

Синтез и исследование структуры нового спиропирана с сопряженным винил-*3Н*-индолиевым фрагментом и продукта его гидролиза

Анастасия С. Козленко¹, Артем Д. Пугачев¹, Илья В. Ожогин¹, Валерий В. Ткачев^{2,3}, Владислав В. Быкусов¹, Наталья В. Станкевич¹, Сергей М. Алдошин², Владимир И. Минкин¹, Борис С. Лукьянов¹*

¹ НИИ физической и органической химии Южного федерального университета, пр. Стачки, 194/2, Ростов-на-Дону 344090, Россия; e-mail: bslukyanov@sfedu.ru

² Институт проблем химической физики РАН,

пр. Академика Семёнова, 1, Черноголовка 142432, Московская обл., Россия

³ Институт физиологически активных веществ РАН, Северный пр., 1, Черноголовка 142432, Московская обл., Россия Поступило 8.07.2022 Принято после доработки 3.10.2022

Синтезирован новый спиропиран, содержащий катионный 3*H*-индолиевый заместитель и метоксильные группы в положениях 5 и 5" индолиновых циклов. Обнаружено, что в ходе кристаллизации из EtOH соединение подвергается гидролизу, образуя протонированную мероцианиновую форму спиропирана со свободной формильной группой. Структура продукта гидролиза уточнена методом PCA, межмолекулярные взаимодействия в кристалле изучены с использованием программного пакета CrystalExplorer v21.5. С использованием квантово-химических расчетов на основе распределения функции Фукуи установлен предпочтительный центр нуклеофильной атаки и предложен механизм гидролиза.

Ключевые слова: мероцианин, спиропиран, гидролиз, спектроскопия ЯМР, РСА, теория функционала плотности, CrystalExplorer.

В последние десятилетия интерес к материалам, обладающим контролируемыми свойствами, неизменно возрастает. Ярким примером применения таких материалов являются сенсорные системы,^{1,2} а одним из передовых направлений, развивающихся в настоящее время, является разработка систем адресной доставки лекарственных препаратов.³ Обеспечить изменчивость свойств материала помогают молекулярные переключатели, чьи молекулы склонны к изменению структуры и свойств под действием внешних факторов. Подобные молекулярные системы интересны не только в качестве компонентов новых материалов: некоторые из них способны применяться в качестве молекулярных машин. За разработки в этой области несколько лет назад была присуждена Нобелевская премия.^{4–6} Одним из наиболее широко применяемых типов молекулярных переключателей в настоящее время являются спиропираны индолинового ряда.^{7,8}

Синтез индолиновых спиропиранов, как правило, осуществляется путем конденсации оснований Фишера с *орто*-гидроксиароматическими альдегидами.^{9,10} Их молекулы способны давать отклик на различные типы воздействий: электромагнитное излучение, изменение температуры и уровня кислотности среды, давления, полярности растворителя и т. д.,^{11,12} что значительно расширяет область возможных применений соединений данного класса. В основе переключаемых свойств спиропиранов лежит обратимая изомеризация между

Рисунок 1. Обратимая изомеризация спиропиранов.

спироциклическими (SP) и несколькими мероцианиновыми (MC) изомерами (рис. 1).

Молекулы спиропиранов могут быть введены в структуру материалов в виде простой физической смеси либо с образованием новых химических связей. В последнем случае обязательно наличие в молекулах реакционноспособных групп: чаще всего формильных, гидроксильных или карбоксильных.^{13,14} В последнее время также активно развивается направление синтеза катионных спиропиранов, на основе которых могут быть созданы гибридные материалы с ионным типом связывания.^{15–18} В данном случае свойства систем также зависят от структуры катионного фрагмента и типа аниона.¹⁹⁻²¹ Особенный интерес вызывают производные, содержащие сопряженный катионный фрагмент в бензопирановой части. Такие соединения являются структурными аналогами цианиновых красителей, обладают батохромно смещенным максимумом поглощения MC изомера^{22,23} и в ряде случаев характеризуются фотолюминесценцией в ближнем ИК диапазоне. 19,24 Как правило, наличие достаточно сильного акцептора в положении 6' приводит к частичной стабилизации МС формы подобных соединений за счет частичной нейтрализации отрицательного заряда δ на атоме кислорода.²³⁻²⁶ Аналогично стабилизирующий эффект в случае спиропиранов оказывают донорные заместители в положении 5 индолинового фрагмента, уменьшая положительный заряд на атомах азота и C-2,2'.²⁷

С целью изучения влияния донорных заместителей в индолиновых фрагментах на структуру и свойства соединений был получен новый спиропиран, содержащий катионный 3*H*-индолиевый фрагмент в бензопирановой части и метоксильные группы в обоих индолиновых циклах.

Спиропиран **3**, содержащий сопряженный катионный фрагмент в 2*H*-хроменовой части, был синтезирован по одностадийной методике путем конденсации 2 экв. перхлората 1,2,3,3-тетраметил-5-метокси-3*H*индолия **1** с 2-гидрокси-5-метилизофталевым альдегидом (**2**) в присутствии органического основания (схема 1).²⁸

Строение соединения **3** установлено с помощью методов спектроскопии ЯМР и масс-спектрометрии высокого разрешения. Интегральные интенсивности, химические сдвиги и мультиплетность сигналов в спектре полностью соответствуют предложенной структуре. По данным спектроскопии ЯМР ¹Н, в дейтерохлороформе соединение **3** находится в виде смеси изомеров SP и MC в соотношении 10:1 (рис. 2).

