Т. А. Строганова1*, В. М. Редькин1, Г. А. Коваленко1,
В. К. Василин1, Г. Д. Крашенин1

СИНТЕЗ 2-МЕТИЛ-1-[(5-МЕТИЛФУРАН-2-ИЛ)МЕТИЛ]-
И 2-МЕТИЛ-1-[(5-МЕТИЛПИРРРОЛ-2-ИЛ)МЕТИЛ]-
1H-БЕНЗИМИДАЗОЛОВ

Разработан метод синтеза 2-метил-1-[(5-метилфуран-2-ил)метил]-1H-бензimidазолов на основе внутримолекулярной циклизации вицинальных N-[(5-метилфуран-2-ил)метил]аминоанилидов. Изучены реакции протолитического раскрытия фуранового кольца, приводящие к образованию дикетонного фрагмента, который используется далее для формирования N-замещённого пиррольного кольца по методу Паля—Кнорра. Показано влияние природы амина на протекание циклизации.

Ключевые слова: 1,2-дизамещённые бензimidазлы, N-замещенные пирролы, фуран, раскрытие цикла, циклизация.

Производные бензimidазлы в течение многих лет представляют большой интерес для медицинской химии. Среди них выявлены соединения, обладающие антигистаминной [1], антибактериальной [1, 2] активностью, а также способные выступать в роли селективных антагонистов рецептора нейро-пептида YY1 [3], рецепторов hCRTh2 [4], ингибитора фактора Ха [5]. Важной особенностью производных бензimidазлы является их ярко выраженная активность в отношении вируса иммунодефицита человека (ВИЧ), герпеса, гриппа, человеческого цитомегаловируса [1, 6–12], вируса, вызывающего гепатит В [13]. Бензimidазлы обладают цитостатической, местной анестезирующей, гипотензивной и жаропонижающей активностью [1, 14].

Среди соединений, содержащих бензimidазольный фрагмент, значительное место занимают 1,2-дизамещённые бензimidазлы. Существующие в настоящее время методы их синтеза можно разделить на следующие группы: N-алкилирование готового 2-замещённого бензimidазольного ядра в присутствии сильного основания [8, 9, 15, 16], N-алкилирование orto-нитроанилидов с последующей восстановительной циклизацией [9, 17], циклоденсация N-замещённых orto-аминоанилидов [18]. Также 1,2-дизамешённые бензimidазлы могут быть получены в результате конденсации N-замещённых orto-фенилендиаминов с альдегидами в присутствии различных кислотных катализаторов [19–27].

Наше внимание привлекли бензimidазлы, содержащие в положении 1 фурурильный фрагмент. Известны многочисленные способы синтеза 1-(фуран-2-ил)метилбензimidазолов: в результате взаимодействия фурурола с orto-фенилендиамином с использованием различных катализаторов [28–36], на основе реакции фурурола с orto-нитроанилином [37], а также в результате N-алкилирования готового бензimidазольного цикла фурурильным спиртом [38].

Однако среди описанных в литературе фурилсодержащих бензimidазолов отсутствуют соединения, содержащие в положении 1 5-метилфурурильный фрагмент. Интерес к синтезу подобных структур заключается в способности диалкилфурана к рециклизации в другие гетероциклы [39, 40], что позволяет
ввести в положение 1 бензимидазольного кольца гетероциклические фрагменты, введение которых иным путём затруднительно.

Наиболее подходящим методом синтеза 1-(5-метилфурурイル)бензимидазолов, по нашему мнению, является катализируемая кислотами внутримолекулярная циклизация винцинальных N-фурфуриламиноанилидов, подобная приведённой в работе [27].

В данной работе представлены результаты по синтезу 2-метил-1-[(5-метилфуран-2-ил)метили]-1H-бензимидазолов, изучены реакции катализируемого кислотами раскрытия фуранового фрагмента и его циклизации в пиррольный цикл.

Для получения 1-[(5-метилфуран-2-ил)метил]бензимидазолов 6 из соответствующих opto-нитроанилинов 1 нами использована следующая последовательность реакций.

Полученные в результате конденсации opto-аминоанилидов 3а–с с 5-метилфурурфурилом азометины 4а–с гладко подвергаются восстановлению связи C=N под действием NaBH₄, образуя N-фурфурилзамешённые амины 5а–с с выходами от 67 до 77% (табл. 1). В спектрах ЯМР ¹H соединений 5а–с сигналы протонов метиленового звена, расположенного рядом с аминогрупой, имеют вид дублетов с КССВ 5,0–5,1 Гц, а сигнал протона аминогруппы представляет собой тройку с той же КССВ в области 5,27–5,41 Гц, 13С наблюдается характеристический сигнал удлинения аминогруппы с диапазоном 168,6–168,8 м. д. (табл. 2).

Внутримолекулярная циклизация соединений 5а–с, приводящая к формированию бензимидазольного кольца, протекает при 60 °C в этанольном растворе, насыщенном сухим газообразным хлороводородом до концентрации 10%. Выходы 1-фурфурилбензимидазолов 6а–с составляют 84–89% (табл. 1). В отличие от аминоанилидов 5а–с в ИК спектрах соединений 6а–с (табл. 2) отсутствуют полосы поглощения валентных колебаний вторичной аминогруппы в области 3369–3372 см⁻¹, амидной группы в области 3223–3240
Доказательством протекания циклизации является исчезновение в спектрах ЯМР \(^1\text{H}\) сигналов протонов амидной и аминогрупп и изменение мультиплетности сигналов протонов метиленового звена, которые резонируют в виде синглета интенсивностью 2Н в области 5.31–5.37 м. д., а также отсутствие сигнала углерода амидной карбонильной группы в спектрах ЯМР \(^{13}\text{C}\) соединений 6a–c (табл. 2).

