Т. А. Строганова^{1*}, В. М. Редькин¹, Г. А. Коваленко¹, В. К. Василин¹, Г. Д. Крапивин¹

СИНТЕЗ 2-МЕТИЛ-1-[(5-МЕТИЛФУРАН-2-ИЛ)МЕТИЛ]-И 2-МЕТИЛ-1-[(5-МЕТИЛПИРРОЛ-2-ИЛ)МЕТИЛ]-1*Н*-БЕНЗИМИДАЗОЛОВ

Разработан метод синтеза 2-метил-1-[(5-метилфуран-2-ил)метил]-1*H*-бензимидазолов на основе внутримолекулярной циклизации вицинальных *N*-[(5-метилфуран-2-ил)метил]аминоанилидов. Изучены реакции протолитического раскрытия фуранового кольца, приводящие к образованию дикетонного фрагмента, который используется далее для формирования *N*-замещённого пиррольного кольца по методу Пааля–Кнорра. Показано влияние природы амина на протекание циклизации.

Ключевые слова: 1,2-дизамещённые бензимидазолы, *N*-замёщенные пирролы, фуран, раскрытие цикла, циклизация.

Производные бензимидазола в течение многих лет представляют большой интерес для медицинской химии. Среди них выявлены соединения, обладающие антигистаминной [1], антибактериальной [1, 2] активностью, а также способные выступать в роли селективных антагонистов рецептора нейропептида YY1 [3], рецепторов hCRTh2 [4], ингибитора фактора Xa [5]. Важной особенностью производных бензимидазола является их ярко выраженная активность в отношении вируса иммунодефицита человека (ВИЧ), герпеса, гриппа, человеческого цитомегаловируса [1, 6–12], вируса, вызывающего гепатит В [13]. Бензимидазолы обладают цитостатической, местной анестезирующей, гипотензивной и жаропонижающей активностью [1, 14]

Среди соединений, содержащих бензимидазольный фрагмент, значительное место занимают 1,2-дизамещённые бензимидазолы. Существующие в настоящее время методы их синтеза можно разделить на следующие группы: *N*-алкилирование готового 2-замещённого бензимидазольного ядра в присутствии сильного основания [8, 9, 15, 16], *N*-алкилирование *орто*-нитроанилидов с последующей восстановительной циклизацией [9, 17], циклоконденсация *N*-замещённых *орто*-аминоанилидов [18]. Также 1,2-дизамещённые бензимидазолы могут быть получены в результате конденсации *N*-замещённых *орто*-фенилендиаминов с альдегидами в присутствии различных кислотных катализаторов [19–27].

Наше внимание привлекли бензимидазолы, содержащие в положении 1 фурфурильный фрагмент. Известны многочисленные способы синтеза 1-(фуран-2-ил)метилбензимидазолов: в результате взаимодействия фурфурола с *орто*фенилендиамином с использованием различных катализаторов [28–36], на основе реакции фурфурола с *орто*-нитроанилином [37], а также в результате *N*-алкилирования готового бензимидазольного цикла фурфуриловым спиртом [38].

Однако среди описанных в литературе фурилсодержащих бензимидазолов отсутствуют соединения, содержащие в положении 1 5-метилфурфурильный фрагмент. Интерес к синтезу подобных структур заключается в способности диалкилфурана к рециклизации в другие гетероциклы [39, 40], что позволяет

ввести в положение 1 бензимидазольного кольца гетероциклические фрагменты, введение которых иным путём затруднительно.

Наиболее подходящим методом синтеза 1-(5-метилфурфурил)бензимидазолов, по нашему мнению, является катализируемая кислотами внутримолекулярная циклизация вицинальных *N*-фурфуриламиноанилидов, подобная приведённой в работе [27].

В данной работе представлены результаты по синтезу 2-метил-1-[(5-метилфуран-2-ил)метил]-1*H*-бензимидазолов, изучены реакции катализируемого кислотами раскрытия фуранового фрагмента и его циклизации в пиррольный цикл.

Для получения 1-[(5-метилфуран-2-ил)метил]бензимидазолов 6 из соответствующих *орто*-нитроанилинов 1 нами использована следующая последовательность реакций.

Полученные в результате конденсации *орто*-аминоанилидов **3а**–с с 5-метилфурфуролом азометины **4а**–с гладко подвергаются восстановлению связи C=N под действием NaBH₄, образуя *N*-фурфурилзамещённые амины **5а**–с с выходами от 67 до 77% (табл. 1). В спектрах ЯМР ¹Н соединений **5а**–с сигналы протонов метиленового звена, расположенного рядом с аминогруппой, имеют вид дублетов с КССВ 5.0–5.1 Гц, а сигнал протона аминогруппы представляет собой триплет с той же КССВ в области 5.27–5.41 м. д. (табл. 2). Сигнал протона амидной группы находится в области 8.97–9.14 м. д. В спектрах ЯМР ¹³С наблюдается характеристичный сигнал углерода амидной карбонильной группы при 168.6–168.8 м. д. (табл. 2).

Внутримолекулярная циклизация соединений **5а**–**c**, приводящая к формированию бензимидазольного кольца, протекает при 60 °C в этанольном растворе, насыщенном сухим газообразным хлороводородом до концентрации 10%. Выходы 1-фурфурилбензимидазолов **6а**–**c** составляют 84–89% (табл. 1). В отличие от аминоанилидов **5а**–**c** в ИК спектрах соединений **6а**–**c** (табл. 2) отсутствуют полосы поглощения валентных колебаний вторичной аминогруппы в области 3369–3372 см⁻¹, амидной группы в области 3223–3240

(NH) и 1641–1649 (C=O) см⁻¹. Доказательством протекания циклизации является исчезновение в спектрах ЯМР ¹Н сигналов протонов амидной и аминогрупп и изменение мультиплетности сигналов протонов метиленового звена, которые резонируют в виде синглета интенсивностью 2H в области 5.31–5.37 м. д., а также отсутствие сигнала углерода амидной карбонильной группы в спектрах ЯМР ¹³С соединений **6а–с** (табл. 2).

При кипячении фурфурилбензимидазолов **6а-с** в спиртовом растворе хлороводорода (20% раствор) в течение 6–20 ч происходит протолитическое раскрытие фуранового кольца с образованием соответствующих дикетонов **7а-с** (табл. 1, 2). Отметим, что реакция раскрытия фуранового кольца и формирования дикетона является равновесной, что уже описано нами ранее при изучении реакции рециклизации фурилметанов ряда 3-аминотиено-[2,3-*b*]пиридина [41]. Целевые дикетоны **7а-с** выделены из реакционной смеси колоночной хроматографией.

