиях продолжительность реакции для альдегидов IIа,6 составляла 30 и 60 мин, а выходы — 70 и 63% соответственно. Напротив, альдегиды IIз—м не реагировали с пиразолином I в метаноле; соединения IIIз—м удалось получить путем кипячения указанных реагентов в изопропаноле или пиридине. Осуществление конденсации в кипящем диметилформамиде приводило к существенному снижению выхода продуктов реакции, вызванному заметным осмолением реакционной смеси.

УФ спектры соединений IIIа—м (табл. 1) полностью аналогичны спектрам дигидропиразолобензоксазинов, описанным ранее [2]. ИК спектры содержат полосы при 1250 и 1160 см⁻¹ (ν^{as} СОС и (ν^{s} СОС) и суперпозицию полос скелетных колебаний связей С=С и С=N ароматических и пиразолинового циклов в области 1600 см⁻¹.

			and the second	-		
Соеди- нение	Брутто- формула	<u>Найдено. %</u> Вычислено, % N	Т _{ПЛ} , ℃	$\lambda_{\max, HM}$ ($\varepsilon \cdot 10^{-3}$)	Продолжитель- ность реакции, мин	Выход, % (метод)
Шa	C22H18N2O	<u>8.6</u> 8,6	152 [2]	285(21,1)	30	70 (A)
					10	65 (Б)
					10	79 (B)
шб	C23H20N2O	<u>8,3</u> 8,2	182	286(18,4)	60	63 (A)
Шв	C22H17FN2O	<u>8,2</u> 8,1	142	285(17,0)	5	98 (A)
llfr	C22H17N3O3	11,4 11,3	159	282(17,0)	10	95 (A)
Шд	C23H17F3N2O	<u>7.3</u> 7.1	105	282(14,8)	5	97 (A)
IIIe	C22H17ClN2O	<u>7.7</u> 7.8	121	283(15,5)	5	95 (A)
Шж	C22H16Cl2N2O	<u>7.1</u> 7.1	159	282(16,1)	5	99 (A)
III3	C22H18N2O	<u>8.4</u> 8.2	125127	282(15,7)	30	35 (Б)
					15	40 (B)
Ши	C22H18N2O	$\frac{8.1}{8,2}$	188190	284(16,0)	60	30 (Б)
					15	65 (B)
IIIĸ	C24H22N2O3	<u>7.5</u> 7,3	135	286(19,2)	60	60 (Б)
					15	70 (B)
Шл	C23H18N2O3	<u>7.7</u> 7,6	206208	286 (23,3)	30	80 (Б)
					10	70 (B)
IIIм	C23H20N2O3	<u>7.6</u> 7.5	191192	285 (19,7)	15	45 (B)

Характеристики соединений Ша-м

Наибольшую информацию о структуре соединений IIIа—м дают их спектры ПМР (табл. 2). Снятые для растворов в обычном CDCl₃, уже непосредственно после приготовления последних, они содержат две подобные группы сигналов протонов пиразолинового и оксазинового циклов с различным соотношением интегральных интенсивностей. Учитывая наличие в молекулах III двух хиральных центров, это явление можно объяснить установлением в растворах равновесия между диастереомерами A и Б (об их структуре см. ниже) через предварительное раскрытие оксазинового цикла под действием примеси DCl в CDCl₃ (аномеризация). Действительно, спектр соединения IIIа в CDCl₃, предварительно очищенном от DCl пропусканием через основный Al₂O₃, имел только один набор указанных сигналов и характеризовал индивидуальный изомер A, оставаясь неизменным в течение

