В. В. Кузнецов

АНАЛИЗ КОНФОРМАЦИОННОГО СОСТАВА СТЕРЕОИЗОМЕРОВ 4,5- И 5,6-ДИМЕТИЛ-1,3,2-ОКСАЗАБОРИНАНОВ

С помощью эмпирического (ММ2) и полуэмпирического (АМ1) методов проведен расчет энергии с полной оптимизацией геометрии молекул *цис- и транс-*изомеров 4,5- и 5,6-диметил-1,3,2-оксазаборинанов, а также модельных 1,3,2-оксазаборинанов и тетрагидро-1,3-оксазинов. Из сопоставления экспериментальных и расчетных КССВ и данных по относительной энергии отдельных конформеров следует, что молекулы циклических борных эфиров образуют многокомпонентную равновесную систему, включающую формы софы и полукресла с экваториальной ориентацией N—H.

Систематические исследования стереохимии замещенных 1,3,2-оксазаборинанов показали, что для молекул большинства указанных соединений характерна преимущественная конформация софы или состояние равновесия между инвертомерами софы [1, 2]. Однако в ряде случаев для интерпретации данных ЯМР допускалась возможность участия в конформационном равновесии одной из гибких форм [2—5]. Сложность оценки относительной стабильности таких форм в рамках метода CNDO [6] из-за неполного учета энергии электронного обмена в гетероатомном фрагменте [7, 8] сохраняет вероятность ошибочных конформационных отнесений на основании данных ЯМР. В этой связи целью настоящей работы является исследование конформационного состава молекул индивидуальных стереоизомернов 4,5- и 5,6-диметил-1,3,2-оксазаборинанов (I, II), а также модельных 1,3,2-оксазаборинанов (III—V) и тетрагидро-1,3-оксазинов (VI—X) методами молекулярной механики MM2 [9] и ССП МО ЛКАО в параметризации АМ1 [10, 11] в сочетании с данными ЯМР [3].

 $I X = B-H, R = R^{1} = Me, R^{2} = H; II X = B-H, R = H, R^{1} = R^{2} = Me; III X = B-H, R = R^{2} = H, R^{1} = Me; IV X = B-H, R = Me, R^{1} = R^{2} = H; V X = B-H, R = R^{1} = H, R^{2} = Me; VI X = CH_{2}, R = R^{2} = H, R^{1} = Me; VII X = CH_{2}, R = R^{2} = H; X X = CH_{2}, R = R^{1} = H, R^{2} = H; X X = CH_{2}, R = R^{1} = Me, R^{2} = H; X X = CH_{2}, R = H, R^{1} = R^{2} = Me$

В результате для молекул эфиров I и II на поверхности потенциальной энергии обнаружен ряд минимумов, отвечающих конформерам софы (С), полукресла (ПК 1, ПК 2), а также 1,4-, 3,6- и 2,5-твист (1,4-, 3,6- и 2,5-Т) с диэкваториальной (ее, *транс*-) либо экваториально-аксиальной (еа, *цис*-) ориентацией заместителей.

Все формы кроме С получены при условии фиксации торсионных углов $C_{(4)}NBO$ и $C_{(6)}OBN$, в противном случае они изомеризуются в софу. Конформер 2,5-Т в ходе минимизации в приближении AM1 даже при этих ограничениях превращается в полукресло.

1176

Из значений внутрициклических торсионных углов наиболее стабильных конформеров *цис-* и *транс-*изомеров (на примере эфира I, табл. 1) следует, что формы ПК 1 и ПК 2 различаются степенью искажения фрагментов С(4)NBO и С(6)OBN. Необходимо также отметить большую уплощенность софы (AM1) по сравнению с результатами MM2. Расчетные значения длин связей и валентных углов этой формы соответствуют данным эксперимента [12, 13].