Таблица 1

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход, %
нение	формула	С	Н	Ν		
5a	$C_{14}H_{16}N_2O_2$	<u>68.85</u> 68.83	<u>6.54</u> 6.60	<u>11.41</u> 11.47	91–92	67
5b	$C_{15}H_{18}N_2O_2$	<u>69.69</u> 69.74	<u>7.00</u> 7.02	<u>10.76</u> 10.84	97–99	73
5c	$C_{15}H_{18}N_2O_3$	<u>65.62</u> 65.68	<u>6.53</u> 6.61	<u>10.13</u> 10.21	101–102	77
6a	$C_{14}H_{14}N_2O$	<u>74.36</u> 74.31	<u>6.29</u> 6.24	<u>12.29</u> 12.38	93–94	84
6b	$C_{15}H_{16}N_2O$	<u>75.01</u> 74.97	<u>6.66</u> 6.71	<u>11.59</u> 11.66	94–95	88
6c	$C_{15}H_{16}N_2O_2$	<u>70.24</u> 70.29	<u>6.24</u> 6.29	<u>11.01</u> 10.93	97–98	89
7a	$C_{14}H_{16}N_2O_2$	<u>68.78</u> 68.83	<u>6.57</u> 6.60	<u>11.53</u> 11.47	65–67	59
7b	$C_{15}H_{18}N_2O_2$	<u>69.79</u> 69.74	<u>6.98</u> 7.02	<u>10.80</u> 10.84	103–104	67
7c	$C_{15}H_{18}N_2O_3$	<u>65.61</u> 65.68	<u>6.63</u> 6.61	<u>10.15</u> 10.21	141–142	64
9a	$C_{20}H_{21}N_{3}O$	<u>75.24</u> 75.21	<u>6.59</u> 6.63	<u>13.11</u> 13.16	113–114	61
9b	$C_{20}H_{21}N_3O_2$	<u>71.56</u> 71.62	<u>6.33</u> 6.31	<u>12.46</u> 12.53	135–136	64
9c	C ₂₂ H ₂₃ N ₃ O	<u>76.55</u> 76.49	<u>6.66</u> 6.71	<u>12.12</u> 12.16	127–128	71
9d	$C_{21}H_{20}FN_3$	<u>75.59</u> 75.65	<u>6.08</u> 6.05	<u>12.53</u> 12.60	69–70	72
9e	$C_{22}H_{23}N_3O_2$	<u>73.04</u> 73.11	<u>6.43</u> 6.41	<u>11.70</u> 11.63	87–88	63
9f	$C_{20}H_{20}N_4$	<u>76.00</u> 75.92	<u>6.35</u> 6.37	<u>17.62</u> 17.71	112–113	83
9g	$C_{22}H_{23}N_3$	<u>80.15</u> 80.21	<u>7.07</u> 7.04	<u>12.69</u> 12.76	85–86	73

Физико-химические характеристики соединений 5–7 а–с, 9а–g

Таблица 2

Соеди- нение	ИК спектр, v, см ⁻¹	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)	Спектр ЯМР ¹³ С, б, м. д.	Масс-спектр, <i>m/z</i> (<i>I</i> _{отн} , %)	
1	2	3	4	5	
5a	3369, 3240, 1649, 1602, 1534, 1507, 1443, 1368, 1303, 1218, 1128, 1023, 932, 784, 750, 739	2.04 (3H, c, COCH ₃); 2.23 (3H, c, CH ₃); 4.22 (2H, $\pm J$, $J = 5.1$, NHC <u>H₂</u>); 5.40 (1H, $\pm J = 5.1$, N <u>H</u> CH ₂); 5.97 (1H, $\pm J = 3.0$, H-4 Fur); 6.17 (1H, $\pm J = 3.0$, H-3 Fur); 6.53–6.54 (1H, $\pm J$, H Ar); 6.71 (1H, $\pm J = 8.1$, H Ar); 6.93–7.06 (1H, $\pm J$, H Ar); 7.15 (1H, $\pm J = 7.3$, H Ar); 9.14 (1H, c, NHCO)	13.3; 23.2; 43.6; 106.3; 107.7; 111.2; 116.0; 123.9; 125.9; 126.1; 142.0; 150.5; 151.2; 168.6	245 [M+H] ⁺ (10), 244 [M] ⁺ (80), 226 (12), 199 (21), 186 (10), 150 (26), 133 (12), 132 (13), 119 (21), 108 (25), 107 (14), 96 (16), 95 (100), 80 (16), 67 (10), 52 (10), 43 (26)	
5b	3377, 3223, 1641, 1610, 1574, 1534, 1520, 1425, 1369, 1322, 1276, 1214, 1175, 1138, 1019, 944, 832, 795, 785	2.00 (3H, c, COCH ₃); 2.18 (3H, c, CH ₃); 2.22 (3H, c, CH ₃); 4.19 (2H, π , $J = 5.0$, NHC <u>H₂</u>); 5.27 (1H, π , $J = 5.0$, N <u>H</u> CH ₂); 5.97 (1H, π , $J = 2.9$, H-4 Fur); 6.16 (1H, π , $J = 2.9$, H-3 Fur); 6.38 (1H, π , $J = 8.1$, H Ar); 6.53 (1H, c, H Ar); 6.97 (1H, π , $J = 8.1$, H Ar); 9.05 (1H, c, NHCO)	13.3; 20.5; 21.2; 43.3; 106.3 (2C); 107.7; 111.8; 116.7; 125.9; 135.2; 141.9; 150.4; 151.3; 168.6	259 [M+H] ⁺ (18), 258 [M] ⁺ (52), 256 (60), 241 (30), 214 (17), 213 (73), 199 (13), 171 (12), 164 (30), 147 (10), 146 (23), 145 (11), 133 (58), 132 (12), 122 (10), 121 (21), 106 (12), 104 (10), 96 (12), 95 (100), 79 (14), 78 (12), 77 (15), 51 (12), 43 (26)	
5c	3373, 3232, 1650, 1610, 1558, 1533, 1517, 1436, 1365, 1325, 1283, 1215, 1141, 1029, 943, 841, 791, 765	2.00 (3H, c, COCH ₃); 2.22 (3H, c, CH ₃); 3.67 (3H, c, OCH ₃); 4.21 (2H, α , $J = 5.0$, NHCH ₂); 5.41 (1H, τ , $J = 5.0$, NHCH ₂); 5.98 (1H, α , $J = 3.0$, H-4 Fur); 6.13 (1H, α , $J = 3.0$, H-3 Fur); 6.16–6.19 (1H, ω , H Ar), 6.24 (1H, α , $J = 2.2$, H Ar); 6.94 (1H, α , $J = 8.8$, H Ar); 8.97 (1H, c, NHCO)	13.3; 23.1; 44.0; 54.9; 97.5; 100.4; 106.3; 107.8; 117.1; 127.2; 143.7; 150.5; 151.2; 158.2; 168.8	274 [M] ⁺ (70), 272 (21), 257 (12), 256 (14), 230 (15), 229 (35), 215 (21), 180 (25), 179 (66), 162 (11), 138 (15), 137 (40), 96 (41), 95 (100), 94 (11), 91 (10), 65 (10), 43 (69)	
6a	1614, 1566, 1516, 1453, 1400, 1327, 1285, 1232, 1214, 1156, 1143, 1014, 937, 794, 759, 741	2.16 (3H, c, CH ₃); 2.62 (3H, c, CH ₃); 5.37 (2H, c, CH ₂); 5.99 (1H, π , $J = 3.0$, H-4 Fur); 6.39 (1H, π , $J = 3.0$, H-3 Fur); 7.07–7.23 (2H, M, H-5,6); 7.53 (1H, π , $J = 7.3$, H-7); 7.58 (1H, π , $J = 8.1$, H-4)	13.2 (2-CH ₃); 13.6; 42.6 (NCH ₂); 106.5; 109.5; 110.0 (C-7); 118.2 (C-4); 121.3 (C- 6); 121.5 (C-5); 135.0 (C-7a); 142.2 (C- 3a); 148.0; 151.6; 151.8 (C-2)	226 [M] ⁺ (78), 145 (13), 133 (10), 132 (63), 131 (22), 97 (12), 90 (54), 78 (13), 76 (21), 67 (44), 66 (15), 65 (17), 64 (16), 63 (31), 55 (22), 53 (19), 52 (23), 51 (57), 50 (28), 43 (33)	
6b 1359	1618, 1572, 1524, 1453, 1449, 1396, 1338, 1279, 1230, 1192, 1020, 994, 854, 807, 783, 734	2.17 (3H, c, CH ₃); 2.41 (3H, c, CH ₃); 2.57 (3H, c, CH ₃); 5.31 (2H, c, CH ₂); 6.00 (1H, д, <i>J</i> = 3.0, 4-H Fur); 6.35 (1H, д, <i>J</i> = 3.0, H-3 Fur); 6.95 (1H, д, <i>J</i> = 8.1, H-5); 7.32 (1H, c, H-7); 7.37–7.40 (1H, м, H-4)	13.2 (2-CH ₃); 13.6; 21.4 (6-CH ₃); 42.5 (NCH ₂); 106.5; 109.4; 109.8 (C-7); 117.8 (C- 4); 122.6 (C-5); 130.7 (C-6); 135.2 (C-7a); 140.3 (C-3a); 148.1; 151.0 (C-2); 151.7	240 [M] ⁺ (55), 147 (10), 146 (47), 145 (21), 96 (35), 95 (100), 91 (10), 79 (12), 67 (17), 65 (17), 55 (10), 53 (11), 51 (25), 43 (33)	