При кипячении фуфурилбензимидазолов 6a–c в спиртовом растворе хлороводорода (20% раствор) в течение 6–20 ч происходит протолитическое раскрытие фуранового кольца с образованием соответствующих дикетонов 7a–c (табл. 1, 2). Отметим, что реакция раскрытия фуранового кольца и формирования дикетона является равновесной, что уже описано нами ранее при изучении реакции рециклизации фурилметанов ряда 3-аминотиено-[2,3-b]пирлина [41]. Целевые дикетоны 7a–c выделены из реакционной смеси колоночной хроматографией.

<table>
<thead>
<tr>
<th>Соединение</th>
<th>Брутто-формула</th>
<th>Найдено, %</th>
<th>Вычислено, %</th>
<th>Т. пл., °C</th>
<th>Выход, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5а</td>
<td>C({14})H({16})N({2})O({2})</td>
<td>68.85</td>
<td>6.54</td>
<td>11.41</td>
<td>91–92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68.83</td>
<td>6.60</td>
<td>11.47</td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>C({15})H({18})N({2})O({2})</td>
<td>69.69</td>
<td>7.00</td>
<td>10.76</td>
<td>97–99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>69.74</td>
<td>7.02</td>
<td>10.84</td>
<td></td>
</tr>
<tr>
<td>5c</td>
<td>C({15})H({18})N({2})O({3})</td>
<td>65.62</td>
<td>6.53</td>
<td>10.13</td>
<td>101–102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65.68</td>
<td>6.61</td>
<td>10.21</td>
<td></td>
</tr>
<tr>
<td>6а</td>
<td>C({14})H({14})N(_{2})O</td>
<td>74.36</td>
<td>6.29</td>
<td>12.29</td>
<td>93–94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74.31</td>
<td>6.24</td>
<td>12.38</td>
<td></td>
</tr>
<tr>
<td>6b</td>
<td>C({15})H({18})N(_{2})O</td>
<td>75.01</td>
<td>6.66</td>
<td>11.59</td>
<td>94–95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74.97</td>
<td>6.71</td>
<td>11.66</td>
<td></td>
</tr>
<tr>
<td>6c</td>
<td>C({15})H({18})N({2})O({2})</td>
<td>70.24</td>
<td>6.24</td>
<td>11.01</td>
<td>97–98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70.29</td>
<td>6.29</td>
<td>10.93</td>
<td></td>
</tr>
<tr>
<td>7а</td>
<td>C({14})H({16})N({2})O({2})</td>
<td>68.78</td>
<td>6.57</td>
<td>11.52</td>
<td>65–67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68.83</td>
<td>6.60</td>
<td>11.47</td>
<td></td>
</tr>
<tr>
<td>7b</td>
<td>C({15})H({18})N(_{2})O</td>
<td>69.79</td>
<td>6.98</td>
<td>10.80</td>
<td>103–104</td>
</tr>
<tr>
<td></td>
<td></td>
<td>69.74</td>
<td>7.02</td>
<td>10.84</td>
<td></td>
</tr>
<tr>
<td>7c</td>
<td>C({15})H({18})N({2})O({3})</td>
<td>65.61</td>
<td>6.63</td>
<td>10.15</td>
<td>141–142</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65.68</td>
<td>6.61</td>
<td>10.21</td>
<td></td>
</tr>
<tr>
<td>9а</td>
<td>C({20})H({21})N(_{3})O</td>
<td>75.24</td>
<td>6.59</td>
<td>13.11</td>
<td>113–114</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75.21</td>
<td>6.63</td>
<td>13.16</td>
<td></td>
</tr>
<tr>
<td>9b</td>
<td>C({20})H({21})N({3})O({2})</td>
<td>71.56</td>
<td>6.33</td>
<td>12.46</td>
<td>135–136</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71.62</td>
