В. В. Кузнецов, С. А. Бочкор

АНАЛИЗ КОНФОРМАЦИОННОГО СОСТАВА 5-НИТРО-1,3,2-ДИОКСАБОРИНАНОВ

С помощью эмпирического (MM2) и полуэмпирических (AM1, MNDO, MINDO/3) методов проведен расчет энергии с полной оптимизацией геометрии молекул 5-нитро-1,3,2-диоксаборинанов, а также модельных 5-нитро-1,3-диоксанов, 4-нитроборинана и нитроциклогексана. Из сопоставления экспериментальных и расчетных КССВ, а также данных энергии следует, что для циклических борных эфиров характерна преимущественная конформация софы с аксиальной нитрогруппой, перпендикулярной плоскости симметрии молекулы.

Электроноакцепторный характер тригонального атома бора предопределяет частично двойную природу связей В-О, вследствие чего молекулы большинства шестичленных циклических борных эфиров пребывают в конформацию софы или в равновесии между инвертомерами софы [1]. Ранее [2, 3] было показано, что для 2,5-диалкил-1,3,2-диоксаборинанов характерна софа с экваториальным заместителем у атома $C_{(5)}$. В то же время данные ЯМР [2], а также дипольных [4] и рентгеноструктурных [5] измерений однозначно указывают на преимущественно аксиальную ориентацию нитрогруппы в 5-нитро-1,3,2-диоксаборинанах. Настоящая работа посвящена анализу конформационного состава молекул этих соединений и ставит целью расчет энергии и пространственного строения возможных конформеров нитроэфиров (I, II), а также модельных 5-нитро-1,3-диоксанов (III, IV), 4-нитроборинана (V) и нитроциклогексана (VI) методами молекулярной механики ММ2 [6] и ССП МО ЛКАО в параметризации АМ1 [7, 8], MNDO [9, 10], MINDO/3 [11] и, для циклического карбоната IV, РМЗ [12] с полной оптимизацией геометрии.

В результате для молекул циклических борных эфиров I и II на поверхности потенциальной энергии обнаружен ряд минимумов, отвечающих конформерам софы (С), полукресла (ПК), 1,4- и 2,5-твист-(1,4- и 2,5-Т) с экваториальной (е) и аксиальной (а) ориентацией нитрогруппы.

С учетом возможности вращения группы NO₂ относительно гетероциклического кольца число таких форм удваивается за счет канонических ротамеров с биссектральной (Б) и ортогональной (О) — перпендикулярно плоскости симметрии молекулы — ориентацией заместителя.

В рамках MM2, AM1 и MNDO все формы, кроме софы, получены при условии фиксации торсионных углов С⁴OBO и С⁶OBO; отсутствие этой процедуры приводит к изомеризации отмеченных конформеров в софу. В ходе минимизации в приближении MINDO/3 форма СаБ (эфир II) также выделена благодаря фиксации торсионных углов в гетероатомной части кольца; с другой стороны, конформеры СаБ, ПКаO, 1,4-Т и 2,5-Т (эфир I), а также кресло КаБ и КаO (боринан V) даже при этих ограничениях превращаются в симметричную ванну.