Спектральные характеристики соединений 5–7 а–с, 9а–g

Окончание таблицы 2

1	2	3	1	5	
	<u> </u>	2 17 (2H a CH): 2 55 (2H a CH): 2 70 (2H a	+ 12.2 (2 CH): 12.6: 42.6 (NCH): 55.6 (6	$\frac{5}{256 \text{ [M]}^+ (76) 162 (11) 162 (62)}$	
oc	1020, 1378, 1320, 1484, 1420, 1304, 1324, 1364	2.17 (5n, c, Cn ₃), 2.55 (5n, c, Cn ₃), 5.79 (5n, c, Cn ₃), 5.79 (5n, c, Cn ₃), 5.22 (2H $_{2}$ CH): 6.00 (1H $_{2}$ $_{3}$ $I = 2.0$ H 4	$15.2 (2-CH_3), 15.0, 42.0 (NCH_2), 55.0 (0-OCH): 04.2 (C.7): 106.5: 100.5 (C.5):$	230 [M] (70), 105 (11), 102 (03), 120 (10) 06 (24) 05 (100) 02 (10)	
	1439, 1394, 1334, 1204, 1216, 1122, 1006, 1032	Eur): 6.38 (1H π $I = 3.0$ H 3 Eur): 6.76 (1H π π $I =$	$110.0 \cdot 118.5 (C A) \cdot 125.6 (C 7_2) \cdot 126.5 (C$	120(10), 90(24), 95(100), 92(10), 77(20), 67(13), 63(11), 55(14), 52	
	1210, 1132, 1090, 1032, 950 865 810 788 746	$I = 2.2 \text{ H}_{-5}$; $7.14 (1 \text{ H}_{-7} I = 2.2 \text{ H}_{-7}$; $7.38 (1 \text{ H}_{-7} I = 2.2 \text{ H}_{-7}$; $7.38 (1 \text{ H}_{-7} I = 2.2 \text{ H}_{-7}$); $7.38 (1 \text{ H}_{-7} I = 2.2 \text{ H}_{-7}$; $7.38 (1 \text{ H}_{-7} I = 2.2 \text{ H}_{-7}$); $7.38 (1 \text{ H}_{-7} I = 2.2 \text{ H}_{-7}$; $7.38 (1 \text{ H}_{-7} I = 2.2 \text{ H}_{-7}$); $7.38 (1 \text{ H}_{-7} I = 2.2 \text{ H}_{-7}$; $7.38 (1 \text{ H}_{-7} I = 2.2 \text{ H}_{-7}$); $7.38 (1 \text{ H}_{-7} I = 2.2 \text{ H}_{-7}$; $7.38 (1 \text{ H}_{-7} I = 2.2 \text{ H}_{-7}$); $7.38 (1 H$	(10.0, 118.5, (C-4), 155.0, (C-7a), 150.5, (C-3a)) (10.0, 118.5, (C-4), 155.0, (C-7a), 155.4, (C-6)	(11) 51 (13) 43 (32)	
	550, 865, 810, 788, 740	$\pi I = 8.8 \text{ H-4}$	54), 140.1, 150.0, 151.7 (C-2), 155.4 (C-0)	(11), 51 (15), 45 (52)	
79	1705 1617 1516 1467	$(2,0)^{-1}$ (3H c COCH ₂): 2.38 (3H c 2-CH ₂): 2.73-2.76	13.2 (2-CH ₂): 29.4 (COCH ₂): 33.1: 36.8:	245 $[M+H]^+$ (14) 244 $[M]^+$ (59)	
7 a	1413 1360 1283 1255	$(4H \ M \ (CH_2)_2)$; 5 30 (2H c NCH ₂); 7 07–7 19 (2H M	51.9 (NCH ₂): 109.6 (C-7): 118.1 (C-4):	147 (22) 146 (81) 145 (100) 132	
	1159 1096 1036 1010	(11, M, (012)), $3.50 (211, 0, 10012)$, $7.67 (11) (211, M, 1-5)$	121.2 (C-6): 121.4 (C-5): 135.7 (C-7a):	(27) 131 (46) 119 (11) 118 (12) 99	
	763, 737		142.2 (C-3a): 152.3 (C-2): 203.7: 207.2	(75), 95, (25), 91, (14), 76, (25), 63	
	,			(15), 51 (38), 43 (49)	
7b	1697, 1632, 1595, 1533,	2.10 (3H, c, COCH ₃); 2.35 (3H, c, 6-CH ₃); 2.38 (3H, c,	13.1 (2-CH ₃); 21.3 (6-CH ₃); 29.4 (COCH ₃);	258 [M] ⁺ (44), 160 (30), 159 (100),	
	1486, 1407, 1344, 1273,	2-СН ₃); 2.75–2.79 (4Н, м, (СН ₂) ₂); 5.24 (2Н, с,	33.1; 36.7; 51.8 (NCH ₂); 109.5 (C-7); 117.7	146 (10), 145 (11), 99 (15), 95 (28),	