806

	r		1			1	
Соеди- нение	Изомер	2-H (1H, c)	6-HAHB		60 HV		Содержа-
			нд [*] (1Н, уш. д)	Н _В (1Н, д. д)	оа-на (1Н, д. д)	Другие протоны ^{*2}	ние изо- мера, %
		6.00				1	
IIIa	A	6,89	3,23	3,53	4,76		70
	Б	6,00	3,21	3,51	5,33		30
1116	A .	6,84	3,27	3,55	4,81	2,30 (3H, c, CH ₃)	75
	Б	6,01	3,35	3,52	5,35	2,40 (3H, c, CH ₃)	25
Шв	Α	6,92	3,27	3,57	4,78		80
	Б	6,05	3,25	3,55	5,35		20
IIIr	Α	(7,38)* ³	3,51	3,25	4,57		15
	Б	6,75	3,47	3,23	5,34		85
Шд	Α	* 3	*4	*4	4,62		~5
	Б	6,36	3,51	3,25	5,37		~95
IIIe	Α	(7,24)* ³	3,26	3,55	4,67		20
	Б	6,37	3,23	3,51	5,41		80
Шж	Α	6,99	3,24	3,53	4,61		20
	Б	6,25	3,20	3,45	5,35		80
III3	Α	6,83	3,26	3,56	4,80		70
	Б	5,97	3,23	3,53	5,34		30
Ши	Α	6,85	3,35	3,55	4,67	8,86 (1H, c, OH)	70
	Б	5,92	3,30	3,50	5.41	9.64 (1H, c, OH)	30
Шк	А	5,94	3,28	3.58	4.82	3.77 (3H. c. CH ₃)	30
				- ,	-,	3.90 (3H, c, CH ₃)	30
	Б	5.10	3.26	3.53	5.42	3 87 (3H c CH ₂)	70
	~	0,10	0,20	0,00	0,12	3 98 (3H c CH2)	10
Πīπ	A	6.01	3 20	3 52	4 80	5.87 (2H WIII C	70
		0,01	5,20	5,52	7,00	CH ₂) (211, 911. C,	10
	Б	5,10	3,17	3,50	5,30	5,96 (2Н, уш. с,	30
						CH ₂)	
Шм	A	5,98	3,28	3,58	4,84	3,82 (3H, c, CH ₃)	70
-	Б	5,15	3,26	3,54	5,36	3,99 (3H, c, CH ₃)	30

Спектры ПМР соединений Ша-м (б, м. д.)

* KCCB: J_{AB} = -15,3...-16,1, J_{AX} = 0,8...1,5, J_{BX} = 9,4...9,8 Fig.

*² Ароматические протоны соединений Ша—м резонируют в области 6,7...8,3 м. д.

*³ Сигнал перекрывается мультиплетом ароматических протонов.

*4 Сигнал перекрывается сигналом аналогичного протона диастереомера Б.

3...5 ч. Добавление к этому раствору ~0,1% HCl привело менее чем за 5 мин к образованию смеси изомеров с соотношением (А : Б) 70 : 30, которое далее не менялось во времени.

О стереохимии изомеров соединений IIIа—м можно судить на основании анализа данных ПМР для фрагмента CH—CH₂ (во всех случаях сигналы протонов имеют вид ABX-системы, $J_{AB} = -14, 5...-16, 2, J_{AX} = 1, 2...1, 5, J_{BX} =$ = 9,0...9.8 Гп) и протона оксазинового ядра. Величины констант J_{BX} являются типичными для констант типа $J_{aa'}$, что указывает на аксиальную ориентацию протона H_X в обоих диастереомерах. В то же время для каждой пары (IIIA и IIIБ) химические сдвиги протонов 5-H, а также 10*b*-H (H_X) заметно отличаются. Так, сигнал протона 5-H изомера A сдвинут на 0,7...0,9 м. д. в более слабое поле по сравнению с аналогичным сигналом изомера B. Это свидетельствует об экваториальной ориентации указанного