В спектре ЯМР ¹Н соединения **3** присутствуют характерные для SP формы сигналы пары спиновосвязанных протонов H-3' и H-4' с КССВ 10.3 Гц при 5.81 и 6.86 м. д. соответственно. Протоны винильной

части ЗН-индолиевого фрагмента проявляются при 7.98 и 7.29 м. д. в виде дублетных сигналов с КССВ 16.4 Гц, что указывает на *транс*-конфигурацию. Протоны метильных групп при атомах азота катионного фрагмента и гетареновой части проявляются в виде трехпротонных синглетных сигналов при 3.72 и 2.69 м. д. соответственно, а протоны метоксигрупп – при 3.87 и 3.83 м. д. соответственно. В МС форме ввиду симметрии молекулы протоны Н-12'/Н-4' и Н-13'/Н-3' проявляются в виде двухпротонных дублетных сигналов с КССВ 16.5 Гц, свидетельствующей о *трансоидной* конфигурации винильных фрагментов. Протоны метильных групп при индолиновых атомах азота и метоксигрупп проявляются соответственно в виде синглетных шестипротонных сигналов при 4.25 м. д. и 3.91 м. д. соотвественно.

В спектре ЯМР ¹³С соединения **3** сигнал атома углерода С-2" проявляется в области слабого поля (180.2 м. д.). Сигналы атомов углерода С-5,5",9', непосредственно связанных с атомами кислорода, смещены в сторону сильного поля относительно сигнала атома С-2". Сигнал спироатома наблюдается в характерной для него области при 107.3 м. д. Также следует отметить, что сигнал атома С-12' проявляется при 148.3 м. д., а атома С-13' – при 112.0 м. д. Сигналы атомов углерода МС формы не проявляются ввиду низкой концентрации.

В ДМСО- d_6 соединение **3** находится полностью в закрытой форме, подобно ранее изученному спиропирану **4**, что дает возможность предположить, что на стабилизацию МС формы в CDCl₃ в значительной степени влияют характерные для данного растворителя следовые количества соляной кислоты и наблюдаемая в спектре вторая форма является протонированным мероцианином. Однако концентрация ее столь мала, что детектирование протонов гидроксильной группы становится невозможным. Сигналы соответствующих протонов смещены в область сильного поля относительно таковых в случае соединения **4**,²⁸ что является следствием донорного эффекта метоксильной группы (табл. 1).

Из раствора соединения **3** в EtOH методом медленного испарения растворителя были получены кристаллы. Неожиданно по данным РСА для них была установлена структура стирильной соли **5** (рис. 3). При проведении гидролиза в лабораторных условиях (нагревание 4·10⁻³ М раствора спиропирана **3** в EtOH)

Рисунок 2. Спектр ЯМР 1 Н соединения 3 в CDCl₃.

Таблица 1. Характеристики сигналов	в спектрах ЯМР ¹ Н
соединений 3 и 4 в ДМСО- <i>d</i> ₆ (б, м. д.:	<i>J</i> , Гц)

было выделено соединение 5. Эксперимент также был проведен в атмосфере аргона, и получено лишь соединение 5. Соединение 5 в качестве эталона также было получено по двустадийной методике, включающей синтез спиропирана 6 и его последующее протонирование (схема 2).

В спектре ЯМР ¹Н спиропирана 6 присутствуют характерные дублетные сигналы протонов H-3' и H-4' с

Рисунок 3. *а*) Молекулярная структура соединения **5** в представлении атомов эллипсоидами тепловых колебаний с вероятностью 0.5. *b*) Упаковка молекул в кристалле соединения **5**, вид вдоль оси *с*.

КССВ 10.3 Гц при 5.76 и 6.83 м. д. Протоны индолиевого фрагмента в спектре ЯМР ¹Н спиропирана 6 проявляются в области, аналогичной области проявления таких же протонов в спектре SP формы соединения **3**, а сигнал протона H-7' смещен в область сильного поля (7.42 м. д.) по сравнению с таковым SP формы соединения **3** (7.53 м. д.), что обусловлено выраженным акцепторным эффектом катионного 3*H*-индолиевого заместителя.

В спектре ЯМР ¹Н соединения **5** присутствует синглетный сигнал протона гидроксильной группы при 11.70 м. д., сигнал протона формильной группы проявляется при 10.08 м. д. Протоны винильного фрагмента проявляются в виде двух дублетных сигналов при 8.32 и 7.70 м. д. с КССВ 16.6 Гц, что указывает на *трансоидную* конфигурацию двойной связи С=С. Протоны метильной группы при четвертичном индолиевом атоме азота проявляются в виде трехпротонного синглетного сигнала на 4.08 м. д., а протоны метоксильной группы – при 3.86 м. д. Протоны *гем*метильных групп индолиевого фрагмента проявляются в виде шестипротонного синглетного сигнала при 1.73 м. д. вследствие их магнитной эквивалентности.

Согласно данным РСА, молекула соединения 5 имеет неплоское строение: взаимное отклонение среднеквадратичных плоскостей циклов С(9')–С(10') и С(8)–С(9) равно 11.66°, а значения торсионных углов N(1)–С(2)–С(3')–С(4'), С(2)–С(3')–С(4')–С(10') и С(3')–С(4')–С(10')–С(9') соответственно составляют –173.0, 173.1 и –174.4°, что

Таблица 2. Длины связей и значения валентных и торсионных углов в кристалле соединения 5

Связь	<i>l</i> , Å	Угол	ω, град.
C(2)–N(1)	1.320(3)	C(10)–N(1)–C(2)	126.8(2)
N(1)-C(8)	1.430(3)	C(2)-N(1)-C(8)	111.8(2)
O(1)–C(5)	1.366(2)	C(8)-N(1)-C(10)	121.4(2)
O(1)-C(13)	1.447(3)	O(2')-H(1')-O(1')	146.9
C(2)–C(3')	1.429(3)	C(13)-O(1)-C(5)-C(6)	-174.7(2)
C(3')-C(4')	1.347(3)	N(1)-C(2)-C(3')-C(4')	-173.0(2)
C(4')-C(10')	1.454(3)	C(2)-C(3')-C(4')-C(10')	173.1(2)
C(9')-O(1')	1.358(3)	C(3')-C(4')-C(10')-C(9')	-174.4(2)
O(2')–C(12')	1.238(3)		

указывает на конфигурацию ТТТ винил-3*H*-индолиевого фрагмента. Пирролидиновый цикл находится в конформации "конверт" с отклонением атома C(2) от плоскости остальных углеродных атомов цикла на 0.09 Å. Сумма валентных углов при индолиевом атоме азота составляет 360°, а длина связи N(1)–C(2) – 1.32 Å, что соответствует кратности связи C=N, равной двум,²⁹ и указывает на катионную природу индолиевого фрагмента. Значения валентных и торсионных углов, а также длин основных связей представлены в табл. 2.