	1255, 1204, 1169, 1117,	NCH ₂); 6.95 (1H, д, J = 8.1, H-5); 7.17 (1H, с, H-7);	(C-4); 122.6 (C-5); 130.6 (C-6); 135.9 (C-	91 (22), 78 (10), 55 (12), 51 (11), 43	
	1031, 825, 799, 633	7.38 (1Н, д, <i>J</i> = 8.1, Н-4)	7a); 140.3 (C-3a); 151.7 (C-2); 203.8; 207.1	(36)	
7c	1698, 1632, 1533, 1486, 1468,	2.11 (3H, c, COCH ₃); 2.39 (3H, c, 2-CH ₃); 2.78-2.84	12.7 (2-CH ₃); 28.6 (CO <u>C</u> H ₃); 32.8; 37.0; 52.1	274 [M] ⁺ (76), 176 (43), 175 (100),	
	1407, 1344, 1273, 1255, 1204,	(4Н, м, (СН ₂) ₂); 3.79 (3Н, с, ОСН ₃); 5.24 (2Н, с,	(NCH ₂); 55.1 (6-OCH ₃); 93.4 (C-7); 110.1 (C-	161 (13), 160 (21), 132 (18), 99 (15),	
	1140, 1117, 1091, 1032, 825,	NCH ₂); 6.74 (1H, д. д, <i>J</i> = 8.8, <i>J</i> = 2.2, H-5); 6.94 (1H, д,	5); 118.8 (C-4); 136.6 (C-7a); 137.3 (C-3a);	95 (16), 92 (14), 77 (25), 71 (15), 65	
	800, 696, 633	<i>J</i> = 2.2, H-7); 7.37 (1H, д, <i>J</i> = 8.8, H-4)	151.1 (C-2); 156.2 (C-6); 203.1; 206.4	(24), 55 (10), 43 (28)	
9a	1621, 1484, 1467, 1437,	2.20 (3H, c, PyrCH ₃); 2.34 (3H, c, 6-CH ₃); 2.40 (3H, c,	12.4; 13.8 (2-CH ₃); 21.8 (6-CH ₃); 40.5; 40.6	319 [M] ⁺ (6), 175 (9), 174 (64), 94	
	1402, 1386, 1290, 1262,	2-CH ₃); 5.09 (2H, c, NC <u>H</u> ₂ Pyr); 5.23 (1H, д, <i>J</i> =3.3, H-3	(N <u>C</u> H ₂ Pyr); 106.2; 106.3; 107.9; 110.1 (C-7);	(11), 82 (6), 81 (100), 77 (6), 53	
	1231, 1210, 1144, 1103,	Руг); 5.39 (2H, c, NC <u>H</u> ₂ Fur); 5.65 (1H, д, <i>J</i> = 3.3, H-4 Руг);	111.1; 118.3 (C-4); 123.0 (C-5); 126.8;	(22), 51 (5), 40 (10)	
	1005, 936, 901, 841, 809,	6.23 (1H, д, $J = 3.4$, H-3 Fur); 6.40 (1H, д. д, $J = 3.4$, $J =$	129.6; 131.1 (C-6); 136.0 (C-7a); 140.9 (C-		
	756, 739	1.9, H-4 Fur); 6.94 (1H, d , $J = 8.2$, H-5); 7.04 (1H, c, H-7);	3a); 143.4; 151.4; 151.8 (C-2)		
		7.41 (1H, d, J = 8.2, H-4); 7.62 (1H, d, J = 1.9, H-5 Fur)			
9b	1622, 1486, 1461, 1425,	2.19 (3H, c, PyrC <u>H</u> ₃); 2.38 (3H, c, 2-CH ₃); 3.68 (3H, c,	12.4; 13.9 (2-CH ₃); 40.5; 40.6 (N <u>C</u> H ₂ Pyr);	335 [M] ⁺ (16), 175 (10), 174 (84), 94	
	1399, 1381, 1295, 1270,	OCH ₃); 5.06 (2H, c, NC <u>H₂</u> Pyr); 5.25 (1H, π , J = 3.3, H-3	55.9 (6-OCH ₃); 94.2 (C-7); 106.4; 106.7;	(10), 82 (5), 81 (100), 53 (19), 43 (5)	
	1209, 1172, 1145, 1101,	Pyr); 5.39 (2H, c, NC <u>H</u> ₂ Fur); 5.67 (1H, d, $J = 3.3$, H-4	107.8; 110.5 (C-5); 111.0; 119.1 (C-4);		
	1012, 941, 898, 805, 773,	Pyr); 6.17 (1H, d_1 , d_2 , $J = 3.4$, $J = 0.8$, H-3 Fur); 6.37 (1H,	126.6; 129.8; 136.4 (C-7a); 137.1 (C-3a);		
	/24	[J , J , J = 5.4, J = 1.9, H-4 Fur]; 6./3 (1H, J , J , J = 8./, J =	145.5; 151.4 (2U); 155.8 (U-6)		
		$[2.5, H-5]$; 0./9 (1H, Ξ , $J = 2.5, H-7$); 7.58 (1H, Ξ , $J = 8.7$,			
	1	Π -4), I .3 I (1 Π , Π , J , J = 1.9, Π -3 Fur)			