807

Строение молекулы IIIa (без атомов водорода) и длины связей в ней

Таблица З

Угол	ω, град.	Угол	τ, град.
$C_{(10a)} - O_{(1)} - C_{(2)}$	112,9(3)	$C_{(6b)} - C_{(10a)} - O_{(1)} - C_{(2)}$	24,6(5)
$N_{(4)} - N_{(3)} - C_{(6a)}$	109,5(3)	$C_{(10a)} - O_{(1)} - C_{(2)} - N_{(3)}$	-54,8
$N_{(3)} - N_{(4)} - C_{(5)}$	108,7(3)	$O_{(1)}-C_{(2)}-N_{(3)}-C_{(6a)}$	58,3(4)
$C_{(2)} - N_{(3)} - N_{(4)}$	111,8(3)	$C_{(2)}-N_{(3)}-C_{(6a)}-C_{(6b)}$	-30,2(5)
$C_{(2)} - N_{(3)} - C_{(6a)}$	114,4(3)	$N_{(3)}-C_{(6a)}-C_{(6b)}-C_{(10a)}$	-0,1(6)
$N_{(4)} - C_{(5)} - C_{(6)}$	113,8(4)	$C_{(6a)} - C_{(6b)} - C_{(10a)} - O_{(1)}$	2,5(6)
$C_{(5)} - C_{(6)} - C_{(6a)}$	100,9(4)	$N_{(3)} - N_{(4)} - C_{(5)} - C_{(6)}$	-3,1(5)
$N_{(3)} - C_{(6a)} - C_{(6b)}$	101,5(3)	$N_{(4)} - C_{(5)} - C_{(6)} - C_{(6a)}$	-11,6(5)
$N_{(3)}-C_{(6a)}-C_{(6b)}$	111,3(3)	$C_{(5)}-C_{(6)}-C_{(6a)}-N_{(3)}$	20,1(4)
$C_{(6)} - C_{(6a)} - C_{(6b)}$	112,5(3)	$C_{(6)} - C_{(6a)} - N_{(3)} - N_{(4)}$	-23,8
$C_{(6a)} - C_{(6b)} - C_{(10a)}$	122,2(4)	$C_{(6a)} - N_{(3)} - N_{(4)} - C_{(5)}$	17,8(4)
$O_{(1)}-C_{(10a)}-C_{(6b)}$	121,1(4)	$N_{(4)} - N_{(3)} - C_{(6a)} - C_{(6b)}$	96,1(4)
$O_{(1)} - C_{(2)} - N_{(3)}$	111,3(3)	$C_{(6)}-C_{(6a)}-N_{(3)}-C_{(2)}$	-150,1(3)
		$C_{(10a)} - O_{(1)} - C_{(2)} - C_{(11)}$	70,3(4)
		$C_{(6a)} - N_{(3)} - C_{(2)} - C_{(11)}$	-64,9(4)

Некоторые валентные (ω) и торсионные (τ) углы в молекуле Ша

протона в молекулах IIIA, так как в них он расположен вблизи плоскости аннелированного бензольного ядра и подвергается его дезэкранирующему влиянию. В таком случае наблюдадаемый для изомеров А сдвиг в сильное поле сигнала протона 10b-H (H_X) (на 0,5...0,7 м. д. по сравнению с изомером В) хорошо объясним экранирующим влиянием аксиально ориентированного в молекулах IIIA 5-арильного заместителя. Данное различие в положении заместителей при атоме C₍₅₎ в сопоставляемых изомерах подтверждено с помощью ядерного эффекта Оверхаузера на примере соединения IIIa. Дополнительное облучение на частоте резонанса протона 5-Н изомера В привело к увеличению интенсивности сигнала 10b-H, что указывает на цисоидную *аа*-ориентацию этих протонов; для изомера А этот эффект

Таким образом, в растворах соединений III в CDCl₃ в присутствии следов кислоты наблюдается равновесие между диастереомерами A и B с аксиальной и экваториальной ориентациями арильного заместителя в положении 5 оксазинового цикла. Анализ приведенных в табл. 2 данных по изомерному составу полученных соединений позволяет отметить его существенную зависимость от характера заместителей R. B растворах соединений