Кристаллы соединения 5 имеют слоистую структуру, молекулы связаны за счет электростатического взаимодействия с анионом и прочих неспецифических взаимодействий, о чем свидетельствует анализ поверхностей Хиршфельда (рис. 4a), построенных по нормализованному контактному расстоянию $d_{норм}$. Так, обнаружено наличие десяти укороченных контактов для

Рисунок 4. *а*) Поверхность Хиршфельда соединения **5**, построенная по нормализованному контактному расстоянию $d_{\text{норм.}}$ *b*) Поверхности отпечатков пальцев для укороченных контактов О···H, H···H и C···H.

Контакт	<i>l</i> , Å	Контакт	<i>l</i> , Å
O(1')···O(2')	2.619	H(1')C···C(11')	2.843
H(6A)…O(2')	2.541	H(1'C)…H(1'F)	2.152
C(13)…C(13)	3.206	H(12C)…O(11)	2.671
C(13)…H(13A)	2.881	H(4A)…O(14)	2.614
C(7)···C(7)	3.397	H(13B)…O(13)	2.666
O(1)…H(10C)	2.710	H(13B)…O(14)	2.718
O(1)…H(10E)	2.577	H(10C)…O(12)	2.601
H(10E)…C(13)	2.735	H(5'A)…O(14)	2.498
H(10E)…H(13B)	2.231	H(1'D)…O(11)	2.711
H(10B)…O(2')	2.674	H(1'B)…O(11)	2.624
H(10B)…C(12')	2.866	H(7A)…O(13)	2.495
C(11')…H(1'F)	2.884	H(10A)…O(13)	2.410
H(1'E)···C(11')	2.680	H(7'A)…O(11)	2.639
H(1'E)…H(1'F)	2.031	C(12')···O(12)	3.140
H(1'E)…H(1'B)	2.031	H(12D)…O(12)	2.484
H(1'C)···C(6')	2.858		

Таблица 3. Укороченные контакты в кристалле соединения 5

каждой молекулы протонированного мероцианина без учета аниона и двенадцати контактов при анализе поверхности, построенной с учетом аниона. При этом в кристалле преобладают контакты О. Н (39.3%), преимущественно реализованные между атомами кислорода перхлорат-аниона и атомами C(Ar)-Н молекулы мероцианина, а также контакты Н…Н (39.4%) (рис. 4b). При этом контакты О...Н в целом значительно более выгодны, чем Н. Коэффициент обогащения $E_{\rm XY}^{30}$ соответственно равен 1.4 и 0.96. В данном же случае значительное количество укороченных контактов Н…Н обусловлено достаточно плотной упаковкой молекул в кристалле. Каждый анион взаимодействует с тремя катионными органическими фрагментами, а каждый катионный фрагмент - с четырьмя анионами. Также в структуре присутствует внутримолекулярная водородная связь O(1')-H(1')···O(2') (1.892 Å, угол O(1')-H(1')···O(2') равен 146.9°). Укороченные контакты, наблюдающиеся в кристалле, приведены в табл. 3.

Широкий ряд стирильных солей индолиннезамещенных производных был ранее получен Сейлер и сотр. протонированием исходных спиропиранов.³¹ Также они образовывались в качестве промежуточного про-

Схема 3. Изомеризация и гидролиз соединения 3 в EtOH

дукта в синтезе некоторых соединений.³² В данном же случае соединение 5 является продуктом гидролиза катионного спиропирана 3 в ЕtOH. Обратимость реакции конденсации орто-гидроксиароматических альдегидов с основаниями Фишера является известным фактом. Благодаря данной особенности, например, стала возможна замена бензопирановой части молекулы, включенной в полифосфатную цепь. 33 Некоторые представители спиропиранов могут гидролизоваться в водных средах, 33,34 что в ряде случаев затрудняет их применение. Вместе с тем возможность расщепления спиропирана с выделением соответствующего альдегида с помощью гидролиза или озонолиза³⁵ делает спироузел одной из эффективных защитных групп. И хотя в большинстве своем родственные соединению 3 катионные спиропираны достаточно устойчивы к гидролизу, 19,26,28 для некоторых из них также известны прецеденты отщепления катионного фрагмента³⁶ или замены гетареновой части, ³⁷ где в качестве нуклеофила выступала молекула основания Фишера.

В ЕtOH наблюдается наличие MC формы соединения **3**, о чем свидетельствует характерная уширенная полоса с максимумом при 668 нм в спектре поглощения. В апротонном MeCN в аналогичных условиях самый длинноволновый максимум поглощения составлял 433 нм, что соответствует таковому SP формы соединений, содержащих сопряженный катионный винил-3*H*-индолиевый фрагмент. Поскольку полярные и в особенности протонные растворители, такие как EtOH, стабилизируют MC форму спиропиранов,³⁸ нуклеофильная атака H₂O в процессе гидролиза, скорее всего, происходит по одному из двух положений – по атому C-4' или C-12' (схема 3). С целью более детального исследования процесса гидролиза нами было проведено квантово-химическое моделирование.