Таблица 1

Внутрициклические торсионные углы (град.) отдельных конформеров молекул эфира I

Конфи- гурация	Метод расчета	Конформер	1-2-3-4	2-3-4-5	3-4-5-6	4-5-6-1	5-6-1-2	6-1-2-3
цис-	MM2	C 4a5e	4,9	-30,2	55,8	-55,6	27,9	-3,3
		C 4e5a	5,8	-31,2	57,4	-59,1	32,8	-6,4
		IIK 1 5e	-2,1	-19,6	50,5	-60,4	37,0	-7,3
		TIK 1 5a	-1,4	-21,8	52,9	-62,7	39,0	-7,9
		ПК 2 5е	-6,3	32,7	-57,0	54,0	-25,0	1,6
		ПК 2 5а	-8,0	37,9	-61,1	54,2	-22,8	-0,6
	AM1	C 4a5e	0,7	-21,2	45,8	-53,6	33,7	-6,7
		C 4e5a	-2,9	-20,3	46,0	-53,2	32,0	-2,8
		IIK 1 5e	-2,5	-16,8	43,9	-55,5	37,1	-7,9
		ПК 1 5а	-4,2	-16,2	43,6	-55,3	36,9	-6,4
		ПК 2 5е	-5,6	28,2	-48,5	49,6	-27,1	4,1
		IIK 2 5a	-5,7	32,3	-50,3	46,1	-20,8	-1,2
транс-	MM2	C 4e5e	-2,3	27,7	-55,5	58,8	-31,9	4,3
3		TIK 1	-3,5	-18,9	50,7	-61,9	38,6	-7,1
		ПК 2	-7,5	37,0	-60,0	53,2	-21,6	-1,5
	AM1	C 4e5e	2,6	19,4	-44,2	51,2	-30,5	2,8
		ПК 1	-5,8	-12,5	40,1	-53,6	36,9	-6,8
		ПК 2	-5,7	30,9	-48,7	45,5	-21,0	-0,4

Относительные энергии конформеров эфиров I и II (табл. 2) показывают, что их стабильность убывает в ряду: С ≥ ПК > 1,4-Т > 3,6-Т > 2,5-Т. Для транс-изомеров вблизи основного минимума (С4е5е либо С5ебе) существуют формы ПК 1 (почти вырождена по энергии) и ПК 2. Для цис-изомеров наиболее устойчив конформер С4а5е (либо С5еба), однако в окрестностях этих точек находится ряд локальных минимумов (С4е5а, Сбе5а, семейство полукресел) с различиями в энергии от 0,1 до 1,0 ккал/моль. Основная причина существования таких уплощенных глобальных минимумов связана с уменьшением $\Delta EC_{(4)}CH_3$ и $\Delta EC_{(6)}CH_3$ по сравнению с ΔЕС(5) CH3 (соединения I, II и модельные эфиры III-V, табл. 2), характерным для систем с плоской конфигурацией атома во втором положении кольца. В молекулах тетрагидро-1,3-оксазинов VI-X значения $\Delta EC_{(4)}CH_3$ и $\Delta EC_{(6)}CH_3$ в полтора-два раза выше, чем $\Delta EC_{(5)}CH_3$ (за исключением результатов AM 1, существенно занижающих величину $\Delta EC_{(6)}CH_3$ в соединениях VIII и X). Экспериментальные величины ΔG° метильной группы у С(4) и С(6) в тетрагидро-1,3-оксазинах неизвестны, однако они не должны заметно отличаться от $\Delta G^{\circ}C_{(4)}CH_3$ в 1,3-диоксанах (2,7...2,9 ккал/моль [14]). В то же время свободная конформационная энергия метильной группы у С(5) в оксазинах и 1,3,2-оксазаборинанах практически одинакова [15]. Из сказанного следует, что для молекул цис-изомеров оксазинов IX и X, по данным расчетов, характерно преобладание кресла К4е5а (К5абе), хотя и не исключается присутствие альтернативных форм, а для *транс*-изомеров доминируют формы К4е5е и К5ебе соответственно; это согласуется с данными ЯМР 16-22 1. Однако для цис- и транс-изомеров борных эфиров I и II выделить олну предпочтительную конформацию достаточно сложно. Необходимо также отметить, что для оксазинов VI—Х более стабильны конформеры с аксиальной N—Н связью (табл. 2), что подтверждено экспериментально [16-19, 23-25]. Напротив, отличительной особенностью 1,3,2-оксазаборинанов является планарная конфигурация атома азота, допускающая максимальный *р*-л-электронный обмен по связи В-N [1-5]. Поэтому конформеры с аксиальной N—Н связью здесь отсутствуют (в ходе минимизации такие формы претерпевают быструю изомеризацию в софу со связью N—H, копланарной пяти атомам кольца). Это объективно свидетельствует о снижении по сравнению с оксазинами IX и X барьеров перехода между отдельными конформерами и повышении конформационной неоднородности как цис-, так и транс-изомеров эфиров I и II.