Атом	<i>x</i>	у	Z	Ueq
O (1)	115(5)	2437(2)	3455(2)	53(1)
C(2)	-981 (8)	3305(4)	3455(2)	47(1)
N(3)	-2274(6)	4119(3)	3692(3)	43(1)
N(4)	-809(6)	4868(3)	3155(3)	50(1)
Ca	-1863(8)	5073(4)	2336(3)	45(1)
C(6)	-4217(8)	4417(4)	2170(4)	56(1)
C(6a)	-4128(7)	3535(3)	2984(3)	45(1)
C(6b)	-3499(8)	2295(4)	2519(3)	42(1)
C(7)	-5041(8)	1607(4)	1841(3)	57(1)
C(8)	-4488(9)	485(4)	1378(3)	67(1)
C(9)	-2368(9)	53(4)	1581(3)	69(1)
C (10)	-842(9)	695(4)	2276(4)	63(1)
C(10a)	-1448(8)	1818(4)	2749(3)	47(1)
C(11)	-2456(7)	2645(4)	4931 (3)	44(1)
C(12)	-1870(8)	1536(4)	5171(3)	56(1)
C(13)	-3252(9)	937(4)	5828(4)	73(1)
C(14)	-5227(9)	1426(4)	6234(3)	72(1)
C(15)	-5801(8)	2535(4)	6017(3)	61(1)
C(16)	-4424(8)	3141(4)	5368(3)	56(1)
C(17)	-876(7)	5918(3)	1661(3)	43(1)
C(18)	-1834(9)	5984(4)	690(4)	72(1)
C(19)	-868(9)	6742(4)	31 (4)	80(1)
C(20)	1071 (9)	7435(4)	336(4)	71(1)
C(21)	2048(9)	7392(4)	1303(4)	68(1)
C(22)	1072(8)	6640(4)	1948(3)	54(1)

Координаты ($\times 10^4$) и эквивалентные изотропные тепловые параметры (Å² $\times 10^3$) атомов в молекуле Ша

IIIа—в,з,и,л,н преобладает изомер А, что можно объяснить меньшей заслоненностью аксиального арильного заместителя сочлененным пиразолиновым ядром. Значительный рост содержания диастереомеров В наблюдается в случае соединений IIIг—ж,к с *о*-замещенным арилом, причем степень проявления этого эффекта симбатна объему *о*-заместителей. Данное явление, вероятно, связано со специфическими стереохимическими свойствами *о*-замещенных фенильных ядер, повышающих, в первую очередь при их аксиальной ориентации, стерическую напряженность системы.

Строение изомера А соединения IIIа в твердой фазе установлено с помощью рентгеноструктурного анализа, результаты которого (табл. 3, 4, рис.), в частности, подтвердили вывод о его относительной конфигурации, сделанный на основе спектров ПМР. По данным PCA*, пиразолиновый и оксазиновый цикл имеют цис-сочленение (торсионный угол N(4)—N(3)— $C_{(6a)}$ — $C_{(6b)}$ 96,1(4)°) с псевдоаксиальной ориентацией протона при узловом атоме углерода. Пиразолиновый цикл находится в конформации «конверт», с атомом $C_{(6a)}$, выходящим из плоскости N(3)N(4)C(5)C(6) на 0,37(1) Å. Конформация оксазинового цикла — «софа»; отклонение атома C(6a) от плоскости остальных атомов составляет 0,63(1) Å. Фенильный заместитель у атома C(2) ориентирован псевдоаксиально (торсионные углы $C_{(6a)}$ —N(3)— $C_{(2)}$ — $C_{(11)}$ и $C_{(6a)}$ —N(3)— $C_{(2)}$ —H(11) 64,9(4)° и 176,4(2)° соответственно).

^{*} Указанная на рисунке и в таблицах 3, 4 нумерация атомов не совпадает с таковой в названиях соединений III, составленных согласно правилам ИЮПАК.