<td>6.31</td>
<td>12.53</td>
<td></td>
</tr>
<tr>
<td>9c</td>
<td>C({22})H({23})N(_{3})O</td>
<td>76.55</td>
<td>6.66</td>
<td>12.12</td>
<td>127–128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76.49</td>
<td>6.71</td>
<td>12.16</td>
<td></td>
</tr>
<tr>
<td>9d</td>
<td>C({21})H({20})FN(_{3})</td>
<td>75.59</td>
<td>6.08</td>
<td>12.53</td>
<td>69–70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75.65</td>
<td>6.05</td>
<td>12.60</td>
<td></td>
</tr>
<tr>
<td>9e</td>
<td>C({22})H({23})N({3})O({2})</td>
<td>73.04</td>
<td>6.43</td>
<td>11.70</td>
<td>87–88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73.11</td>
<td>6.41</td>
<td>11.63</td>
<td></td>
</tr>
<tr>
<td>9f</td>
<td>C({20})H({20})N(_{4})</td>
<td>76.00</td>
<td>6.35</td>
<td>17.62</td>
<td>112–113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75.92</td>
<td>6.37</td>
<td>17.71</td>
<td></td>
</tr>
<tr>
<td>9g</td>
<td>C({22})H({23})N(_{3})</td>
<td>80.15</td>
<td>7.07</td>
<td>12.69</td>
<td>85–86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80.21</td>
<td>7.04</td>
<td>12.76</td>
<td></td>
</tr>
<tr>
<td>Соединение</td>
<td>ИК спектр, ν, см⁻¹</td>
<td>Спектр ЯМР ¹H, δ, м. д. (J, Гц)</td>
<td>Спектр ЯМР ¹³C, δ, м. д.</td>
<td>Масс-спектр, m/z (I_%ион, %)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>5а</td>
<td>3369, 3420, 1649, 1602, (2H, d, J = 5.1, NHCH₃); 5.40 (1H, t, J = 5.9, NHCH₃); 5.97 (1H, d, J = 3.0, H₄ Fur); 6.17 (1H, d, J = 3.0, H₃ Fur); 6.35–6.54 (1H, m, H Ar); 6.93–7.06 (1H, m, H Ar); 7.15 (1H, d, J = 7.3, H Ar); 9.14 (1H, s, NHCO)</td>
<td>13.3; 23.2; 43.6; 106.3; 107.7; 111.2; 116.0; 123.9; 125.9; 126.1; 140.2; 150.5; 151.2; 168.6</td>
<td></td>
<td>245 [M+H]⁺ (10), 244 [M]⁺ (80), 226 (12), 199 (21), 186 (10), 150 (26), 133 (12), 132 (13), 119 (21), 108 (25), 107 (14), 96 (16), 95 (100), 80 (16), 67 (10), 52 (10), 43 (26)</td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>3377, 3223, 1641, 1610, 1574, 1534, 1520, 1425, 1369, 1322, 1276, 1214, 1175, 1138, 1019, 944, 832, 795, 785</td>
<td>2.00 (3H, s, COCH₃); 2.18 (3H, s, CH₃); 2.22 (3H, s, CH₃); 3.73 (3H, s, OCH₃); 4.21 (2H, d, J = 5.0, NHCH₂); 5.27 (1H, t, J = 5.0, NHCH₂); 5.97 (1H, d, J = 2.9, H₄ Fur); 6.16 (1H, d, J = 2.9, H₃ Fur); 6.36 (1H, d, J = 8.1, H Ar); 6.53 (1H, s, H Ar); 6.97 (1H, d, J = 8.1, H Ar); 9.05 (1H, s, NHCO)</td>
<td>13.3; 20.5; 21.2; 43.3; 106.3 (2C); 107.7; 111.8; 116.7; 125.9; 135.2; 141.9; 150.4; 151.3; 168.6</td>
<td></td>
<td>259 [M+H]⁺ (18), 258 [M]⁺ (52), 256 (60), 241 (30), 214 (17), 213 (73), 199 (13), 171 (12), 164 (30), 147 (10), 146 (23), 145 (11), 133 (58), 132 (12), 122 (10), 121 (21), 106 (12), 104 (10), 96 (12), 95 (100), 79 (14), 78 (12), 77 (15), 51 (12), 51 (26)</td>
</tr>
<tr>
<td>5с</td>
<td>3373, 3232, 1650, 1610, 1558, 1533, 1517, 1436, 1365, 1325, 1283, 1215, 1141, 1029, 943, 841, 791, 765</td>