Относительные энергии конформеров эфиров I, II и модельных соединений III-VI представлены в табл. 1. Нетрудно видеть, что для молекул с экваториальной ориентацией нитрогруппы более стабилен ротамер Б; в случае аксиальных форм относительная устойчивость ротамеров О и Б зависит от метода расчета. Для 1,3,2-диоксаборинанов наиболее стабильным конформером является софа. В рамках метода ММ2 главный минимум соответствует форме СеБ; в приближении АМ1 — конформеру СаО, а по версиям MNDO и MINDO/3 — форме СаБ (эфир II). В целом стабильность конформеров убывает в ряду: С > ПК > 1,4-Т > 2,5-Т. Формы ПКе (MM2) и ПКаО (AM1, MNDO) отвечают минимуму, ближайшему по энергии к основному. Однако для симметрично замещенных соединений их реальное содержание должно быть пренебрежимо мало, поэтому анализ конформационного состава 5-нитро-1,3,2-диоксаборинанов можно ограничить оценкой относительной стабильности ротамеров софы. Согласно данным рентгеноструктурных измерений, молекула 5-метил-5-нитро-2-фенил-1,3,2-диоксаборинана пребывает в форме, близкой к СаО [5]. Это соответствует главному минимуму по версии АМІ. Большинство геометрических параметров этой формы, рассчитанных в приближении AM1 (rC—O, валентные и торсионные углы), также находится в хорошем соответствии с результатами эксперимента (табл. 2). В то же время метод MNDO обеспечивает наилучшее совпадение с экспериментальной величиной rB—O, а MINDO/3 и MM2 с расстояниями между атомами кислорода нитрогруппы и бором.

Результаты расчета энергии модельного 1,3-диоксана III методами MNDO и MINDO/3 однозначно соответствуют экспериментальным данным более высокой стабильности аксиального конформера [13-17], предполагая в качестве основного минимума форму КаБ. Выгодность этого ротамера подробно обсуждалась еще в 1972 г. [15]. Согласно АМ1, главный минимум включает почти вырожденные по энергии формы КеБ, КеО и КаО. Известно, однако, что величина ΔG^0 , особенно для соединений с полярными заместителями, испытывает существенную зависимость от свойств среды [18, 19]. Свободная конформационная энергия нитрогруппы в 1,3-диоксанах изменяется от 0,38 (CCl4) до 1,17 ккал/моль (CH2Cl2) в пользу аксиальной [13-16], т. е. уменьшение полярности растворителя ориентации дестабилизирует аксиальный изомер или конформер. Поскольку все расчеты в настоящей работе проводились для изолированной молекулы в вакууме, следует ожидать снижения расчетных значений ΔE по сравнению с экспериментальными величинами ΔG^0 . Таким образом, на качественном удовне данные метода АМ1 не противоречат эксперименту. Циклический карбонат IV имеет определенное сходство в строении гетероатомного 1066

Таблица 1

Относительные энергии конформеров молекул соединений I-VI (ккал/моль)

Соеди- нение	W1	MM2		A	M1	MN	DO	MINDO/3		
	Конформер	E	Δε	-Е	Δε	E	ΔE	E	ΔE	
1	2	3	4	5	6	7	8	9	10	
Ĩ	СеБ	12,8	0,0	1449,6	0,4	1430,3	0,0	1497,2	0,0	
	CeO	13,5	0,7	1449,4	0,6	1428,9	2,0	1495,1	2,1	
	СаБ	14,2	1,4	1448,7	1,3	1430,9	0,0	·		
	CaO	14,2	1,4	1450,0	0,0	1428,5	2,4	1496,5	0,7	
	ПКеБ	13,0	0,2	1449,4	0,6	1430,1	0,8	1496,9	0,3	
	ПҚаО	14,5	1,7	1449,7	0,3	1430,6	0,3	+	·	
	1,4-ТеБ	14,8	2,0	1447,5	2,5	1427,6	3,3	·	·	
	1,4-TaO	16,3	3,5	1448,0	2,0	1428,0	2,9	•	·	
	2,5-ТБ	19,9	7,1	1445,9	4,1	1427,3	3,6	·—	·	
II	СеБ	11,4	0,0	1735,2	0,3	1721,6	0,6	1799,0	3,6	
	CeO	12,1	0,7	1735,0	0,5	1720,3	1,9	1796,8	5,8	
	СаБ	12,6	1,2	1734,2	1,3	1722,2	0,0	1802,6	0,0	
	CaO	12,7	1,3	1735,5	0,0	1719,9	2,3	1798,2	4,4	
ш	КеБ	15,9	0,0	1496,2	0,0	1471,8	0,2	1493,0	1,8	
	KeO	16,2	0,3	1496,0	0,2	1470,5	1,5	1491,8	3,0	
	ҚаБ	16,7	0,8	1493,8	2,4	1472,0	0,0	1494,8	0,0	
	KaO	17,3	1,4	1496,1	0,1	1470,2	1,8	1492,9	1,9	
IV	КеБ	12,5	0,0	1476,7	0,6	1458,5	1,1	1493,4	1,8	
	KeO	12,8	0,3	1476,7	0,6	1457,4	2,2	1492,1	3,1	
	ҚаБ	13,4	0,9	1475,8	1,5	1459,6	0,0	1495,2	0,0	
	KaO	13,3	0,8	1477,3	0,0	1459,6	0,0	1492,9	2,3	
v	КеБ	14,5	0,0	1763,5	0,0	1757,7	0,0	1782,3	0,0	
	KeO	15,9	1,4	1763,3	0,2	1755,2	2,5	1779,4	2,9	
	ҚаБ	16,9	2,4	1762,7	0,8	1756,9	0,8	·	·	
	KaO	15,9	1,4	1763,1	0,4	1754,8	2,9	·	·	