1360

	9c	1622, 1515, 1486, 1459,	1.87 (3H, c, PyrC <u>H</u> ₃); 2.16 (3H, c, 6-CH ₃); 2.30 (3H, c, 11.8; 12.9 (2-0)	CH ₃); 26.4 (6-CH ₃); 40.5 345 $[M]^+$ (10), 201 (25), 200 (99),
		1446, 1391, 1362, 1332,	2-CH ₃); 3.77 (3H, c, OCH ₃); 5.08 (2H, c, NCH ₂ Pyr); (NCH ₂); 54.9 (5.85 (1H $_{\rm T}$ I = 2.2 H 2 Dyr); 6.00 (1H $_{\rm T}$ I = 2.2 H 4 100.7 (C.7);	DCH_3 ; 94.0; 105.9; 108.9; 185 (5), 184 (6), 168 (5), 157 (6), 144 (2C): 118.5 (C 4): 156 (10) 154 (11) 142 (5) 77 (10)
		1178 1130 1096 1047	Pvr): 6.72 (1H π π $J = 2.4$ $J = 0.6$ H-7): 6.77 (1H π 126.9 (C-7);	291 (2C), $1305 (C-4)$, $150 (10)$, $154 (11)$, $142 (5)$, 77 (10), $291 (2C)$, $1305 (C-6)$; $40 (7)$
		1027, 982, 842, 829, 802,	μ , $J = 8.5$, $J = 2.4$, H-5); 6.85 (2H, μ , $J = 8.3$, H-2,6 130.9; 136.1 (0	2-7a); 137.3 (C-3a); 150.5
		725, 717, 621	Ar); 7.01 (2H, д, J = 8.3, H-3,5 Ar); 7.29 (1H, д. д. (C-2); 155.6; 15	9.6
			J = 8.5, J = 0.6, H-4)	
	9d	1510, 1485, 1419, 1396,	1.87 (3H, c, $PyrCH_3$); 2.16 (3H, c, 6-CH ₃); 2.30 (3H, c, 12.8; 13.8 (2- 2 CH); 5.00 (2H, c, NCH Part); 5.87 (1H, c, L= 2.5 (NCH)); 100 (4)	CH ₃); 21.7 (6-CH ₃); 40.5 333 [M] ⁺ (14), 189 (22), 188 (100), $(12)^{-1}$
		1130, 1283, 1124, 1152, 842, 810, 801, 751, 723	2-CH ₃); 5.09 (2H, c, NC <u>H</u> ₂ Pyr); 5.87 (1H, μ , $J = 3.5$, (NCH ₂); 106.0; H-3 Pyr); 6.01 (1H, μ , $J = 3.5$, H-4 Pyr); 6.37 (1H, c) (2C); 118.0 (0	109.4 (C-7); 110.1; 110.7 186 (7), 173 (6), 172 (12), 146 (10), 124 (-4); 122 7 (C-5); 127 5; 95 (8) 77 (6) 32 (74)
		673. 646	H-5) $f(11, 2, 3 = 5.5, 11 + 191), 0.57 (11, 0, 120), 110.0 (CH) + 191), 0.57 (11, 0, 120), 0.57 (11, 0, 12$	0.9 (C-6): 134.2 (C-7a):
			H-2,6 Ar); 7.14 (2H, π , $J = 8.3$, H-3,5 Ar); 7.29 (1H, π , 135.8; 140.7 (C-3a); 151.4 (C-2); 160.9;
			J = 8.6, H-4) 163.3	
	9e	1624, 1512, 1489, 1451,	2.02 (3H, c, PyrC <u>H</u> ₃); 2.57 (3H, c, 2-CH ₃); 3.83 (3H, c, 12.3; 12.9 (2-	CH ₃); 47.5 (NCH ₂); 55.3 361 [M] ⁺ (8), 201 (18), 200 (100), 124.5
		1393, 1330, 1296, 1241, 1210, 1182, 1126, 1008	$6-OCH_3$; 3.90 (3H, c, ArOCH3); 5.28 (2H, c, (6-OCH3); 55.8	(5, 5.9, (C-7); 104.5; 108.3, 184, (5), 156, (6), 154, (7), 40, (6), 32
		1041 1023 992 843 831	$J = 3.5 \text{ H-3 Pvr}$; 6.82 (2H π , $J = 8.7 \text{ H-3.5 Ar}$; 6.91 (29.6); 134.7 (21.7)	35 1: 136 2. (C-7a): 138 8
		792, 721, 717, 644	$(2H, \pi, J = 8.7, H-2, 6 \text{ Ar}); 6.94 (1H, c, H-7 \text{ Ar}); 7.04 (C-3a); 153.6 (C-3a)$	-2); 160.0 (C-6); 160.1
			(1Н, д, J = 8.5, Н-5 Аг); 7.76 (1Н, д, J = 8.5, Н-4)	
	9f	1520, 1488, 1429, 1410,	1.92 (3H, c, PyrCH ₃); 2.18 (3H, c, 2-CH ₃); 2.32 (3H, c, 6- 11.8; 13.0 (2-4)	CH ₃); 20.9 (6-CH ₃); 40.2 316 [M] ⁺ (41), 172 (10), 171 (100),
		1368, 1330, 1280, 1239,	CH ₃); 5.17 (2H, c, NC <u>H₂</u> Pyr); 5.94 (1H, μ , J = 3.3, H-4 (NCH ₂); 106.7;	109.5; 109.7 (C-7); 117.9 170 (12), 169 (23), 156 (35), 78 (22),
		1194, 1023, 996, 857,	Pyr); 6.09 (1H, π , $J = 3.3$, H-3 Pyr); 6.7/ (1H, c, H-7); (C-4); 122.3 (6.88 (1H) π , $J = 80$, H-5); 7.32 (1H) π , $J = 80$, H-4); 7.36 (C-6); 131.0; 1	(2-5); 124.0; 127.5; 130.7 (53 (31), 53 (31), 51 (19), 44 (23))
		809,775,755,709	$(111, \pi, \pi, J = 8.1, J = 4.6, H-5, Pv)$; 7.38 (111, $\pi, J = 8.1, 140.9$ (C-3a); 14	9.0: 149.4: 150.9 (C-2)
			H-4 Py); 8.37 (1H, д, <i>J</i> = 1.6, H-2 Py); 8.58 (1H, д. д, <i>J</i> =	
			4.6, <i>J</i> = 1.6, H-6 Py)	
	9g	1622, 1516, 1483, 1436,	1.90 (3H, c, PyrC <u>H</u> ₃); 2.07 (3H, c, ArC <u>H</u> ₃); 2.35 (3H, c, 11.9; 12.9 (2-0)	(H_3) ; 20.2 (6-CH ₃); 24.2; 329 $[M]^+$ (2.3), 185 (23), 184 (100),
		1419, 1390, 1362, 1329,	$6-CH_3$; 2.57 (3H, c, 2-CH ₃); 5.08 (2H, c, NCH ₂ Pyr); 40.5 (NCH ₂); 9- 5 80 (1H, π , $I = 2.4$, H 4 Pure); 6 10 (1H, π , $I = 2.4$, H 2 (7); 118 5 (C 4)	4.0; 105.9; 109.0; 109.7 (C-169 (8), 168 (14), 167 (6), 154 (16), 126.8 (2C); 127.8 (2C); 101 (5), 65 (7), 22 (72)
		1200, 1178, 1120, 1090,	Pvr): $6.62 (1H \pi \pi J = 2.5 J = 0.6 H-7): 6.70 (1H \pi 129.9 (C-5): 1$	(20), 127.8, (20), 137.4, (20), 91, (3), 03, (7), 32, (72)
		623	μ , $J = 8.7$, $J = 2.5$, H-5); 6.85 (2H, μ , $J = 8.3$, H-2,6 [137.3 (C-7a);	38.3 (C-3a); 150.5 (C-2);
13			Ar); 7.16 (2H, μ , $J = 8.3$, H-3,5 Ar); 7.32 (1H, μ , μ , 155.6	
61			J = 8.7, J = 0.6, H-4)	

ИК спектры соединений **7а**–с содержат интенсивные полосы поглощения карбонильных групп в области 1697–1705 см⁻¹ (табл. 2), а спектры ЯМР ¹³С – сигналы атомов углерода двух кетонных групп в области 203.1–203.8 и 206.4–207.2 м. д. В спектрах ЯМР ¹Н отсутствуют сигналы протонов фуранового цикла и наблюдается мультиплет интенсивностью 4H в области 2.73–2.84 м. д., соответствующий сигналу протонов двух метиленовых звеньев фрагмента COCH₂CH₂CO.