<td>2.00 (3H, s, COCH₃); 2.22 (3H, s, CH₃); 3.67 (3H, s, OCH₃); 4.21 (2H, d, J = 5.0, NHCH₂); 5.41 (1H, t, J = 5.0, NHCH₂); 5.97 (1H, d, J = 3.0, H₄ Fur); 6.36 (1H, d, J = 3.0, H₃ Fur); 6.16–6.19 (1H, m, H Ar); 6.26 (1H, d, J = 2.2, H Ar); 6.93 (1H, d, J = 2.2, H Ar); 9.05 (1H, s, NHCO)</td>
<td>13.3; 23.1; 44.0; 54.9; 97.5; 100.4; 106.3; 107.8; 117.1; 127.2; 143.7; 150.5; 151.2; 158.2; 168.8</td>
<td></td>
<td>274 [M]⁺ (70), 272 (21), 257 (12), 256 (14), 230 (15), 229 (35), 215 (21), 180 (25), 179 (66), 162 (11), 138 (15), 137 (40), 96 (41), 95 (100), 94 (11), 91 (10), 65 (10), 43 (69)</td>
</tr>
<tr>
<td>6а</td>
<td>1614, 1566, 1516, 1453, 1400, 1327, 1285, 1232, 1214, 1156, 1143, 1014, 937, 794, 759, 741</td>
<td>2.16 (3H, s, CH₃); 2.62 (3H, s, CH₃); 5.37 (2H, s, CH₂); 5.99 (1H, d, J = 3.0, H₄ Fur); 6.39 (1H, d, J = 3.0, H₃ Fur); 7.07–7.23 (2H, m, H-5,6); 7.53 (1H, d, J = 7.3, H-7); 7.58 (1H, d, J = 8.1, H-4)</td>
<td>13.2 (2-CH₃); 13.6; 42.6 (NCH₂); 106.5; 109.5; 110.0 (C-7); 118.2 (C-4); 121.3 (C-6); 121.5 (C-5); 135.0 (C-7a); 142.2 (C-3a); 148.0; 151.6; 151.8 (C-2)</td>
<td></td>
<td>226 [M⁺] (78), 145 (13), 133 (10), 132 (63), 131 (22), 97 (12), 90 (54), 78 (13), 76 (21), 67 (44), 66 (15), 65 (17), 64 (16), 63 (31), 55 (22), 53 (19), 52 (23), 51 (57), 50 (28), 43 (33)</td>
</tr>
<tr>
<td>6б</td>
<td>1618, 1572, 1524, 1453, 1449, 1396, 1338, 1279, 1230, 1192, 1020, 994, 854, 807, 783, 734</td>
<td>2.17 (3H, s, CH₃); 2.41 (3H, s, CH₃); 2.57 (3H, s, CH₃); 5.31 (2H, s, CH₂); 6.00 (1H, d, J = 3.0, H₃ Fur); 6.35 (1H, d, J = 3.0, H₃ Fur); 6.95 (1H, d, J = 8.1, H-5,6); 7.32 (1H, s, H-7); 7.37–7.40 (1H, m, H-4)</td>
<td>13.2 (2-CH₃); 13.6; 21.4 (6-CH₃); 42.5 (NCH₂); 106.5; 109.4; 109.8 (C-7); 117.8 (C-4); 122.6 (C-5); 130.7 (C-6); 135.2 (C-7a); 140.3 (C-3a); 148.1; 151.0 (C-2); 151.7</td>
<td></td>
<td>240 [M⁺] (55), 147 (10), 146 (47), 145 (21), 96 (35), 95 (100), 91 (10), 79 (10), 67 (17), 65 (17), 55 (10), 53 (11), 51 (25), 43 (33)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>6c</td>
<td>1620, 1578, 1526, 1484</td>
<td>2.17 (3H, s, CH₃); 2.55 (3H, s, CH₃); 3.79 (3H, s, OCH₃); 5.32 (2H, s, CH₂); 6.00 (1H, d, J = 3.0, H-4 Fur); 6.38 (1H, d, J = 3.0, H-3 Fur); 6.76 (1H, d, d, J = 8.8, J = 2.2, H-5); 7.14 (1H, d, J = 2.2, H-7); 7.38 (1H, d, J = 8.8, H-4)</td>
<td>13.2 (2-CH₃); 13.6; 42.6 (NCH₃); 55.6 (6-COCH₃); 94.2 (C-7); 106.5; 109.5 (C-5); 110.0; 118.5 (C-4); 135.6 (C-7a); 136.5 (C-3a); 148.1; 150.6; 151.7 (C-2); 155.4 (C-6)</td>
<td>256 [M⁺] (76), 163 (11), 162 (63), 120 (10), 96 (24), 95 (100), 92 (10), 77 (20), 67 (13), 63 (11), 55 (14), 52 (11), 51 (13), 43 (32)</td>
<td></td>
</tr>
<tr>
<td>7a</td>
<td>1705, 1617, 1516, 1467</td>
<td>2.10 (3H, s, COCH₃); 2.38 (3H, s, 2-CH₃); 2.73–2.76 (4H, m, (CH₂)₂); 5.30 (2H, s, NCH₂); 7.07–7.19 (2H, m, H-5,6); 7.33–7.44 (1H, m, H-7); 7.48–7.59 (1H, m, H-4)</td>
<td>13.2 (2-CH₃); 29.4 (COCH₃); 33.1; 36.8 (NCH₂); 109.6 (C-7); 118.1 (C-4); 121.2 (C-6); 121.4 (C-5); 135.7 (C-7a); 142.2 (C-3a); 152.3 (C-2); 203.7; 207.2</td>