На первой стадии на основе строения продукта 5 была предположена структура исходного мероцианина **3**-МС. Поскольку для большинства спиропиранов устойчивыми формами мероцианина являются изомеры с конфигурациями ТТС и ТТТ винилиндолиевого фрагмента,^{39,40} были рассмотрены оба этих варианта, а конфигурация второго фрагмента сохранена исходя из данных РСА. В качестве меры реакционной способности было оценено распределение функции Фукуи, представляющей собой разность распределения электронной плотности исходной молекулы и ионов, полу-

Рисунок 5. *a*) Распределение функции Φ укуи f^+ и *b*) граничные молекулярные орбитали в мероцианине **3**-МС.

ченных прибавлением или отщеплением некоторого количества электронов.⁴¹ Пространственное распределение функции Фукуи f^+ для двух форм **3**-MC, характеризующихся различной конфигурацией винилиндолиевого фрагмента, образовавшегося в ходе раскрытия спироцикла, показано на рис. 5*a*.

С целью количественного описания электрофильности или нуклеофильности потенциального реакционного центра, как правило, проводится сравнение атомных заселенностей, рассчитанных по методу Хиршфельда.^{42,43} Более высокое значение f^+ (уравнение (1)) указывает на центр предпочтительный для нуклеофильной, а f^- – на центр предпочтительный для электрофильной атаки (уравнение (2)). Рассчитанные

$$f_{\rm A}^{\rm +} = q_{\rm N}^{\rm A} + q_{\rm N+1}^{\rm A} \tag{1}$$

$$f_{\rm A}^{-} = q_{\rm N-1}^{\rm A} - q_{\rm N}^{\rm A} \tag{2}$$

Схема 4. Предполагаемый механизм гидролиза соединения 3-МС

значения f^+ для **3**-МС равны 0.049 и 0.056 для атомов С-4' и С-12' соответственно в ТТС-ТТТ форме и 0.054 и 0.056 в ТТТ-ТТТ форме. Несмотря на то, что в случае симметричного ТТТ-ТТТ изомера активность двух рассматриваемых участков становится практически эквивалентной, исходя из анализа свободной энергии Гиббса изомер ТТС-ТТТ стабильнее на 0.4 ккал·моль⁻¹. В то же время данный изомер несколько более реакционноспособен исходя из анализа энергий граничных орбиталей (рис. 5b). В таком случае атом С-12' является предпочтительным центром для нуклеофильной атаки, а механизм, вероятно, включает в себя кватернизацию ранее нейтрального индолинового фрагмента вследствие перераспределения электронной плотности в молекуле при присоединении водорода к фенолятному атому кислорода и переносе аниона к нему (схема 4). Данный процесс становится возможен

благодаря локализации в этой области молекулы протяженной цепи сопряжения (рис. 5*b*).

Таким образом, в рамках данной работы был получен новый катионный спиропиран, содержащий метоксильные группы в индолиевых фрагментах. По данным спектроскопии ЯМР в хлороформе мероцианиновая форма соединения частично стабилизирована. При выращивании кристаллов из раствора в ЕtOH наблюдался гидролиз соединения с образованием протонированного мероцианина, содержащего свободную формильную группу. Согласно вычислениям значения функции Фукуи, предпочтительным участком для нуклеофильной атаки молекулой H₂O служит атом C-12' катионного винил-3*H*-индолиевого фрагмента.

Экспериментальная часть

ИК спектры зарегистрированы на фурье-спектрометра Varian Excalibur 3100 FT-IR методом неполного внутреннего отражения. Спектры ЯМР ¹Н и ¹³С зарегистрированы на спектрометре Bruker AVANCE 600 (600 и 151 МГц соответственно). Внутренний стандарт – остаточные сигналы дейтерорастворителя (7.26 (CDCl₃) и 2.50 м. д. (ДМСО- d_6) для ядер ¹Н; 77.2 (CDCl₃) и 39.5 м. д. (ДМСО- d_6) для ядер ¹³С). Масс-спектры высокого разрешения записаны на спектрометре Bruker Maxis, ионизация электрораспылением, с использованием системы HCO₂Na–HCO₂H для калибровки. Температуры плавления определены на приборе Фишера–Джонса (Thermo Fisher Scientific, США).

Иодид 1,2,3,3-тетраметил-5-метокси-3*H*-индолия (7). К раствору 3.49 г (20 ммоль) гидрохлорида *n*-метоксигидразина в 20 мл ЕtOH добавляют 2.15 мл (20 ммоль) 3-метилбутан-2-она и 1.2 мл (20 ммоль) концентрированной HClO₄. Смесь кипятят в колбе с обратным холодильником в течение 3 ч, затем упаривают 2/3 растворителя, нейтрализуют 20% раствором NaOH и экстрагируют продукт CHCl₃. Экстракт промывают дистиллированной H₂O, высушивают над безводным Na₂SO₄ и отгоняют растворитель. Выход 3.15 г (83%), коричневое масло с характерным запахом. Используют в следующей стадии без дополнительной очистки.

Раствор смеси 3.15 г (16.7 ммоль) 2-метилен-3,3диметил-5-метоксииндола и 1.56 мл (25 ммоль) МеІ в 10 мл МеСN кипятят в колбе с обратным холодильником в течение 3.5 ч, раствор остужают, выпавший осадок отфильтровывают и промывают холодным МеСN. Выход 2.36 г (43%), бледно-розовый порошок, т. пл. 231–232°С. ИК спектр, v, см⁻¹: 1617 (С=С), 1290 (С–N Ar), 1019 (С–О–С Ar). Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д. (*J*, Гц): 7.80 (1Н, д. *J* = 8.8, H-7); 7.45 (1Н, д. *J* = 2.5, H-4); 7.13 (1Н, д. д. *J* = 8.8, *J* = 2.5, H-6); 3.91 (3H, с, N⁺–СН₃); 3.84 (3H, с, ОСН₃); 2.68 (3H, с, С(2)–СН₃); 1.49 (6H, с, 2С(3)–СН₃). Найдено, %: С 47.17; H 5.51; N 4.18; I 38.35. С₁₃Н₁₈INO. Вычислено, %: С 47.13; H 5.44; N 4.23; I 38.37.