1067

Окончание табл. 1

1	2	3	4	5	. 6	7	8	9	10
VI	КеБ	16,3	0,0	1867,0	0,0	1846,1	0,0	1865,6	0,1
	KeO	17,0	0,7	1866,8	0,2	1844,1	2,0	1863,4	2,3
	ҚаБ	18,6	2,3	1866,1	0,9	1845,1	1,0	1865,7	0,0
	KaO	17,5	1,2	1866,4	0,6	1843,1	3,0	1862,7	3,0

Результаты расчета карбоната IV в приближении РМЗ; -E (ΔE), ккал/моль: КеБ, 1481,0 (0,0); КеО, 1480,4 (0,6); КаБ, 1479,7 (1,3); КаО, 1480,3 (0,7).

Таблица 2

Оптимальные геометрические параметры формы СаО 5-нитро-1,3,2-диоксаборинана

Метоц расчета	Длины связей, Å			Расстояния между несвязанными атомами, Å						Валентные углы, град.		Торсионные углы, град.		
	BO	C0	в—0 ⁷	в0 ⁸	0 ¹ -0 ⁷	03-08	c ⁶ 0 ⁷	c ⁴ o ⁸	OBO	СОВ	1-2-3-4	2-3-4-5	3-4-5-6	
MM2	1,471	1,406	3,88	3,70	3,28	3,13	2,88	2,83	118,9	120,3	-1,2	30,0	-58,9	
AM1	1,357	1,422	4,03	4,00	3,43	3,41	2,79	2,78	123,3	120,5	-3,4	26,6	-46,5	
MNDO	1,369	1,400	4,23	4,18	3,59	3,55	2,87	2,86	119,5	124,3	-3,9	24,5	-41,7	
MINDO/3	1,317	1,338	3,87	3,83	3,37	3,34	2,75	2,74	131,6	117,2	-3,7	-24,5	50,5	
Эксперимент [5]	1,371	1,437	3,89	3,46	3,34	2,95	2,76	2,66	122,4	120,8	-2,8	26,8	-48,7	

фрагмента с 1,3,2-диоксаборинанами: оптимальной формой цикла этого соединения является софа (MM2, MINDO/3) либо уплощенное кресло (AM1, PM3, MNDO). Вероятно, по этой причине конформеры, соответствующие главному минимуму для его молекул, в рамках каждого расчетного метода аналогичны таковым для эфиров I и II. Отметим, что метод PM3, не использованный в расчете циклических борных эфиров из-за отсутствия параметров для атома бора, отдает предпочтение форме КеБ. Замена *n*-электронных пар атомов кислорода на аксиальные водородные атомы в нитроборинане V и нитроциклогексане VI в большинстве случаев приводит к появлению в качестве основного минимума формы КеБ. Опираясь на известное значение ΔG^0 группы NO₂ в циклогексане (CCl4, 1,1 ккал/моль в пользу Ке [20]), можно полагать, что данные AM1 наиболее близки эксперименту.