Дикетоны **7а-с** представляют собой удобные предшественники для синтеза пирролов по методу Пааля–Кнорра. Однако попытки проведения реакции в общепринятых классических условиях – при нагревании в уксусной кислоте – оказались неудачными: в результате наблюдалась деструкция исходных соединений, приводящая к образованию неразделимой смеси веществ.

Для гладкого замыкания пиррольного кольца оказалось возможным проводить взаимодействие дикетонов **7а–с** с первичными ароматическими и алифатическими аминами при кипячении в толуоле в присутствии Ti(OPr-*i*)₄ и триэтиламина (табл. 3). При этом выходы целевых 1-пирролилметилбензимидазолов **9а–g** достигают 61–83% (табл. 1, 2).

По табл. З видно, что длительность процесса во многом зависит от природы взятого амина: так, реакция с фурфуриламином протекает в течение З ч, тогда как для ароматических аминов продолжительность реакции составляет 6–12 ч. Следует отметить, что при использовании 4-нитроанилина (**8f**) и алифатического амина с объёмным заместителем – *трет*-бутиламина (**8g**) – замыкание пиррольного кольца вообще не происходит.

8 а R^1 = фурфурил, b R^1 = 4-MeOC₆H₄, c R^1 = 4-FC₆H₄, d R^1 = 4-MeC₆H₄, e R^1 = 3-пиридил, f R^1 = 4-O₂NC₆H₄, g R^1 = *t*-Bu; 9 а R = Me, R^1 = фурфурил; b R = MeO, R^1 = фурфурил; c R = Me, R^1 = 4-MeOC₆H₄; d R = Me, R^1 = 4-FC₆H₄; e R = MeO, R^1 = 4-MeOC₆H₄; f R = Me, R^1 = 3-пиридил; g R = Me, R^1 = 4-MeC₆H₄

Таблица З

Дикетон 7	Амин 8	Время реакции, ч	Выход соедине- ния 9 , %	Дикетон 7	Амин 8	Время реакции, ч	Выход соедине- ния 9, %
7b	8a	3	61 (9a)	7b	8e	12	83 (9f)
7c	8a	3	64 (9b)	7b	8d	9	73 (9g)
7b	8b	6	71 (9c)	7a	8f	24	_
7b	8c	10	72 (9d)	7c	8f	22	_
7c	8b	7	63 (9e)	7b	8g	12	-

Условия циклизации дикетонов 7а-с и выходы соединений 9а-д

1362

Доказательством формирования пиррольного кольца в соединениях **9а–g** является исчезновение полос поглощения карбонильных групп в ИК спектрах и сигналов протонов метиленовых звеньев СОСН₂CH₂CO в спектрах ЯМР ¹Н (табл. 2). В то же время в спектрах ЯМР ¹Н появляются сигналы β-протонов пиррольного кольца в области 5.23–6.30 м. д.

Таким образом, нами разработан метод синтеза новых производных бензимидазола, содержащих в положении 1 (5-метилфуран-2-ил)метильный фрагмент, изучена реакция протолитического раскрытия фуранового кольца и подобраны условия для последующей циклизации образующихся дикетонов в пиррольный цикл. Установлено, что успех протекания реакция замыкания пиррольного кольца зависит от природы используемого амина.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на приборе Perkin Elmer Spectrum Two с использованием приставки НПВО. Спектры ЯМР ¹Н и ¹³С записаны на приборе Agilent 400-MR (400 и 100 МГц соответственно) в ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры зарегистрированы на приборе Kratos MS-30, ионизация ЭУ (70 эВ). Элементный анализ проведён на CHN-анализаторе Flash EA 1112. Температуры плавления определены на приборе Stuart SMP 30 и не исправлены. ТСХ проведена на пластинах Silufol UV-254 и Сорбфил (ООО "Сорбполимер"), проявители – пары иода или брома. Для колоночной хроматографии использован силикагель марки КСК (ООО "Сорбполимер", 50–100 µ).

Соединения **3а–с** получены в результате последовательно проведённых реакций ацилирования *о*-нитроанилинов **1а–с** уксусным ангидридом по методике, приведённой в работе [42], и восстановления нитрогруппы в полученных амидах **2а–с** никелем Ренея в присутствии $NH_2NH_2 \cdot H_2O$ по методике, приведённой в [43].

Соединения 4а-с (общая методика). К раствору 50 ммоль *о*-аминоанилида 3а-с, 5 мл (50 ммоль) 5-метилфурфурола в 150 мл PhH добавляют 1 г ионообменной смолы Amberlist 15, полученную смесь кипятят с азеотропной отгонкой воды в течение 4–8 ч. После охлаждения катионит отфильтровывают, реакционную смесь упаривают досуха в вакууме. Полученный остаток перекристаллизовывают из EtOH.

N-(2-{[[5-Метилфуран-2-ил)метилиден]амино}фенил)ацетамид (4а). Выход 75%. Светло-жёлтые кристаллы. Т. пл. 94–95 °С. ИК спектр, v, см⁻¹: 3248, 3105, 1678, 1622, 1549, 1522, 1443, 1367, 1301, 1278, 1027, 754. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 2.09 (3H, c, CH₃); 2.36 (3H, c, CH₃); 6.36 (1H, д, *J* = 3.3, H-4 Fur); 7.05–7.08 (1H, м, H Ph); 7.13 (1H, д, *J* = 3.3, H-3 Fur); 7.14–7.16 (1H, м, H Ph); 7.18–7.23 (1H, м, H Ph); 8.08 (1H, д, *J* = 7.8, H Ph); 8.32 (1H, c, CH=N); 9.31 (1H, c, NH). Спектр ЯМР ¹³С, δ , м. д.: 14.1; 24.5; 109.8; 118.0; 120.2; 121.4; 124.5; 126.7; 133.3; 141.1; 148.1; 151.2; 157.0; 168.6. Найдено, %: С 69.35; H 5.77; N 11.59. C₁₄H₁₄N₂O₂. Вычислено, %: С 69.41; H 5.82; N 11.56.