Перхлорат 1,2,3,3-тетраметил-5-метокси-3*H***-индолия (1)**. К раствору 812 мг (2.5 ммоль) иодида индолия в 10 мл МеСN постепенно при перемешивании добавляют 6 мл

водного раствора 498 мг (1.23 ммоль) перхлората свинца(II) и избыток HClO₄. Сформировавшийся осадок иодида свинца отфильтровывают, растворитель слегка упаривают и оставляют для формирования осадка. Выход 362 мг (48%), бордовые кристаллы, т. пл. 178– 179°С. ИК спектр, v, см⁻¹: 1608 (С=С), 1293 (С–N Ar), 1016 (С–О–С Ar), 1069 (ClO₄⁻). Спектр ЯМР ¹Н (ДМСО-*d*₆), δ , м. д. (*J*, Гц): 7.79 (1Н, д. *J* = 8.8, H-7); 7.45 (1Н, д, *J* = 2.4, H-4); 7.13 (1Н, д. д. *J* = 8.8, *J* = 2.5, H-6); 3.91 (3H, с, N⁺–CH₃); 3.84 (3H, с, ОСН₃); 2.67 (3H, с, C(2)–CH₃); 1.48 (6H, с, 2С(3)–CH₃). Найдено, %: С 51.37; H 5.95; N 4.58; Cl 11.63. С₁₃Н₁₈INO₅. Вычислено, %: C 51.40; H 5.93; N 4.61; Cl 11.70.

Перхлорат (*E*)-1,3,3-триметил-5-метокси-2-[2-(1,3,3,6'тетраметил-5-метоксиспиро[индолин-2,2'-хромен]-8'-ил)винил]-3*H*-индолия (3). В 10 мл *i*-РгОН растворяют 0.164 г (1 ммоль) 2-гидрокси-5-метилизофталевого альдегида 2, добавляют 0.605 г (2 ммоль) перхлората индолия 1 и прикапывают 0.1 мл (1 ммоль) Et₃N. Кипятят в колбе с обратным холодильником в течение 4 ч. Осадок перекристаллизовывают из EtOH, промывают холодным EtOH. Выход 0.415 г (65%), оранжевокрасный порошок, т. пл. 247–248°С. ИК спектр, v, см⁻¹: 1605 (C=C), 1297 (C–N Ar), 1100 (ClO₄⁻), 932 (C–O). Найдено, *m/z*: 535.2947 [M]⁺. C₃₅H₃₉N₂O₃. Вычислено, *m/z*: 535.2955. Найдено, %: С 66.10; H 6.19; N 4.38; Cl 5.51. C₃₅H₃₉ClN₂O₇. Вычислено, %: С 66.19; H 6.15; N 4.41; Cl 5.59.

SP форма соединения **3**. Спектр ЯМР 1 H (CDCl₃), δ, м. д. (*J*, Гц): 7.98 (1Н, д, *J* = 16.4, H-12'); 7.53 (1Н, с, Н-7'); 7.47 (1Н, д, J = 8.8, Н-7"); 7.29 (1Н, д, J = 16.4, H-13'); 7.06 (1H, c, H-5'); 7.01 (1H, д. д, J = 8.8, J = 2.3, Н-6"); 6.90 (1Н, д, J = 2.2, Н-4"); 6.86 (1Н, д, J = 10.3, Н-4'); 6.77 (1Н, д. д, J = 8.4, J = 2.3, Н-6); 6.74 (1Н, д, J = 2.4, H-4; 6.51 (1H, $\pi, J = 8.3, H-7$); 5.81 (1H, \pi, J = 8.3, H-7); J = 10.3, H-3'); 3.87 (3H, c, OCH₃); 3.83 (3H, c, OCH₃); 3.72 (3H, c, N⁺-CH₃); 2.69 (3H, c, N-CH₃); 2.33 (3H, c, CH₃); 1.40 (3H, c, C(3,3")–CH₃); 1.37 (3H, c, C(3,3")–CH₃); 1.27 (3H, c, C(3,3")-CH₃); 1.21 (3H, c, C(3,3")-CH₃). Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д. (*J*, Гц): 7.94 (1Н, д, J = 16.5, H-12'); 7.78 (1H, д, J = 1.2, H-7'); 7.75 (1H, д, J = 8.8, H-7"); 7.35 (1H, д, J = 16.5, H-13'); 7.29 (2H, м, Н-5',4"); 7.13 (1Н, д. д, J = 8.8, J = 2.5, Н-6"); 7.08 (1Н, д, *J* = 10.3, H-4'); 6.85 (1H, д, *J* = 2.6, H-4); 6.77 (1H, д. д. *J* = 8.4, *J* = 2.6, H-6); 6.57 (1H, д, *J* = 8.4, H-7); 5.94 (1H, д, *J* = 10.3, H-3'); 3.87 (3H, c, OCH₃); 3.78 (3H, c, OCH₃); 3.64 (3H, c, N⁺-CH₃); 2.63 (3H, c, N-CH₃); 2.29 (3H, c, CH₃); 1.35 (3H, c, C(3,3")–CH₃); 1.34 (3H, c, C(3,3")–CH₃); 1.23 (3H, c, C(3,3")-CH₃); 1.15 (3H, c, C(3,3")-CH₃). Спектр ЯМР ¹³С (CDCl₃), б, м. д.: 180.2 (С-2"); 161.4 (C-5"); 154.4 (C-5); 153.6 (C-9'); 148.3 (C-12'); 144.9 (C-9"); 142.2 (C-8); 138.2 (C-9); 134.9 (C-8"); 133.5 (C-5'); 131.6 (C-7'); 130.8 (C-6'); 129.4 (C-4'); 120.1 (C-8'): 119.8 (C-3'.10'): 115.8 (C-7"): 114.3 (C-6"): 112.0 (C-13'); 111.9 (C-6); 109.6 (C-4); 108.8 (C-4"); 107.8 (C-7); 107.3 (C-2,2'); 56.1 (OCH₃); 52.3 (C-3"); 51.8 (C-3); 34.1 (N^+-CH_3) ; 29.5 $(N-CH_3)$; 26.8 $(C(3,3'')-\underline{C}H_3)$; 26.6 (C(3,3")–<u>C</u>H₃); 25.4 (C(3,3")–<u>C</u>H₃); 20.2 (CH₃); 20.0 $(C(3,3'')-\underline{C}H_3).$