Ранее [3] на основании данных ЯМР ¹Н и ¹³С *транс*-изомерам 1,3,2-оксазаборинанов I и II была приписана преимущественная конформация софы, а цис- — конформация 2,5-Т. Малая вероятность реализации заметных количеств последней (наиболее неустойчивой) формы, ставшая очевидной после проведения расчетов, вызывает необходимость сравнения оптимальных геометрических параметров с реальной структурой молекул циклических эфиров I и II. С этой целью в настоящей работе на основе торсионных углов ϕ между соответствующими протонами (данные оптимальной геометрии) с помощью равенства [26] и значений электроотрицательности замещающих групп [27] определены расчетные величины КССВ ³J_{AX}, ³J_{BX}, ³J_{CX} и ³J_{DX} (табл. 3). Сравнение с экспериментальными КССВ [3] свидетельствует о невозможности однозначного выбора одного конформера как для цис-, так и для транс-изомеров; ни один из наборов расчетных констант, как показывают значения $\Sigma \mid \Delta J \mid$, не соответствует в полной мере данным ЯМР¹Н. В основном это обусловлено не погрешностями в параметризации уравнения [26] и не отсутствием поправки на влияние среды (в каждом случае рассчитывалась изолированная молекула в вакууме), а невозможностью реализации торсионных углов, соответствующих экспериментальным КССВ. Действительно, для всех значений ф любого конформера существует эмпирическая зависимость (табл. 3): $\phi_{AX} + \phi_{BX}$ (либо $\phi_{AX} - \phi_{BX}$) и $\phi_{CX} + \phi_{DX}$ (либо $\phi_{CX} - \phi_{DX}$) = $= 116,0 - 121,6^{\circ}.$

Относительные	энергии	конформеров	молекул	соединений	I—X	(ккал/мол	5)

Соети-		I	MM2	AM1		
нение	Конформер	E	Δε	- <i>E</i>	Δε	
1	2	3	4	5	6	
I	цис-			1 1		
	C 4a5e	5,4	0,0	1892,8	0,0	
	C 4e5a	6,0	0,6	1892,6	0,2	
	ПК 1 5е	5,7	0,3	1892,7	0,1	
	ПК 1 5а	6,3	0,9	1892,4	0,4	
	ПК 2 5е	5,4	0,0	1892,5	0,3	
	TIK 2 5a	6,4	1,0	1891,8	1,0	
	1,4-T 5e	7,7	2,3	1889,9	2,9	
	1,4-T 5a	8,5	3,1	1889,9	2,9	
	3,6-T 4e	9,2	3,8	1889,3	3,5	
	3.6-T 4a	7,9	2,5	1889,0	3,8	
	2,5-T	13,1	7,7			
	транс-	- /				
	C 4e5e	4.8	0.0	1893,9	0,1	
	ПК 1	5.0	0.2	1894,0	0,0	
	ПК 2	5.2	0.4	1893.0	1.0	
	1 4-T	6.5	17	1892.4	1.6	
	3.6-T	7.8	3.0	1890 5	3.5	
	2.5-T	11.8	7.0			
	2,5-1 AFC	-CH-+	1.2		13	
	$\Delta E C$	()CH2*	0.6		1,0	
**			0,0		-,-	
11	<i>цис-</i> <i>С</i> 5262	52	0.0	1802.8	0.0	
	C Seba	5,5	0,0	1892,0	0,0	
	C Jabe	0,0	0,7	1892,0	0,0	
	TIK 1 5e	5,4	1.0	1892,7	0,1	
	TIK I 5a	0,5	1,0	1802.4	0,3	
	TIK 2 5e	5,5	0,2	1092,4	1.9	
	11K 2 5a	0,4	1,1	1091,5	1,0	
	1,4-1 Se	7,2	1,9	1090,0	2,5	
	1,4-T 5a	8,5	3,2	1009,0	5,0	
	3,6-T 5e	8,5	3,2	1888,0	4,2	
	3,6-T 5a	9,3	4,0	1887,9	4,9	
	2,5-T	13,2	7,9			
	транс-			1007.4	0.0	
	C 5e6e	4,8	0,0	1893,4	0,0	
	ПК 1	5,1	0,3	1893,3	0,1	
	ПК 2	5,1	0,3	1892,6	0,8	
	1,4-T	7,0	2,2	1891,3	2,1	
	3,6-T	7,3	2,5	1890,4	3,0	
	2,5-T	11,7	6,9	-		
	$\Delta E C$	(5)CH3	1,2		1,4	
	$\Delta E C$	(6)CH3*	0,5		0,6	
ш	C 5e	3,3	0,0	1614,9	0,0	
	C 5a	4,5	1,2	1614,0	0,9	
IV	C 4e	3,3	0,0	1614,5	0,0	
	C 4a	4,0	0,7	1613,8	0,7	