N-(4-Метил-2-{[(5-метилфуран-2-ил)метилиден]амино}фенил)ацетамид (4b). Выход 77%. Светло-жёлтые кристаллы. Т. пл. 153–154 °С. ИК спектр, v, см⁻¹: 3245, 3110, 1677, 1625, 1541, 1519, 1444, 1363, 1302, 1264, 1114, 1028, 959, 797. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 2.06 (3H, c, CH₃); 2.24 (3H, c, CH₃); 2.38 (3H, c, CH₃); 6.41 (1H, д, *J* = 3.0, H-4 Fur); 6.75 (1H, д, *J* = 8.6, H Ph); 6.82 (1H, c, H Ph); 7.05 (1H, д, *J* = 3.0, H-3 Fur); 7.88 (1H, д, *J* = 8.6, H Ph); 8.36 (1H, c, CH=N); 9.00 (1H, c, NH). Спектр ЯМР ¹³С, δ , м. д.: 14.1; 24.3; 26.8; 109.7; 111.9; 120.1; 122.6; 123.5; 126.7; 143.2; 148.6; 151.2; 156.4; 157.0; 168.5. Найдено, %: С 70.22; H 6.24; N 11.00. С₁₅H₁₆N₂O₂. Вычислено, %: С 70.29; H 6.29; N 10.93.

N-(2-{[(5-Метилфуран-2-ил)метилиден]амино}-4-метоксифенил)ацетамид (4с). Выход 75%. Светло-жёлтые кристаллы. Т. пл. 178–179 °С. ИК спектр, v, см⁻¹: 3242, 3107, 1678, 1623, 1574, 1521, 1443, 1355, 1302, 1242, 1153, 1121, 1025, 948, 799. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 2.03 (3H, c, CH₃); 2.39 (3H, c, CH₃); 3.75 (3H, c, OCH₃); 6.36 (1H, д, *J* = 3.3, H-4 Fur); 6.73 (1H, д, *J* = 8.5, H Ph); 6.78 (1H, c, H Ph); 7.12 (1H, д, *J* = 3.3, H-3 Fur); 7.83 (1H, д, *J* = 8.5, H Ph); 8.34 (1H, c, CH=N); 8.99 (1H, c, NH). Спектр ЯМР ¹³С, δ , м. д.: 14.1; 24.3; 55.8; 103.6; 109.8; 112.0; 120.1; 123.6; 126.3; 143.2; 148.6; 151.2; 156.6; 156.9; 168.3. Найдено, %: С 66.09; H 5.89; N 10.22. C₁₅H₁₆N₂O₃. Вычислено, %: С 66.16; H 5.92; N 10.29.

Синтез N-2-(4-R-2-{[5-метилфуран-2-ил)метил]амино}фенил)ацетамидов 5а-с восстановлением азометинов 4а-с (общая методика). К раствору 40 ммоль соединения 4а-с в смеси 70 мл диоксана и 20 мл EtOH порциями добавляют 4.44 г (120 ммоль) NaBH₄. Реакционную смесь перемешивают при 50–55 °C до полного расходования исходного азометина (1–3 ч). Охлаждённую реакционную смесь выливают в 300 мл ледяной воды и перемешивают до кристаллизации осадка. Полученный осадок отфильтровывают, промывают водой, сушат и перекристаллизовывают из смеси EtOAc – петролейный эфир, получая амины 5а-с в виде белых порошков.

Синтез 6-R-2-метил-1-[(5-метилфуран-2-ил)метил]бензимидазолов 6а–с (общая методика). К раствору 25 ммоль соединения 5a-c в 70 мл EtOH добавляют 20 мл 10% раствора сухого HCl в EtOH, полученную смесь выдерживают при 60 °C до полного исчезновения исходного амина в течение 7–12 ч (контроль TCX, элюент EtOAc). Охлаждённую смесь выливают в 200 мл холодной воды и нейтрализуют добавлением NaHCO₃ до pH 6–7. Выпавший осадок отфильтровывают, сушат и перекристаллизовывают из смеси EtOAc – петролейный эфир, получая бензимидазолы 6a-c в виде белых порошков.

Синтез 1-(6-R-2-метил-1*H*-бензимидазол-1-ил)гексан-2,5-дионов 7а-с (общая методика). Раствор 20 ммоль соединения 6а-с в смеси 20 мл ЕtOH и 35 мл 20% раствора сухого HCl в ЕtOH, кипятят в течение 6–20 ч. Охлаждённую смесь выливают в 200 мл холодной воды и нейтрализуют добавлением NaHCO₃ до pH 6–7. Выпавший осадок отфильтровывают и сушат. Выделение продуктов реакции проводят методом колоночной хроматографии (элюент PhH – 2-PrOH, 8:3), получая дикетоны 7а-с в виде белых порошков.

Синтез 6-R-2-метил-1-{[1-R¹-5-метилпиррол-2-ил]метил}-1*H*-бензимидазолов 9а–g (общая методика). К раствору 2.0 ммоль дикетона 7а–с, 2.1 ммоль амина 8а–g и 1.08 мл (2.1 ммоль) свежеперегнанного Et_3N в 20 мл PhMe добавляют по каплям 2.46 мл (2.1 ммоль) Ti(OPr-*i*)₄, полученную смесь кипятят в течение 3–12 ч до исчезновения исходного дикетона (контроль TCX, элюент EtOAc). По окончании реакции смесь охлаждают, добавляют 30 мл 10% раствора NaOH и фильтруют при пониженном давлении. Органическую фазу фильтрата отделяют, водный слой экстрагируют PhMe (2 × 10 мл). Объединённые экстракты сушат над Na₂SO₄ и упаривают в вакууме до 1/4 исходного объёма. К остатку добавляют петролейный эфир и оставляют кристаллизоваться. Выпавшие кристаллы отфильтровывают, сушат и перекристаллизовывают из смеси EtOAc – петролейный эфир, получая продукты 9 в виде белых порошков.

Исследования выполнены в рамках Государственного задания Министерства образования и науки Российской Федерации (соглашение 3.1578.2011) и при поддержке Министерства образования и науки Российской Федерации (соглашение 14.B37.21.0829)

СПИСОК ЛИТЕРАТУРЫ

- 1. А. А. Спасов, И. Н. Йожица, Л. И. Бугаева, В. А. Анисимова, *Хим.-фарм. журн.*, **33**, № 5, 6 (1999).
- 2. S. O. Podunavac-Kuzmanovic, D. M. Cvetkovic, J. Serb. Chem. Soc., 72, 459 (2007).
- H. Nakano, T. Inoue, N. Kawasaki, H. Miyataka, H. Matsumoto, T. Taguchi, N. Inagaki, H. Nagai, T. Satoh, *Bioorg. Med. Chem.*, 8, 373 (2000).