Таким образом, сравнение результатов расчетов эфиров I, II и модельных соединений III—VI показывает, что отличительной особенностью молекул 1,3,2-диоксаборинанов является более высокая по сравнению с диоксаном III концентрация аксиальных конформеров, обусловленная присутствием циклического фрагмента BO₂.

С целью оценки конформационного состава эфиров I и II независимым методом нами сопоставлены экспериментальные [2] и расчетные КССВ ${}^{3}J_{AX}$ ³J_{BX}. Последние получены на основе торсионных углов φ между и соответствующими протонами (данные оптимальной геометрии) тремя независимыми способами: по уравнению, выведенному в работе [21] (А), уравнению [22] (Б) и классическому равенству Карплуса [23] с параметрами из работы [21] (В); данные по электроотрицательности углерода, водорода и циклических атомов кислорода, необходимые для уравнений (А) и (Б), получены из работы [24], а нитрогруппы — из работы [25]. Результаты, представленные в табл. 3, однозначно свидетельствуют в пользу преимущественности конформера Са. При этом, согласно значению $\Sigma \Delta J$, методы MNDO и MINDO/3 отдают предпочтение форме CaO, а в рамках ММ2 и АМ1 ротамеры СаО и СаБ трудноразличимы. В качестве вероятных причин преимущественно аксиальной ориентации NO₂ в 1,3-диоксанах отмечались сопряжение п-электронных пар кислородных атомов цикла с л-системой нитрогруппы и электростатическое взаимодействие азота нитрогруппы с гетероатомным фрагментом кольца [14, 16]. Величины частичных зарядов на атомах эфира II (табл. 4) показывают, что для аксиальных форм такое взаимодействие в ротамере СаО должно быть несколько сильнее, чем в СаБ, вследствие более высокого заряда на азоте. то же время только в ротамере СаО возможен эффективный R р-л-электронный обмен между группой NO2 и кислородными атомами кольца; это подтверждает характер верхней занятой молекулярной орбитали (AM1), образованной для данной формы комбинацией *n*-электронных пар атомов кислорода кольца (р-орбитали, параллельные плоскости симметрии молекулы) с аксиальными и экваториальными связями С-Н двух соседних атомов углерода и *п*-электронами атомов кислорода нитрогруппы. С другой стороны, известно, что вращение NO2 в нитрометане практически свободно $(\Delta G^{\neq} = 6 \text{ кал/моль [26]};$ по данным метода AM1 из настоящей работы, эта величина составляет 1 кал/моль). Для 2-нитропропана, ближайшего алифатического аналога исследуемых систем, вращение NO2 также почти свободно [27] (согласно АМ1 из настоящей работы, его барьер составляет 0,2 ккал/моль в пользу заслоненного NO-CH конформера, что совпадает с данными расчета для экваториальных форм соединений I и II, табл. 1). Существенное (до 1,3 ккал/моль, АМ1) увеличение расчетного барьера вращения аксиальной группы NO₂ в молекулах циклических борных эфиров в пользу формы СаО подтверждает существование дополнительных взаимодействий между заместителем и гетероатомным фрагментом кольца.