1179

0	ĸ	0	н	ч	а	н	и	е	τ	а	б	л	и	п	ы	2
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

-		·			
1	2	3	4	5	6
V	C 6e	3,3	0,0	1613,7	0,0
	C 6a	4,0	0,7	1613,4	0,3
VI	K 3e5e	6,1	0,2	1652,6	5,0
	K 3a5e	5,9	0,0	1657,6	0,0
	K 3e5a	7,2	1,3	1651,6	6,0
	K 3a5a	7,1	1,2	1656,9	1,0
	$\Delta E C$	(5)CH3	1,2		1,0
	ΔE N	N—H	0,1		5,0
VII	K 3e4e	6,2	0,1	1651,4	5,4
	K 3a4e	6,1	0,0	1656,8	0,0
	K 3e4a	8,1	2,0	1652,0	4,8
	K 3a4a	8,0	1,9	1655,1	1,7
	$\Delta E C_0$	(4)CH3	1,9		1,7
	ΔE N	Ň—H	0,1		3,15,4
VIII	К Зебе	6,3	0,2	1651,1	5,0
	К Забе	6,1	0,0	1656,1	0,0
	К Зеба	8,6	2,5	1651,0	5,1
	К Заба	8,5	2,4	1655,8	0,3
	$\Delta E C_0$	(6)CH3	2,4		0,3
	ΔE M	N-H	0,10,2		5.05,1
IX	транс-				
	K 3e4e5e	7,4	0,2	1930,9	5,4
	K 3a4e5e	7,2	0,0	1936,3	0,0
-	цис-			1000.0	
	K 3e4e5a	8,6	0,1	1929,8	5,5
	K 3a4e5a	8,5	0,0	1935,3	0,0
	К зечазе	9,3	0,8	1931,0	4,3
	$\Delta E C_{i}$	(4)CH3	2,0		2,0
	$\Delta E C_{i}$	(5)CH3	1,3		1,0
37	ΔE r	N—Н 	0,10,2		3,33,3
х	транс-	7.4	0.1	1020.0	5.0
	K SeSece	7,4	0,1	1930,9	5,0
	K Sajebe	7,5	0,0	1955,9	0,0
	440- K 305060	87	0.1	1020 5	5 8
	K 325260	0,1 8.6	0,1	1929,5	0.4
	K 305062	0,0	1.0	1934,9	40
	K 305060	9,0	1,0	1035 3	4,9
	Λ Jajeba	1 7,J	13	1700,0	0,0
			1,0		0,0
	DE U	(6) C 113	2,2	ł	0,0

* $\Delta E C_{(5)}CH_3 = E C 4e5a - E C 4 e5e$ (либо E K 3a5a - E K 3a5e;либо E K 3a4e5a - E K 3a4e5e); приведено наименьшее из возможных значений Δ . Аналогичным образом получены значения $\Delta E C_{(4)}CH_3$ и $\Delta E C_{(6)}CH_3$. Значения торсионных углов между протонами (град.) и КССВ (Гц) для наиболее стабильных конформеров молекул эфиров I и II