МС форма соединения 3. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 8.47 (2H, д, *J* = 16.5, H-4',12'); 8.33 (2H, c, H Ar); 7.70 (2H, д, *J* = 16.5, H-3',13'); 7.56 (2H, c, H Ar); 7.51 (2H, д, *J* = 8.8, H Ar); 7.03 (2H, д, *J* = 2.2, H Ar); 4.25 (6H, c, 2N⁺–CH₃); 3.91 (6H, c, 2OCH₃); 1.98 (3H, c, CH₃); 1.79 (12H, c, 2C(3,3")–CH₃).

1,3,3,6'-Тетраметил-5-метоксиспиро[индолин-2,2'-хромен]-8'-карбальдегид (6). К раствору 164 мг (1 ммоль) 4-метил-2,6-диформилфенола 2 в *i*-PrOH добавляют 331 мг (1 ммоль) иодида 1,2,3,3-тетраметил-5-метоксииндолия 7 и медленно прикапывают 0.1 мл (1 ммоль) Et₃N. Кипятят в колбе с обратным холодильником в течение 4.5 ч, раствор остужают, продукт экстрагируют CHCl₃ и осушают над безводным Na₂SO₄. После отгонки излишков растворителя проводят колоночную хроматографию на SiO₂ с использованием CHCl₃ в качестве элюента. Кристаллизуют из петролейного эфира. Выход 0.018 г (5%), желтые кристаллы, т. пл. 152–153°С. ИК спектр, v, см⁻¹: 1675 (С=О), 1296 (С–N Ar), 919 (С-О). Спектр ЯМР ¹Н (CDCl₃), б, м. д. (*J*, Гц): 10.10 (1Н, с, СНО); 7.42 (1Н, д, J = 1.9, Н-7'); 7.07 (1Н, д, J = 1.9, H-5'); 6.83 (1Н, д, J = 10.3, H-4'); 6.67 (2Н, м, Н-4,6); 6.40 (1Н, д, J = 8.0, Н-7); 5.76 (1Н, д, J = 10.3, H-3'); 3.77 (3H, c, OCH₃); 2.67 (3H, c, N-CH₃); 2.25 (3H, c, CH₃); 1.29 (3H, c, C(3)–CH₃); 1.18 (3H, c, C(3)–CH₃). Спектр ЯМР ¹³С (CDCl₃), б м. д.: 188.4; 155.1; 153.5; 141.5; 137.4; 132.8; 128.6; 128.2; 126.8; 121.7; 119.7; 119.5; 110.8; 109.0; 106.5; 105.3; 55.4; 51.6; 28.8; 25.1; 19.7 (2C). Найдено, %: С 75.57; Н 6.59; N 3.95. С₃₅Н₃₉СlN₂O₇. Вычислено, %: С 75.62; Н 6.63; N 4.01.

Перхлорат (Е)-2-[2-(2-гидрокси-5-метил-3-формилфенил)винил]-1,3,3-триметил-5-метокси-3*Н*-индолия (5). К раствору 18 мг ($5 \cdot 10^{-5}$ моль) спиропирана 6 в CHCl₃ добавляют 1 каплю (~0.01 мл) концентрированной HClO₄. Растворитель испаряют на воздухе. Выход 0.015 г (65%), оранжевые кристаллы, т. пл. 244-245°С. ИК спектр, v, cm⁻¹: 1642 (C=O), 1601 (C=C), 1294 (C-N Ar), 1065 (ClO₄⁻). Спектр ЯМР ¹Н (ДМСО-*d*₆), б, м. д. (*J*, Гц): 11.70 (1Н, с, ОН); 10.08 (1Н, с, СНО); 8.32 (1Н, д, J = 16.6, Н-12'); 8.29 (1Н, д, J = 1.9, Н-7'); 7.81 (2Н, д, J = 8.8, Н-5',7"); 7.70 (1Н, д, J = 16.6, Н-13'); 7.49 (1Н, д, J = 2.4, Н-4"); 7.16 (1Н, д. д, J = 8.8, J = 2.4, Н-6"); 4.08 (3Н, с, N⁺-CH₃); 3.86 (3H, c, OCH₃); 2.37 (3H, c, CH₃); 1.73 (6H, с, 2С(3)-СН₃). Спектр ЯМР ¹³С (ДМСО-*d*₆), б, м. д.: 196.1 (CHO); 179.4 (C-2"); 161.0 (C-5"); 158.1 (C-9'); 145.6 (C-10'); 143.5 (C-12'); 137.6 (C-5'); 136.6 (C-7'); 135.1 (C-8"); 129.7 (C-6'); 122.9 (C-8'); 122.1 (C-9"); 116.4 (C-7"); 114.8 (C-6"); 114.1 (C-13'); 108.6 (C-4"); 56.1 (OCH₃); 52.0 (C-3"); 34.6 (N⁺-CH₃); 25.6 (C(3)-CH₃); 19.6 (CH₃). Найдено, %: С 58.62; Н 5.78; N 3.05; Cl 7.64. С₂₂Н₂₄СІNO₇. Вычислено, %: С 58.73; Н 5.34; N 3.11; Cl 7.90.