Значения торсионных углов между протонами и вицинальных КССВ для молекул эфира I*

	Метол		<u>, , , , , , , , , , , , , , , , , , , </u>	MM2			AM1					
Конформер	расчета КССВ	φ _{AX}	$\varphi_{\rm BX}$	³ <i>J</i> AX	³ _{<i>J</i>_{BX}}	$\Sigma \Delta J^{*2}$	φ _{AX}	φ_{BX}	³ _J AX	³ _{J BX}	$\Sigma \Delta J^{*2}$	
СеБ	A			10,7	1,4	8,3			10,5	2,1	7,8	
	Б	179,0	55,6	10,2	3,7	9,1	172,5	49,4	10,1	4,5	9,8	
	В			10,3	3,2	8,7			10,1	4,0	9,3	
CeO	A			10,7	1,6	8,1			10,6	1,9	7.7	
	Б	177,7	54,1	10.2	3.9	9.3	174,0	51,1	10.1	4.3	9.6	
	в	•		10.2	3.4	8.8			10.2	3.8	9.2	
СаБ	5 A	53,2		1.7	2.3	1.6	46,5		2.5	1.9	0.4	
	Б		68,9	4.0	2.3	1.5		74,6	4.8	1.9	1.9	
	B			3.5	2,0	0.7			43	1 7	1.6	
CaO	A	60.3		1 1	3.0	2.0	46.2	75.4	2.5	1.8	0.5	
Quo	Б		61.8	3.2	3.0	1.4			4.0	1,0	2.0	
	B	* .	,	3.2	3,0	1,4			4,9	1,9	2,0	
CoF	b A			2,0	2,0				4,4	1,0	1,0	
Ceb	A	157 0	30.2	9,3	3,5	8,0	163.0	10.1	9,9	2,1	7,2	
	Б	157,9	39,2	9,0	5,8	10,0	105,9	49,4	9,6	4,5	9,3	
· · ·	В			9,1	5,2	9,5			9,6	4,0	8,8	
CeO	A			9,4	3,3	7,5			9,8	2,4	7,4	
	Б	159,0	40,0	9,2	5,7	10,1	162,8	47,2	9,5	4,8	9,5	
	B			9,2	5,1	9,5			9,5	4,2	8,9	

Таблица З

_

СаБ	A		1	4,9	1,4	2,5	1		3,5	2,1	0,8
	Б	29,8	86,3	6,9	1,5	4,4	39,1	72,0	5,8	2,1	3,1
	В			6,3	. 1,4	3,9			5,2	1,8	2,4
ÇaO	A	39,6		3,4	1,8	0,6	42,2	69,5	3,0	2,3	0,5
	Б		76,6	5,7	1,8	2,9			5,4	2,3	2,9
	В			5,2	1,6	2,6			4,8	2,0	2,0

* Различия с соответствующими углами φ эфира II от 0,1 до 2°. *² $\Sigma \Delta J = |{}^{3}J_{AX3KCII} - {}^{3}J_{BXpac4}| + |{}^{3}J_{BX3KCII} - {}^{3}J_{BXpac4}|$. Экспериментальные КССВ [2]: ${}^{3}J_{AX} = 2.9, {}^{3}J_{BX} = 1.9$ Ги.

Таблица 4

Частичные заряды на атомах эфира II

Конформер		AM1							MNDO						
	В	0 ¹	O2	N	0 ³	0 ⁴	В	01	O2	N	0 ³	0 ⁴			
СеБ СеО ÇаБ	0,2055 0,2034 0,2166	-0,2744 -0,2751 -0,2728	-0,2741 -0,2762 -0,2727	0,5233 0,5262 0,5169	-0,3420 -0,3497 -0,3330 (ближайший	-0,3535 -0,3498 -0,3609	0,1225 0,1193 0,1313	-0,2870 -0,2875 -0,2839	-0,2866 -0,2889 -0,2838	0,4304 0,4308 0,4251	-0,3196 -0,3264 -0,3195 (ближайший	-0,3291 -0,3265 -0,3290			
ÇaO	0,2018	-0,2736	-0,2744	0,5197	к бору) -0,3496	-0,3488	0,1203	-0,2839	-0,2846	0,4278	к бору) -0,3265	-0,3255			