Соеди- нение	Метод расчета	Конформер	ϕ_{AX}	$\phi_{ m BX}$	$\phi_{\rm CX}$	$\phi_{ m DX}$	³ J _{AX}	³ J _{BX}	³ J _{CX}	$^{3}J_{\text{DX}}$	Σ] Δ /] •
1	2	3	4	5	6	7	8	9	10	11	12
		**									
цис-І	MM2	C 4e5a	57,2	64,5	57,7	·	3,9	3,0	3,9	·—	5,6
,		C 4a5e	177,8	56,1	54,0		11,4	4,1	4,4	·	5,1
	Į	ПК 1 5е	177,3	60,2	49,6	· '	11,4	3,5	5,0	·	6,3
		ПК 1 5а	60,5	61,6	53,6		3,5	3,4	4,4		6,1
		ПК 2 5е	176,4	54,8	55,0		11,3	4,2	4,2	·	4,7
		ПК 2 5а	52,8	68,3	61,2		4,5	2,7	3,4	•	5,0
	AM1	C 4e5a	48,4	72,8	46,0		5,1	2,3	5,5	•	6,7
		C 4a5e	175,6	54,2	45,4	مينده .	11,3	4,3	5,6	·	6,0
		ПК 1 5е	177,6	55,9	43,9		11,4	4,1	5,8	·	6,5
		ПК 1 5а	50,3	71,1	43,8	4 Recent	4,8	2,4	5,8	·	7,2
		ПК 2 5е	171,6	50,6	47,6	•	11,2	4,8	5,3	·	5,7
	1	TIK 2 5a	41,7	78,9	49,9	·	6,1	1,9	4,9	·	5,5
				•			· · ·				
							l	1		l	

Окончание табл. 3

1	2	3	4	5	6	7	8	9	10	11	12
транс-І	MM2	C 4e5e	179,7	58,1	179,8	·	11,4	3,8	11,4	·	3,6
		ПК 1	176,6	60,6	175,3	•	11,4	3,5	11,4	•	3,9
		ПК 2	175,3	53,7	175,9		11,3	4,4	11,4	·	2,9
	AM1	C 4e5e	171,4	50,5	167,7	·	11,2	4,8	11,0	•	2,4
		TIK 1	173,7	52,4	163,8		11,3	4,6	10,7	•	2,0
		TIK 2	166,0	45,6	172,0	·	10,8	5,5	11,3	·	3,8
uuc-II	MM2	C 5e6a	59,9	·	54,4	65,3	3,4		4,5	3,1	6,0
.,		C 5a6e	54,8	·	175,1	55,2	4,0		12,0	4,4	3,8
		ПК 1 5e	57,0	•	172,1	52,4	3,7		11,8	4,8	3,3
		IIK 1 5a	63,0	•	50,7	68,7	3,0	·	5,1	2,8	6,1
	.]	TIK 2 5e	52,0	· ·	178,1	57,8	4,4	· <u> </u>	12,0	4,0	4,6
		TIK 2 5a	55,2	·	58,1	62,2	4,0	· <u> </u>	4,0	3,5	6,3
	AM1	C 5e6a	52,4	•	39,9	76,8	4,3	•	6,7	2,1	5,3
		C 5a6e	48,5	• •••••	165,1	48,4	4,8	·	11,4	5,4	4,6
		ПК 1 5е	49,4	•	163,5	46,8	4,7	·	11,2	5,6	4,5
		ПК 1 5а	53,3		38,4	78,2	4,2		6,9	2,1	4,6
		ПК 2 5е	45,3	·	169,0	52,1	5,3	•	11,7	4,9	4,9
		ПК 2 5а	45,8		45,1	71,9	5,2	•	5,9	2,5	6,6
транс-II	MM2	C 5e6e	178,0	•	177,3	57,0	10,8		12,0	4,2	3,7
•		ПК 1	174,1	·	173,6	53,6	10,7		11,9	4,6	3,9
		ПК 2	176,5	•	179,3	59,8	10,8		12,0	3,8	3,3
	AM1	C 5e6e	174,9	·	164,2	47,6	10,7		11,3	5,5	4,2
		ПК 1 .	176,5	•	162,4	45,9	10,8	·	11,1	5,8	4,2
		ПК 2	166,0	·	167,8	50,9	10,3	·	11,6	5,0	3,6