Рентгеноструктурное исследование соединения 5. Параметры элементарной ячейки кристалла и трехмерный набор интенсивностей получены на автодифрактометре Xcalibur (МоКα-излучение, графитовый монохроматор, детектор EOS). Проведен эмпирический учет поглощения по процедуре Multiscan. Структура расшифрована прямым методом и уточнена полноматричным МНК по F^2 по программе SHELXTL в анизотропном приближении для неводородных атомов. В кристаллической структуре большинство атомов Н локализованы в синтезе Фурье разностной электронной плотности, далее координаты и изотропные тепловые параметры всех атомов Н вычислены в процедуре МНК по модели "наездник".⁴⁴ Анализ и визуализация результатов РСА проведены с использованием программного пакета Mercury.⁴⁵Полные кристаллографические данные депонированы в Кембриджском банке структурных данных (депонент ССDC 2182739).

Поверхности Хиршфельда вычислены методом DFT-B3LYP с использованием базиса 6-311G(d,p) в программе CrystalExplorer v21.5.⁴⁶

Квантово-химическое моделирование проведено при помощи программного обеспечения Orca 5.0.3^{47,48} в рамках приближения теории функционала плотности с использованием трехпараметрического функционала Ли– Янга–Парра (B3LYP)⁴⁹и базисного набора 6-311G(d,p).⁵⁰ Применена неявная модель сольватации СРСМ (EtOH). Характер найденных критических точек установлен аналитическим вычислением матрицы констант. Анализ атомных заселенностей по Хиршфельду проведен с использованием ПО Multiwfn.⁵¹ Визуализация результатов осуществлена в программе Chemcraft.⁵²

Файл сопроводительных материалов, содержащий спектры ЯМР ¹H, ¹³C, COSY, ¹H–¹³C HSQC, ¹H–¹³C HMBC и масс-спектр высокого разрешения соединения **3**, а также детали PCA соединения **5**, доступен на сайте журнала http://hgs.osi.lv.

Исследование выполнено при финансовой поддержке гранта Министерства науки и высшего образования РФ в рамках государственного задания в сфере научной деятельности (Южный федеральный университет, № 0852-2020-00-19). Рентгеноструктурное исследование выполнено в соответствии с государственным заданием, государственная регистрация № АААА-А19-119092390076-7 (В. В. Ткачев, С. М. Алдошин).

Спектры ЯМР¹Н и ¹³С зарегистрированы в Центре коллективного пользования "Молекулярная спектроскопия" Южного федерального университета.

Список литературы

- Zhao, W.; Quan, M.; Cao, Z.; Zhang, Y.; Wen, J.; Pan, D.; Dong, Z.; Yang, Z.; Wang, D.; Cao, H.; He, W. *Colloids Surf.*, A 2018, 554, 93.
- Xia, Z.; Alphonse, V. D.; Trigg, D. B.; Harrigan, T. P.; Paulson, J. M.; Luong, Q. T.; Lloyd, E. P.; Barbee, M. H.; Craig, S. L. *Molecules* 2019, *24*, 542.
- Bispo, M.; van Dijl, J. M.; Szymanski, W. In *Molecular Photoswitches: Chemistry, Properties, and Applications*; Pianowski, Z. L., Ed.; WILEY-VCH GmbH: Weinheim, 2022, p. 843.
- 4. Sauvage, J.-P. Angew. Chem., Int. Ed. 2017, 56, 11080.
- 5. Feringa, B. L. Angew. Chem., Int. Ed. 2017, 56, 11060.
- 6. Stoddart, J. F. Angew. Chem., Int. Ed. 2017, 56, 11094.
- 7. Klajn, R. Chem. Soc. Rev. 2014, 43, 148.
- Kozlenko, A. S.; Pugachev, A. D.; Ozhogin, I. V.; El-Sewify, I. M.; Lukyanov, B. S. Chem. Heterocycl. Compd. 2021, 57, 984.