Полученные данные дают основание полагать, что нитрогруппа в 5-нитро-1,3,2-диоксаборинанах ориентирована преимущественно аксиально и находится в ортогональном положении, стабилизированном обменными электронными и электростатическими взаимодействиями с циклическими атомами кислорода.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Грень А. И., Кузнецов В. В.* Химия циклических эфиров борных кислот. Киев: Наукова думка, 1988. 160 с.
- Кузнецов В. В., Захаров К. С., Петровский И. В., Грень А. И. // ХГС. 1990. № 8. С. 1107.
- 3. Кузнецов В. В., Калюский А. Р., Грень А. И. // ЖОрХ. 1995. Т. 31. С. 439.
- 4. Urbanski T. // J. Sci. Int. Res. 1974. Vol. 33. P. 124.
- 5. Kliegel W., Preu L., Rettig S. J., Trotter J. // Can. J. Chem. 1986. Vol. 64. P. 1855.
- 6. Allinger N. L. // J. Amer. Chem. Soc. 1977. Vol. 99. P. 8127.
- Dewar M. J. S., Zoebisch E. G., Healy E. F., Stewart J. J. P. // J. Amer. Chem. Soc. 1985. -Vol. 107. - P. 3902.
- 8. Dewar M. J. S., Jie C., Zoebisch E. G. // Organometallics. 1988. Vol. 7. P. 513.
- 9. Dewar M. J. S., Thiel W. // J. Amer. Chem. Soc. 1977. Vol. 99. P. 4899.
- 10. Dewar M. J. S., McKee M. L. // J. Amer. Chem. Soc. 1977. Vol. 99. P. 5231.
- 11. Bingham R. C., Dewar M. J. S., Lo D. H. // J. Amer. Chem. Soc. 1975. Vol. 97. P. 1285.
- 12. Stewart J. J. P. // J. Comput. Chem. 1989. Vol. 10. P. 209.
- 13. Eliel E. L., Kaloustian M. K. // J. Chem. Soc. D. 1970. N 5. P. 290.
- 14. Eliel E. L. // Angew. Chem. 1972. Bd 84. S. 779.
- 15. Eliel E. L., Enanoza R. M. // J. Amer. Chem. Soc. 1972. Vol. 94. P. 8072.
- Kaloustian M. K., Dennis N., Mager S., Evans S. A., Alcudia F., Eliel E. L. // J. Amer. Chem. Soc. - 1976. - Vol. 98. - P. 956.
- 17. Kriegsmann H. // Z. Chem. 1985. Bd 7. S. 259.
- 18. Самошин В. В., Зефиров Н. С. // ЖВХО им. Д. И. Менделеева. 1984. Т. 29. С. 521.
- 19. Латыпов Ш. К., Клочков В. В. // Изв. АН СССР. Сер. хим. 1990. № 1. С. 41.
- Jensen F. R., Bushweller C. H., Beck B. H. // J. Amer. Chem. Soc. 1969. Vol. 91. P. 344.
- Haasnoot C. A. G., de Leeuw F. A. A. M., Altona C. // Tetrahedron. 1980. Vol. 36. P. 2783.
- 22. Durette P. L., Horton D. // Org. Magn. Res. 1971. Vol. 3. P. 417.
- 23. Karplus M. // J. Amer. Chem. Soc. 1963. Vol. 85. P. 2870.
- 24. Huggins M. L. // J. Amer. Chem. Soc. 1953. Vol. 75. P. 4123.
- Кери Ф., Сандберг Р. // Углубленный курс органической химии. М.: Химия, 1981. Т. 1. — С. 21.
- Внутреннее вращение молекул / Под ред. В. Дж. Орвилл-Томаса. М.: Мир, 1977. С. 166.
- Durig J. R., Smooter Smith J. A., Li Y. S., Wasacz F. M. // J. Mol. Struct. 1983. Vol. 99. P. 45.

Физико-химический институт им. А. В. Богатского НАН Украины, Одесса 270080 e-mail: physchem@paco.net Поступило в редакцию 14.08.98