• $\sum \Delta I = \sum J_{3KC\Pi} - J_{pacy}$. Экспериментальные КССВ [3]: *цис*-I ${}^{3}J_{AX} = 7,6 \Gamma \mu$, ${}^{3}J_{BX} = 4,5 \Gamma \mu$, ${}^{3}J_{CX} = 3,5 \Gamma \mu$; *mpanc*-I ${}^{3}J_{AX} = 11,2 \Gamma \mu$, ${}^{3}J_{BX} = 4,6 \Gamma \mu$, ${}^{3}J_{CX} = 8,8 \Gamma \mu$; *цис*-II ${}^{3}J_{AX} = 3,6 \Gamma \mu$, ${}^{3}J_{CX} = 8,8 \Gamma \mu$, ${}^{3}J_{CX} = 9,1 \Gamma \mu$, ${}^{3}J_{CX} = 10,6 \Gamma \mu$, ${}^{3}J_{DX} = 3,6 \Gamma \mu$.

1182

Нетрудно видеть (табл. 4), что удовлетворяющие экспериментальным КССВ углы, установленные по уравнению [26], отклоняются от выявленной эмпирической зависимости на 20...30° (за исключением *mpaнc*-I). Отсюда следует, что реальному состоянию молекул эфиров I и II в полном соответствии с расчетными данными отвечает не один, а несколько конформеров. Для *mpaнc*-изомеров преобладает софа C4e5e (C5e6e) с возможным вкладом ПК 1 и ПК 2, а для *цис*-изомеров, в противоположность результатам [3], характерно многокомпонентное равновесие с участием форм C4a5e (C5e6a), C4e5a (C5a6e) и семейства полукресел.

Таблица 4

Конфи-		I		Ш					
гурация	ϕ_{AX}	$\phi_{\rm BX}$	$\phi_{AX^{\pm}}\phi_{BX}$	φ _{cx}	$\phi_{ m DX}$	$\phi_{\rm CX^{\pm}}\phi_{\rm DX}$			
цис*- транс-	140,5 (31) 172,0	53 (122) 52,0	87,5 (91) 120	145 (25) 157,5	54 (95) 61,0	91 (95) 96,5			

Значения торсионных углов (град.), соответствующие экспериментальным КССВ эфиров I и II

* Для иис-изомеров определено два альтернативных набора углов.

Таким образом, исследованные соединения относятся к конформационно гибким системам, предполагающим существование вблизи точки минимума заметных количеств геометрически неэквивалентных форм [28, 29]. Полученные результаты дополняют базу данных по стереохимии 1,3,2-оксазаборинанов и открывают возможность прогнозирования конформационного состава молекул этих соединений с несколькими хиральными центрами.