- J. Pothier, M. A. Riederer, O. Peter, X. Leroy, A. Valdenaire, C. Gnerre, H. Fretz, Bioorg. Med. Chem. Lett., 22, 4660 (2012).
- Z. Zhao, D. O. Arnaiz, B. Griedel, S. Sakata, J. L. Dallas, M. Whitlow, L. Trinh, J. Post, A. Liang, M. M. Morrissey, K. J. Shaw, *Bioorg. Med. Chem. Lett.*, 10, 963 (2000).
- 6. Z. Zhu, B. Lippa, J. C. Drach, L. B. Townsend, J. Med. Chem., 43, 2430 (2000).
- M. J. Tebbe, W. A. Spitzer, F. Victor, S. C. Miller, C. C. Lee, T. R. Sattelberg, E. McKinney, J. C. Tang, *J. Med. Chem.*, 40, 3937 (1997).
- A. R. Porcari, R. V. Devivar, L. S. Kucera, J. C. Drach, L. B. Townsend, J. Med. Chem., 41, 1252 (1998).
- T. Roth, M. L. Morningstar, P. L. Boyer, S. H. Hughes, R. W. Buckheit, C. J. Michejda, *J. Med. Chem.*, 40, 4199 (1997).
- M. T. Migawa, J.-L. Girardet, J. A. Walker, G. W. Koszalka, S. D. Chamberlain, J. C. Drach, L. B. Townsend, J. Med. Chem., 41, 1242 (1998).
- 11. I. Tamm, P. B. Seghal, Adv. Virus Res., 22, 187 (1978).
- 12. I. Tamm, Science, 126, 1235 (1957).
- 13. Y.-F. Li, G.-F. Wang, P.-L. He, W.-G. Huang, F.-H. Zhu, H.-Y. Gao, W. Tang, Y. Luo, C.-L. Feng, L.-P. Shi, Y.-D. Ren, W. Lu, J.-P. Zuo, *J. Med. Chem.*, **49**, 4790 (2006).
- 14. V. K. Pandey, M. Upadhyay, M. Upadhyay, V. D. Gupta, M. Tandon, Acta Pharm. (Zagreb, Croatia), 55, 47 (2005).
- 15. Ö. Ö. Güven, T. Erdoğan, H. Göker, S. Yıldız, J. Heterocycl. Chem., 44, 731 (2007).
- U. J. Ries, G. Mihm, B. Narr, K. M. Hasselbach, H. Wittneben, M. Entzeroth, J. C. A. van Meel, W. Wienen, N. H. Hauel, J. Med. Chem., 36, 4040 (1993).
- M. L. Morningstar, T. Roth, D. W. Farnsworth, M. K. Smith, K. Watson, R. W. Buckheit, K. Das, W. Zhang, E. Arnold, J. G. Julias, S. H. Hughes, C. J. Michejda, *J. Med. Chem.*, 50, 4003 (2007).
- K. Takeuchi, J. A. Bastian, D. S. Gifford-Moore, R. W. Harper, S. C. Miller, J. T. Mullaney, D. J. Sall, G. F. Smith, M. Zhang, M. J. Fisher, *Bioorg. Med. Chem. Lett.*, 10, 2347 (2000).
- 19. S. Paul, B. Basu, Tetrahedron Lett., 53, 4130 (2012).
- P. Salehi, M. Dabiri, M. A. Zolfigol, S. Otokesh, M. Baghbanzadeh, *Tetrahedron Lett.*, 47, 2557 (2006).
- 21. R. Varala, A. Nasreen, R. Enugala, S. R. Adapa, Tetrahedron Lett., 48, 69 (2007).
- 22. S. D. Sharma, D. Konwar, Synth. Commun., 39, 980 (2009).
- S. V. Ryabukhin, A. S. Plaskon, D. M. Volochnyuk, A. A. Tolmachev, *Synthesis*, 3715 (2006).
- 24. M. M. Karpińska, J. Matysiak, A. Niewiadomy, J. Wietrzyk, D. Kłopotowska, *Monatsh. Chem.*, **143**, 269 (2012).
- 25. S. Perumal, S. Mariappan, S. Selvaraj, ARKIVOC, viii, 46 (2004).
- 26. N. Arumugam, A. S. A. Rahim, S. A. Hamid, H. Osman, Molecules, 17, 9887 (2012).
- 27. P. L. Beaulieu, B. Haché, E. von Moos, Synthesis, 1683 (2003).
- 28. С. И. Бурмистров, В. М. Санникова, *XTC*, 816 (1981). [*Chem. Heterocycl. Compd.*, **17**, 606 (1981).]
- 29. N. D. Kokare, J. N. Sangshetti, D. B. Shinde, Synthesis, 2829 (2007).
- 30. K. Bahrami, M. M. Khodaei, A. Nejati, Green Chem., 12, 1237 (2010).
- P. Bandyopadhyay, M. Sathe, G. K. Prasad, P. Sharma, M. P. Kaushik, *J. Mol. Catal. A: Chem.*, 341, 77 (2011).
- 32. J. S. Yadav, B. V. S. Reddy, K. Premalatha, K. S. Shankar, Can. J. Chem., 86, 124 (2008).
- R. Chebolu, D. N. Kommi, D. Kumar, N. Bollineni, A. K. Chakraborti, J. Org. Chem., 77, 10158 (2012).
- 34. H. Veisi, A. Sedrpoushan, M. A. Zolfigol, F. Mohanazadeh, J. Heterocycl. Chem., 48, 1448 (2011).
- 35. J.-P. Wan, S.-F. Gan, J.-M. Wu, Y. Pan, Green Chem., 11, 1633 (2009).

- 36. H. R. Shaterian, N. Fahimi, K. Azizi, Chin. J. Chem., 29, 2389 (2011).
- 37. B. H. Kim, R. Han, J. S. Kim, Y. M. Jun, W. Baik, B. M. Lee, *Heterocycles*, 63, 41 (2004).
- G. D. Maynard, L. D. Bratton, J. M. Kane, T. P. Burkholder, B. Santiago, K. T. Stewart, E. M. Kudlacz, S. A. Shatzer, R. W. Knippenberg, A. M. Farrell, D. E. Logan, *Bioorg. Med. Chem. Lett.*, 7, 2819 (1997).
- 39. Т. А. Строганова, В. К. Василин, *ХГС*, 1433 (2009). [*Chem. Heterocycl. Compd.*, **45**, 1151 (2009).]
- 40. A. V. Butin, S. K. Smirnov, T. A. Stroganova, W. Bender, G. D. Krapivin, *Tetrahedron*, **63**, 474 (2007).
- 41. Д. Ю. Косулина, В. К. Василин, Т. А. Строганова, Е. А. Сбитнева, А. В. Бутин, Г. Д. Крапивин, *XIC*, 1380 (2009). [*Chem. Heterocycl. Compd.*, **45**, 1105 (2009).]
- Л. Титце, Т. Айхер, Препаративная органическая химия. Реакции и синтезы в практикуме органической химии и научно-исследовательской лаборатории, Мир, Москва, 1999, с. 175.
- 43. T. A. Stroganova, A. V. Butin, V. K. Vasilin, T. A. Nevolina, G. D. Krapivin, *Synlett*, 1106 (2007).

¹ Кубанский государственный технологический университет, ул. Московская, 2, Краснодар 350072, Россия e-mail: tatka_s@mail.ru Поступило 22.06.2013 После доработки 14.07.2013