<td>245 [M⁺H⁺] (14), 244 [M⁺] (59), 147 (22), 146 (81), 145 (100), 132 (27), 131 (46), 119 (11), 118 (12), 75 (75), 95 (25), 91 (14), 76 (25), 63 (15), 51 (38), 43 (49)</td>
<td></td>
</tr>
<tr>
<td>7b</td>
<td>1697, 1632, 1595, 1533</td>
<td>2.10 (3H, s, COCH₃); 2.35 (3H, s, 6-CH₃); 2.38 (3H, s, 2-CH₃); 2.75–2.79 (4H, m, (CH₂)₂); 5.24 (2H, s, NCH₂); 6.95 (1H, d, J = 8.1, H-5); 7.17 (1H, d, J = 7.1)</td>
<td>13.1 (2-CH₃); 21.3 (6-CH₃); 29.4 (COCH₃); 33.1; 36.7; 51.8 (NCH₂); 109.5 (C-7); 117.7 (C-4); 122.6 (C-5); 130.6 (C-6); 135.9 (C-7a); 140.3 (C-3a); 151.7 (C-2); 203.8; 207.1</td>
<td>258 [M⁺] (44), 160 (30), 159 (100), 146 (10), 145 (11), 99 (15), 95 (28), 91 (22), 78 (10), 55 (12), 51 (11), 43 (36)</td>
<td></td>
</tr>
<tr>
<td>7c</td>
<td>1698, 1632, 1533, 1468, 1407, 1344, 1273, 1255, 1204, 1140, 1117, 1091, 1032, 825, 800, 698</td>
<td>2.11 (3H, s, COCH₃); 2.39 (3H, s, 2-CH₃); 2.78–2.84 (4H, m, (CH₂)₂); 3.79 (3H, s, OCH₃); 5.24 (2H, s, NCH₂); 6.74 (1H, d, d, J = 8.8, J = 2.2, H-5); 6.94 (1H, d, J = 2.2, H-7); 7.37 (1H, d, J = 8.8, H-4)</td>
<td>12.7 (2-CH₃); 28.6 (COCH₃); 32.8; 37.0; 52.1 (NCH₂); 55.1 (6-OCH₃); 93.4 (C-7); 110.1 (C-5); 118.8 (C-4); 136.6 (C-7a); 137.3 (C-3a); 151.1 (C-2); 156.2 (C-6); 203.1; 206.4</td>
<td>274 [M⁺] (76), 176 (43), 175 (100), 161 (13), 160 (21), 132 (18), 99 (15), 95 (16), 92 (14), 77 (25), 71 (15), 65 (24), 55 (10), 43 (28)</td>
<td></td>
</tr>
<tr>
<td>9a</td>
<td>1621, 1484, 1467, 1437</td>
<td>2.20 (3H, s, PyrCH₃); 2.34 (3H, s, 6-CH₃); 2.40 (3H, s, 2-CH₃); 5.09 (2H, s, NCH₂Pyr); 5.23 (1H, d, J = 3.3, H-3 Pyr); 5.39 (2H, s, NCH₃Fur); 5.65 (1H, d, J = 3.3, H-4 Pyr)</td>
<td>12.4; 13.8 (2-CH₃); 21.8 (6-CH₃); 40.5; 40.6 (NCH₂Pyr); 106.2; 106.3; 107.9; 110.1 (C-7); 111.1; 118.3 (C-4); 123.0 (C-5); 126.8; 129.6; 131.1 (C-6); 136.0 (C-7a); 140.9 (C-3a); 143.4; 151.4; 151.8 (C-2)</td>
<td>319 [M⁺] (6), 175 (9), 174 (64), 94 (11), 82 (6), 81 (100), 77 (6), 53 (22), 51 (5), 40 (10)</td>
<td></td>
</tr>
<tr>
<td>9b</td>
<td>1622, 1486, 1461, 1425, 1399, 1381, 1295, 1270, 1209, 1172, 1145, 1101, 1012, 941, 898, 805, 773, 724</td>
<td>2.19 (3H, s, PyrCH₃); 2.38 (3H, s, 2-CH₃); 3.68 (3H, s, OCH₃); 5.06 (2H, s, NCH₂Pyr); 5.25 (1H, d, J = 3.3, H-3 Pyr); 5.39 (2H, s, NCH₃Fur); 5.67 (1H, d, J = 3.3, H-4 Pyr); 6.17 (1H, d, d, J = 3.4, J = 0.8, H-3 Fur); 6.37 (1H, d, J = 3.4, J = 1.9, H-4 Fur); 6.73 (1H, d, d, J = 6.7, J = 2.5, H-5); 6.79 (1H, d, J = 2.5, H-7); 7.38 (1H, d, J = 8.7, H-4); 7.57 (1H, d, J = 1.9, H-5 Fur)</td>
<td>12.4; 13.9 (2-CH₃); 40.5; 40.6 (NCH₂Pyr); 55.9 (6-OCH₃); 94.2 (C-7); 106.4; 106.7; 107.8; 110.5 (C-5); 111.0; 119.1 (C-4); 126.6; 129.8; 136.4 (C-7a); 137.1 (C-3a); 143.3; 151.4 (2C); 155.8 (C-6)</td>
<td>335 [M⁺] (16), 175 (10), 174 (84), 94 (10), 82 (5), 81 (100), 53 (19), 43 (5)</td>
<td></td>
</tr>
<tr>
<td>Position</td>
<td>Chemical Shifts</td>
<td>Coupling Constants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9c</td>