СПИСОК ЛИТЕРАТУРЫ

- 1. Калюский А. Р., Кузнецов В. В., Шапиро Ю. Е., Бочкор С. А., Грень А. И. // ХГС. 1990. № 10. С. 1424.
- 2. Калюский А. Р. Автореф. дис. ...канд. хим. наук. Одесса, 1990. 21 с.
- Калюский А. Р., Кузнецов В. В., Тимофеев О. С., Грень А. И. // ЖОХ. 1990. Т. 60. С. 2093.
- 4. Калюский А. Р., Кузнецов В. В., Грень А. И. // // ЖОХ. 1991. Т. 61. С. 1351.
- 5. Калюский А. Р., Кузнецов В. В., Брусиловский Ю. Э., Горбатюк В. Я., Глухова М. Г., Грень А. И. // ЖОрХ. 1990. Т. 26. С. 2498.
- Калюский А. Р., Кузнецов В. В., Кругляк Н. Е., Юданова И. В., Тригуб Л. П., Грень А. И. // Деп. в ВИНИТИ, № 1113-В 90; РЖХ. — 1990. — № 11. — Б1095.
- 7. Bingham R. C., Dewar M. J. S., Lo D. H. // J. Amer. Chem. Soc. 1975. Vol. 97. P. 1294.
- 8. Birner P., Hofmann H. // Int. J. Quant. Chem. 1982. Vol. 21. P. 833.
- 9. Allinger N. L. // J. Amer. Chem. Soc. 1977. Vol. 99. P. 8127.
- Dewar M. J. S., Zoebisch E. G., Healy E. P., Stewart J. J. P. // J. Amer. Chem. Soc. 1985. Vol. 107. — P. 3902.
- 11. Dewar M. J. S., Jie C., Zoebisch E. G. // Organometallics. 1988. Vol. 7. P. 513.
- 12. Грень А. И., Кузнецов В. В. Химия циклических эфиров борных кислот. Киев: Наукова думка, 1988. 160 с.
- 13. Seip R., Seip H. // J. Mol. Struct. 1975. Vol. 28. P. 441.
- 14. Внутреннее вращение молекул / Под ред. В. Орвилл-Томаса. М.: Мир, 1977. С. 373.
- 15. Кузнецов В. В., Калюский А. Р., Грень А. И. // ХГС. 1996. № 1. С. 106.
- Самитов Ю. Ю., Унковский Б. В., Бойко И. П., Жук О. И., Малина Ю. Ф. // ЖОрХ. 1973. — Т. 9. — С. 193.
- 17. Самитов Ю. Ю., Жук О. И., Унковский Б. В., Бойко И. П., Малина Ю. Ф. // ЖОрХ. 1973. Т. 9. С. 201.

- Данилова О. И., Самитов Ю. Ю., Бойко И. П., Бордюкова Т. О., Унковский Б. В. // Деп. в ОНИИТЭХИМ, № 1056 хп-Д80; РЖХ. — 1981. — № 9. — Б329.
- Latypova F. N., Zorin V. V., Zlotskii S. S., Rakhmankulov D. L., Karakhanov R. A., Bartok M., Molnar A. // Acta phys. chem. — 1981. — Vol. 27. — P. 87.
- 20. Алимирзоев Ф. А., Степанянц А. У., Латыпова Ф. Н., Унковский Б. В. // Деп. в ОНИИ-ТЭХИМ, № 3093/79 деп; РЖХ. — 1980. — № 3. — Б325.
- 21. Данилова О. И., Самитов Ю. Ю., Бойко И. П., Бордюкова Т. О., Унковский Б. В. // Деп. в ОНИИТЭХИМ, № 1055 хп-Д80; РЖХ. 1981. № 9. Б330.
- Данилова О. И., Самитов Ю. Ю., Бойко И. П., Бордюкова Т. О., Унковский Б. В. // Деп. в ОНИИТЭХИМ, № 539 хп-Д81; РЖХ. — 1981. — № 24. — Б392.
- Данилова О. И., Самитов Ю. Ю., Бойко И. П., Унковский Б. В. // Деп. в ОНИИТЭХИМ, № 1058 хп-Д80; РЖХ. — 1981. — № 9. — Б328.
- 24. Booth H., Lemieux R. U. // Can. J. Che. 1971. Vol. 49. P. 777.
- Cook M. J., Jones R. A. Y., Katritzky A. R., Manas M. M., Richards A. C., Sparrow A. J., Trepanier D. L. // J. Chem. Soc. Perkin Trans. II. – 1973. – N 4. – P. 325.
- 26. Durette P. L., Horton D. // Org. Mag. Res. 1971. Vol. 3. P. 417.
- 27. Huggins M. L. // J. Amer. Chem. Soc. 1953. Vol. 75. P. 4123.
- Shishkin O. V., Polyakova A. S., Struchkov Yu. T., Desenko S. M. // Mendeleev Commun. 1994. — N 5. — P. 182.
- 29. Шишкин О. В. // Изв. РАН. Сер. хим. 1997. № 12. С. 2095.

Физико-химический институт им. А. В. Богатского НАН Украины, Одесса 270080 e-mail: physchem@paco.net Поступило в редакцию 10.09.98