Торсионные углы N₍₃₎—N₍₄₎—C₍₅₎—C₍₁₇₎ (174,1(3)°), N₍₄₎—C₍₅₎— C₍₁₇₎—C₍₂₂₎ (-8,5(6)°) и длины связей C₍₅₎—N₍₄₎, N₍₄₎—N₍₃₎ (1,370(6) и 1,412(5) Å соответственно) указывают на наличие сопряжения между π -электронными системами фенильного заместителя при атоме C₍₂₎ и фрагментом C₍₂₎=N₍₃₎—N₍₄₎. Тем не менее, атом N₍₄₎ имеет тригональнопирамидальную конфигурацию (сумма валентных углов при этом атоме составляет 335,7(4)°).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры соединений IIIа—м измерены в таблетках КВг на спектрофотометре Specord IR-75; электронные спектры поглощения — в метаноле на приборе Specord M-40 ($c = 2...4 \times 10^{-3}$ моль/л). Спектры ПМР сняты в CDCl₃ на спектрометре Bruker AM-400, внутренний эталон ТМС. Индивидуальность соединений контролировали методом TCX на пластинах Silufol UV-254, элюенты хлороформ, этилацетат.

Рентгеноструктурное исследование соединения Ша. Кристаллы соединения Ша триклинные, при 20 °С a = 5,767(2), b = 11,264(3), c = 13,037(4) Å, $\alpha = 97,14(2)$ °, $\beta = 90,20(2)$ °, $\gamma = 92,94(2)$ °, V = 839,2(4) Å³, Z = 2, $d_{\rm BET4} = 1,292$ г/см⁻³, пространственная группа P₁. Параметры ячейки и интенсивности 4073 независимых отражений с $F > 6,0 \sigma(F)$ измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC с графитовым монохроматором на МоК α -излучении ($\theta/2\theta$ -сканирование, $2\theta < 50$ °). Структура расшифрована прямым методом с помощью комплекса программ SHELXTL PLUS, 4.2. Уточнение по F в анизотропном приближении проведено до R = 0,055 ($R_w = 0,061$). Положения атомов водорода рассчитаны геометрически и уточнены по модели «наездника». Координаты неводородных атомов и их эквивалентные изотропные тепловые параметры приведены в табл. 4.

2,5-Дифенил-1,10*b*-дигидро-5Н-пиразоло[1,5-*c*]-1,3-бензоксазин (Ша). А. Смесь 0,24 г (1 ммоль) соединения I и 0,11 г (1 ммоль) бензальдегида Па кипятят в 10 мл метанола. После полного растворения соединения I (30 мин) раствор охлаждают до 20 °С и отфильтровывают 0,22 г продукта Ша. *Т*_{Пл} 152° (из метанола). Лит. *Т*_{Пл} 152 °C [2].

Аналогично из соответствующих альдегидов получают соединения Шб-ж.

Б. Синтез осуществляют аналогично методу А, используя в качестве растворителя изопропанол. Получают 0,21 г соединения Ша.

Аналогично получают соединения Шз-л.

В. Смесь 0,24 г (1 ммоль) соединения I и 0,11 г (1 ммоль) бензальдегида Па кипятят в 0,5 мл пиридина, раствор охлаждают до 20 °С, смешивают с 20 мл гексана и отфильтровывают 0,24 г продукта Ша.

Аналогично получают соединения Шз-м.

Авторы признательны DAAD и ISSEP (грант № APU 073028) за финансовую поддержку данного исследования.

СПИСОК ЛИТЕРАТУРЫ

- 1. Mahesh V. K., Maheshvari M., Sharma R., Sharma R. // Can. J. Chem. 1985. Vol. 63. P. 632.
- 2. Орлов В. Д., Гетманский Н. В., Оксенич И. А., Иксанова С. В. // ХГС. 1991. № 8. С. 1131.

Харьковский государственный университет, Харьков 310077, Украина e-mail: desenko@orgchem.univer.kharkov.ua Поступило в редакцию 06.04.98