<td>1.87 (3H, c, PyrCH2); 2.16 (3H, c, 6-CH3); 2.30 (3H, c, 2-CH3); 3.77 (3H, c, OCH3); 5.08 (2H, c, NCH3-Pyr); 5.85 (1H, d, J = 3.3, H-3 Pyr); 6.00 (1H, d, J = 3.3, H-4 Pyr); 6.72 (1H, d, J = 2.4, H-5); 6.77 (1H, d, J = 2.4, H-5); 7.01 (2H, d, J = 8.3, H-2,6 Ar); 7.18 (1H, d, J = 8.5, J = 8.6, H-4)</td>
<td>J3,5 Pyr = 3.3, H-3 Pyr; J2,4 = 2.4, H-5; J2,4 = 2.4, H-5; J2,4 = 8.3, H-2,6 Ar; J2,4 = 8.5, J = 8.6, H-4; J2,4 = 8.3, H-3 Pyr; J2,4 = 8.6, H-5; J2,4 = 8.5, J = 8.6, H-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9d</td>
<td>1.87 (3H, c, PyrCH2); 2.16 (3H, c, 6-CH3); 2.30 (3H, c, 2-CH3); 3.77 (3H, c, OCH3); 5.08 (2H, c, NCH3-Pyr); 5.85 (1H, d, J = 3.3, H-3 Pyr); 6.00 (1H, d, J = 3.3, H-4 Pyr); 6.72 (1H, d, J = 2.4, H-5); 6.77 (1H, d, J = 2.4, H-5); 7.01 (2H, d, J = 8.3, H-2,6 Ar); 7.18 (1H, d, J = 8.5, J = 8.6, H-4)</td>
<td>J3,5 Pyr = 3.3, H-3 Pyr; J2,4 = 2.4, H-5; J2,4 = 2.4, H-5; J2,4 = 8.3, H-2,6 Ar; J2,4 = 8.5, J = 8.6, H-4; J2,4 = 8.3, H-3 Pyr; J2,4 = 8.6, H-5; J2,4 = 8.5, J = 8.6, H-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9e</td>
<td>1.92 (3H, c, PyrCH2); 2.18 (3H, c, 2-CH3); 2.32 (3H, c, 6-CH3); 3.77 (3H, c, OCH3); 5.08 (2H, c, NCH3-Pyr); 5.85 (1H, d, J = 3.3, H-3 Pyr); 6.00 (1H, d, J = 3.3, H-4 Pyr); 6.72 (1H, d, J = 2.4, H-5); 6.77 (1H, d, J = 2.4, H-5); 7.01 (2H, d, J = 8.3, H-2,6 Ar); 7.18 (1H, d, J = 8.5, J = 8.6, H-4)</td>
<td>J3,5 Pyr = 3.3, H-3 Pyr; J2,4 = 2.4, H-5; J2,4 = 2.4, H-5; J2,4 = 8.3, H-2,6 Ar; J2,4 = 8.5, J = 8.6, H-4; J2,4 = 8.3, H-3 Pyr; J2,4 = 8.6, H-5; J2,4 = 8.5, J = 8.6, H-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9f</td>
<td>1.92 (3H, c, PyrCH2); 2.18 (3H, c, 2-CH3); 2.32 (3H, c, 6-CH3); 3.77 (3H, c, OCH3); 5.08 (2H, c, NCH3-Pyr); 5.85 (1H, d, J = 3.3, H-3 Pyr); 6.00 (1H, d, J = 3.3, H-4 Pyr); 6.72 (1H, d, J = 2.4, H-5); 6.77 (1H, d, J = 2.4, H-5); 7.01 (2H, d, J = 8.3, H-2,6 Ar); 7.18 (1H, d, J = 8.5, J = 8.6, H-4)</td>
<td>J3,5 Pyr = 3.3, H-3 Pyr; J2,4 = 2.4, H-5; J2,4 = 2.4, H-5; J2,4 = 8.3, H-2,6 Ar; J2,4 = 8.5, J = 8.6, H-4; J2,4 = 8.3, H-3 Pyr; J2,4 = 8.6, H-5; J2,4 = 8.5, J = 8.6, H-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9g</td>
<td>1.92 (3H, c, PyrCH2); 2.18 (3H, c, 2-CH3); 2.32 (3H, c, 6-CH3); 3.77 (3H, c, OCH3); 5.08 (2H, c, NCH3-Pyr); 5.85 (1H, d, J = 3.3, H-3 Pyr); 6.00 (1H, d, J = 3.3, H-4 Pyr); 6.72 (1H, d, J = 2.4, H-5); 6.77 (1H, d, J = 2.4, H-5); 7.01 (2H, d, J = 8.3, H-2,6 Ar); 7.18 (1H, d, J = 8.5, J = 8.6, H-4)</td>
<td>J3,5 Pyr = 3.3, H-3 Pyr; J2,4 = 2.4, H-5; J2,4 = 2.4, H-5; J2,4 = 8.3, H-2,6 Ar; J2,4 = 8.5, J = 8.6, H-4; J2,4 = 8.3, H-3 Pyr; J2,4 = 8.6, H-5; J2,4 = 8.5, J = 8.6, H-4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ИК спектры соединений 7а–с содержат интенсивные полосы поглощения карбонильных групп в области 1697–1705 см⁻¹ (табл. 2), а спектры ЯМР ¹³C — сигналы атомов углерода двух кетонных групп в области 203.1–203.8 и 206.4–207.2 м. д. В спектрах ЯМР ¹H отсутствуют сигналы протонов фуранового цикла и наблюдается мультиплет интенсивностью 4Н в области 2.73–2.84 м. д., соответствующий сигналу протонов двух метиленовых звеньев фрагмента COCH₂CH₂CO.