- 9. Lukyanov, B. S.; Lukyanova, M. B. Chem. Heterocycl. Compd. 2005, 41, 281.
- 10. Wizinger, R.; Wenning, H. Helv. Chim. Acta 1940, 43, 247.
- 11. Kortekaas, L.; Browne, W. R. Chem. Soc. Rev. 2019, 48, 3406.
- Pugachev, A. D.; Mukhanov, E. L.; Ozhogin, I. V.; Kozlenko, A. S.; Metelitsa, A. V.; Lukyanov, B. S. *Chem. Heterocycl. Compd.* 2021, 57, 122.
- Laptev, A. V.; Lukin, A. Y.; Belikov, N. E.; Zvezdin, K. V.; Demina, O. V.; Barachevsky, V. A.; Varfolomeev, S. D.; Khodonov, A. A.; Shvets, V. I. *Russ. Chem. Bull.* 2014, 63, 2026.
- Nikolaeva, O. G.; Metelitsa, A. V.; Cheprasov, A. S.; Karlutova, O. Y.; Starikov, A. G.; Dubonosov, A. D.; Bren', V. A.; Minkin, V. I. *Russ. Chem. Bull.* **2016**, *65*, 944.
- Frolova, L. A.; Rezvanova, A. A.; Lukyanov, B. S.; Sanina, N. A.; Troshin, P. A.; Aldoshin, S. M. J. Mater. Chem. C 2015, 3, 11675.
- Bénard, S.; Rivière, E.; Yu, P.; Nakatani, K.; Delouis, J. F. Chem. Mater. 2001, 13, 159.
- Bazzan, I.; Bolle, P.; Oms, O.; Salmi-Mani, H.; Aubry-Barroca, N.; Dolbecq, A.; Serier-Brault, H.; Dessapt, R.; Philippe R.; Mialane, P. J. Mater. Chem. C 2017, 5, 6343.
- Kida, N.; Hikita, M.; Kashima, I.; Okubo, M.; Itoi, M.; Enomoto, M.; Kato, K.; Takata, M.; Kojima, N. J. Am. Chem. Soc. 2009, 131, 212.
- Pugachev, A. D.; Ozhogin, I. V.; Lukyanova, M. B.; Lukyanov, B. S.; Rostovtseva, I. A.; Dorogan, I. V.; Makarova, N. I.; Tkachev, V. V.; Metelitsa, A. V.; Aldoshin, S. M. Spectrochim. Acta, Part A 2020, 230, 118041.
- Khalanskiy, K. N.; Alekseenko, Y. S.; Lukyanov, B. S.; Borodkin, G. S.; Bezuglyi, S. O. *Chem. Heterocycl. Compd.* 2012, 48, 1090.
- 21. Funasako, Y.; Miyazaki, H.; Sasaki, T.; Goshima, K.; Inokuchi, M. J. Phys. Chem. B 2020, 124, 7251.
- Pugachev, A. D.; Lukyanova, M. B.; Lukyanov, B. S.; Ozhogin, I. V.; Kozlenko, A. S.; Rostovtseva, I. A.; Makarova, N. I.; Tkachev, V. V.; Aksenov, N. A. J. Mol. Struct. 2019, 1178, 590.
- Kozlenko, A. S.; Makarova, N. I.; Ozhogin, I. V.; Pugachev, A. D.; Lukyanova, M. B.; Rostovtseva, I. A.; Borodkin, G. S.; Stankevich, N. V.; Metelitsa, A. V.; Lukyanov, B. S. *Mendeleev Commun.* 2021, 31, 403.
- 24. Pugachev, A. D.; Ozhogin, I. V.; Makarova, N. I.; Rostovtseva, I. A.; Lukyanova, M. B.; Kozlenko, A. S.; Borodkin, G. S.; Tkachev, V. V.; El-Sewify, I. M.; Dorogan, I. V.; Metelitsa, A. V.; Aldoshin, S. M.; Lukyanov, B. S. *Dyes Pigm.* **2022**, *199*, 110043.
- Pugachev, A. D.; Ozhogin, I. V.; Lukyanova, M. B.; Lukyanov, B. S.; Kozlenko, A. S.; Rostovtseva, I. A.; Makarova, N. I.; Tkachev, V. V.; Aldoshin, S. M.; Metelitsa, A. V. *J. Mol. Struct.* 2021, *1229*, 129615.
- Lukyanova, M. B.; Tkachev, V. V.; Lukyanov, B. S.; Pugachev, A. D.; Ozhogin, I. V.; Komissarova, O. A.; Aldoshin, S. M.; Minkin, V. I. J. Struct. Chem. 2018, 59, 565.

- Balmond, E. I.; Tautges, B. K.; Faulkner, A. L.; Or, V. W.; Hodur, B. M.; Shaw, J. T.; Louie, A. Y. J. Org. Chem. 2016, 81, 8744.
- Tkachev, V. V.; Lukyanova, M. B.; Lukyanov, B. S.; Pugachev, A. D.; Aldoshin, S. M.; Minkin, V. I. J. Struct. Chem. 2016, 57, 1270.
- 29. Allen, F. H.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. In *International Tables for Crystallography*. *Volume C: Mathematical, Physical and Chemical Tables*; Prince, E., Ed.; Springer: Dordrecht, 2006, p. 803.
- 30. Jelsch, C.; Ejsmont, K.; Huder, L. IUCrJ 2014, 1, 119.
- Seiler, V. K.; Callebaut, K.; Robeyns, K.; Tumanov, N.; Wouters, J.; Champagne, B.; Leyssens, T. *CrystEngComm* 2018, 20, 3318.
- 32. Brieke, C.; Heckel, A. Chem.-Eur. J. 2013, 19, 15726.
- 33. Hammarson, M.; Nilsson, J. R.; Li, S.; Beke-Somfai, T.; Andréasson, J. J. Phys. Chem. B 2013, 117, 13561.
- 34. Stafforst, T.; Hilvert, D. Chem. Commun. 2009, 3, 287.
- 35. Cho, Y. J.; Lee, S. H.; Bae, J. W.; Pyun, H.-J.; Yoon, C. M. *Tetrahedron Lett.* **2000**, *41*, 3915.
- Luk'yanova, M. B.; Pugachev, A. D.; Tkachev, V. V.; Luk'yanov, B. S.; Shilov, G. V.; Kozlenko, A. S.; Rostovtseva, I. A.; Minkin, V. I.; Aldoshin, S. M. Dokl. Chem. 2018, 482, 220.
- Pugachev, A. D.; Lukyanova, M. B.; Lukyanov, B. S.; Ozhogin, I. V.; Kozlenko, A. S.; Tkachev, V. V.; Chepurnoi, P. B.; Shilov, G. V.; Minkin, V. I.; Aldosin, S. M. *Dokl. Chem.* 2020, 492, 76.
- 38. Tian, W.; Tian, J. Dyes Pigm. 2014, 105, 66.
- 39. Kim, D.; Zhang, Z.; Xu, K. J. Am. Chem. Soc. 2017, 139, 9447.
- Sheng, Y.; Leszczynski, J.; Garcia, A. A.; Rosario, R.; Gust, D.; Springer, J. J. Phys. Chem. B 2004, 108, 16233.
- 41. Yang, W.; Parr, R. G.; Pucci, R. J. Chem. Phys. 1984, 81, 2862.
- 42. Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129.
- 43. Wang, B.; Rong, C.; Chattaraj, P. K.; Liu, S. *Theor. Chem.* Acc. 2019, 138, 123.
- 44. Sheldrick, G. M. SHELXTL v. 6.14, Structure Determination Software Suite; Bruker AXS: Madison, 2000.
- 45. Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. J. Appl. Crystallogr. 2020, 53, 226.
- 46. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. J. Appl. Crystallogr. 2021, 54, 1006.
- 47. Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. J. Chem. Phys. 2020, 152, 224108.
- 48. Neese, F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73.
- 49. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- 50. Hehre, W. J.; Random, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; Wiley: New York, 1986.
- 51. Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.
- 52. Chemcraft Graphical Software for Visualization of Quantum Chemistry Computations. https://www.chemcraftprog.com