Дикетоны 7а–с представляют собой удобные предшественники для синтеза пирролов по методу Паалля–Кнорра. Однако попытки проведения реакции в общепринятых классических условиях — при нагревании в уксусной кислоте — оказались неудачными: в результате наблюдалась деструкция исходных соединений, приводящая к образованию неразделимой смеси веществ.

Для гладкого замыкания пиррольного кольца оказалось возможным проводить взаимодействие дикетонов 7а–с с первичными ароматическими и алифатическими аминами при кипячении в толуоле в присутствии Ti(OPr-i)₄ и триэтиламина (табл. 3). При этом выходы целевых 1-пирролилметилбензимидазолов 9а–г достигают 61–83% (табл. 1, 2).

По табл. 3 видно, что длительность процесса во многом зависит от природы взятого амина; так, реакция с фурфуриламином протекает в течение 3 ч, тогда как для ароматических аминов продолжительность реакции составляет 6–12 ч. Следует отметить, что при использовании 4-нитроанилина (8ф) и алифатического амина с объёмным заместителем – трет-бутиламина (8г) — замыкание пиррольного кольца вообще не происходит.

<table>
<thead>
<tr>
<th>Дикетон 7</th>
<th>Амин 8</th>
<th>Время реакции, ч</th>
<th>Выход соединения 9, %</th>
<th>Дикетон 7</th>
<th>Амин 8</th>
<th>Время реакции, ч</th>
<th>Выход соединения 9, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>7b</td>
<td>8a</td>
<td>3</td>
<td>61 (9а)</td>
<td>7b</td>
<td>8e</td>
<td>12</td>
<td>83 (9ф)</td>
</tr>
<tr>
<td>7c</td>
<td>8a</td>
<td>3</td>
<td>64 (9б)</td>
<td>7b</td>
<td>8d</td>
<td>9</td>
<td>73 (9г)</td>
</tr>
<tr>
<td>7b</td>
<td>8b</td>
<td>6</td>
<td>71 (9е)</td>
<td>7a</td>
<td>8f</td>
<td>24</td>
<td>–</td>
</tr>
<tr>
<td>7b</td>
<td>8c</td>
<td>10</td>
<td>72 (9д)</td>
<td>7c</td>
<td>8f</td>
<td>22</td>
<td>–</td>
</tr>
<tr>
<td>7c</td>
<td>8b</td>
<td>7</td>
<td>63 (9е)</td>
<td>7b</td>
<td>8g</td>
<td>12</td>
<td>–</td>
</tr>
</tbody>
</table>

Т а б л и ц а 3

Условия циклизации дикетонов 7а–с и выходы соединений 9а–г
Доказательством формирования пиррольного кольца в соединениях 9а–г является исчезновение полож поглощения карбоильных групп в ИК спектрах и сигналов протонов метилиновых звеньев COCH₂CH₃CO в спектрах ЯМР ¹H (табл. 2). В то же время в спектрах ЯМР ¹H появляются сигналы β-протонов пиррольного кольца в области 5.23–6.30 м. д.

Таким образом, нами разработан метод синтеза новых производных бензимидазола, содержащих в положении 1 (5-метилфуран-2-ил)метильный фрагмент, изучена реакция протолитического раскрытия фуранового кольца и подобраны условия для последующей циклизации образующихся дикетонов в пиррольный цикл. Установлено, что успех протекания реакция замыкания пиррольного кольца зависит от природы используемого амина.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на приборе Perkin Elmer Spectrum Two с использованием приставки НПВО. Спектры ЯМР ¹H и ¹³C записаны на приборе Agilent 400-MR (400 и 100 МГц соответственно) в ДМСО-д₆, внутренний стандарт ТМС. Масс-спектры зарегистрированы на приборе Kratos MS-30, ионизация ЭУ (70 eV). Элементный анализ проведен на CHN-анализаторе Flash EA 1112. Температуры плавления определены на приборе Stuart SMP 30 и не исправлены. ТСХ проведена на пластинах Silufol UV-254 и Сорбфил (ООО "Сорбполимер"), проявители — папи иода или брома. Для колоночной хроматографии использован силикагель марки КСК (ООО "Сорбполимер", 50–100 мкм).

Соединения 3а–с получены в результате последовательно проведённых реакций ацилирования о-нитроанилинов 1а–с уксусным ангидридом по методике, приведённой в работе [42], в нативных спирту сущностях в полученных амидах Amberlit 15, полученную смесь кипятят с ацетатной отгонкой воды в течение 4–8 ч. После охлаждения катион отфильтровывают, реакционную смесь упаривают до суши в вакууме. Полученный остаток перекристаллизовывают из EtOH.

N-(2-[(5-Метилфуран-2-ил)метилцидениаминофенил]ацетамид (4а). Выход 75%. Светло-жёлтые кристаллы. Т. пл. 94–95 °C. ИК спектр, ν, см⁻¹: 3248, 3105, 1678, 1622, 1549, 1522, 1443, 1367, 1301, 1278, 1027, 754. Спектр ЯМР ¹H, δ, м. д. (J, Гц): 2.09 (3H, с, CH₃); 2.36 (3H, с, CH₃); 6.36 (1H, d, J = 3.3, H-4 Fur); 7.05–7.08 (1H, m, H Ph); 7.13 (1H, d, J = 3.3, H-3 Fur); 7.14–7.16 (1H, m, H Ph); 7.18–7.23 (1H, m, H Ph); 8.08 (1H, d, J = 7.8, H Ph); 8.32 (1H, s, CH=N); 9.31 (1H, с, NH). Спектр ЯМР ¹³C, δ, м. д.: 14.1; 24.5; 109.8; 118.0; 120.2; 121.4; 124.5; 126.7; 133.3; 141.1; 148.1; 151.2; 157.0; 168.6. Найдено, %: C 69.35; H 5.77; N 11.59. C₁₅H₁₄N₂O₂. Вычислено, %: C 69.41; H 5.82; N 11.56.

N-(4-Метил-2-[(5-метилфуран-2-ил)метилен(амино)фенил]ацетамид (4b). Выход 77%. Светло-жёлтые кристаллы. Т. пл. 153–154 °C. ИК спектр, ν, см⁻¹: 3245, 3110, 1677, 1625, 1541, 1519, 1444, 1363, 1302, 1264, 1114, 1028, 959, 797. Спектр ЯМР ¹H, δ, м. д. (J, Гц): 2.06 (3H, с, CH₃); 2.24 (3H, с, CH₃); 2.38 (3H, с, CH₃); 6.41 (1H, d, J = 3.0, H-4 Fur); 6.75 (1H, d, J = 8.6, H Ph); 6.82 (1H, с, H Ph); 7.05 (1H, d, J = 3.0, H-3 Fur); 7.88 (1H, d, J = 8.6, H Ph); 8.36 (1H, с, CH=N); 9.00 (1H, с, NH). Спектр ЯМР ¹³C, δ, м. д.: 14.1; 24.3; 26.8; 109.7; 111.9; 120.1; 122.6; 123.5; 126.7; 143.2; 148.6; 151.2; 156.4; 157.0; 168.5. Найдено, %: C 70.22; H 6.24; N 11.00. C₁₅H₁₃N₂O. Вычислено, %: C 70.29; H 6.29; N 10.93.

Спектр ЯМР 1H, δ, м. д. $(J, Гц)$: 2.03 (3H, с, CH$_3$); 2.39 (3H, с, CH$_3$); 3.75 (3H, с, OCH$_3$); 6.36 (1H, д, $J = 3.3$, H-4 Fur); 6.73 (1H, д, $J = 8.5$, H Ph); 6.78 (1H, с, Н Ph); 7.12 (1H, д, $J = 3.3$, H-3 Fur); 7.83 (1H, д, $J = 8.5$, H Ph); 8.34 (1H, с, CH=N); 8.99 (1H, с, NH). Спектр ЯМР 13C, δ, м. д.: 14.1; 24.3; 55.8; 103.6; 109.8; 112.0; 120.1; 123.6; 126.3; 143.7; 148.6; 151.2; 156.9; 156.6; 168.3.

Метилфуран – 2.18, 3.15 (1H, c, CH=N); 6.36 (1H, с, CH-4 Fur); 7.83 (1H, с, CH-3 Fur). Вычислено: %: C 78.57; H: 10.28; N 5.92. Найдено: %: C 78.76; H: 10.24; N 5.92.

Синтез 6-R-2-метил-1-[[5-метилифурран-2-ил]метил][бензимидазолов 6а–с (общая методика). К раствору 25 ммоль соединения 5а–с в 70 мл EtOH добавляют 20 мл 10% раствора сухого HCl в EtOH, полученную смесь выдерживают при 60 °C до полного исчезновения исходного амина в течение 7–12 ч (контроль TСХ, элюент EtOAc). Охлаждённую смесь выливают в 200 мл холодной воды и нейтрализуют добавлением NaHCO$_3$ до рН 6–7. Выпавший осадок отфильтровывают, сушат и перекристаллизовывают из смеси EtOAc – петролейный эфир, получая бензимидазолы 6а–с в виде белых порошков.

Синтез 1-((6-R-2-метил-1H-бензимидазол-1-ил)тексан-2,5-дионов 7а–с (общая методика). Растор 20 ммоль соединения 6а–с в смеси 20 мл EtOH и 35 мл 20% раствора сухого HCl в EtOH, кипятят в течение 6–20 ч. Охлаждённую смесь выливают в 200 мл холодной воды и нейтрализуют добавлением NaHCO$_3$ до рН 6–7. Выпавший осадок отфильтровывают и сушат. Выделение продуктов реакции проводят методом колоночной хроматографии (элюент PhH – 2-ПрOH, 8:3), получая дикетона 7а–с в виде белых порошков.

Синтез 6-R-2-метил-1-[[1-R'-5-метилипиррол-2-ил]метил]-1H-бензимидазолов 9а–g (общая методика). К раствору 2.0 ммоль дикетона 7а–c, 2.1 ммоль амина 8а–g и 1.08 ммоль (2.1 ммоль) свежеперегнанного Et$_3$N в 20 мл PhMe добавляют по каплям 2.46 мл (2.1 ммоль) Ti(OPr)$_4$, полученную смесь кипятят в течение 3–12 ч до исчезновения исходного дикетона (контроль TСХ, элюент EtOAc). По окончании реакции смесь охлаждают, добавляют 30 мл 10% раствора NaOH и фильтруют при пониженнном давлении. Органическую фазу фильтрат отделяют, водный слой экстрагируют PhMe (2 × 10 мл). Объединённые экстракти сушат над Na$_2$SO$_4$ и упаривают в вакууме до 1/4 исходного объёма. К остатку добавляют петролейный эфир и оставляют кристаллизоваться. Выплавшие кристаллы отфильтровывают, сушат и перекристаллизовывают из смеси EtOAc – петролейный эфир, получая продукты 9 в виде белых порошков.

Исследования выполнены в рамках Государственного задания Министерства образования и науки Российской Федерации (соглашение 3.1578.2011) и при поддержке Министерства образования и науки Российской Федерации (соглашение 14.В37.21.0829)

С П И С О К Л И Т Е Р А Т У Р Ы
1. А. А. Спасов, И. Н. Йожица, Л. И. Бугаева, В. А. Анисимова, Хим.-фарм. журн., 33, № 5, 6 (1999).
42. Л. Титце, Т. Айхер, Препаративная органическая химия. Реакции и синтезы в практикуме органической химии и научно-исследовательской лаборатории, Мир, Москва, 1999, c. 175.

1 Кубанский государственный технологический университет, ул. Московская, 2, Краснодар 350072, Россия
e-mail: tatka_s@mail.ru

Поступило 22.06.2013 После доработки 14.07.2013