Е. В. Громачевская^{1*}, А. В. Финько¹, А. В. Бутин^{1,2}, К. С. Пушкарева¹, В. Д. Стрелков¹, Л. И. Исакова¹, Г. Д. Крапивин¹

ЗАМЕЩЁННЫЕ 2-ФОРМИЛБЕНЗОЙНЫЕ КИСЛОТЫ В СИНТЕЗЕ 11*H*-ИЗОИНДОЛО[2,1-*a*]БЕНЗИМИДАЗОЛ-11-ОНОВ, 5*H*-ИЗОИНДОЛО[2,1-*a*][3,1]БЕНЗОКСАЗИН-5,11(6а*H*)-ДИОНОВ И 6,6а-ДИГИДРОИЗОИНДОЛО[2,1-*a*]ХИНАЗОЛИН-5,11-ДИОНОВ

Разработаны оптимальные условия синтеза производных 11*H*-изоиндоло[2,1-*a*]бензимидазол-11-она, 5*H*-изоиндоло[2,1-*a*][3,1]бензоксазин-5,11(6а*H*)-диона и 6,6а-дигидроизоиндоло[2,1-*a*]хиназолин-5,11-диона реакцией замещённых 2-формилбензойных кислот соответственно с *о*-фенилендиамином, антраниловой кислотой и антраниламидом. Методом РСА доказана и исследована двускладчатая структура 6,6а-дигидроизоиндоло[2,1-*a*]хиназолин-5,11-диона.

Ключевые слова: антраниламид, антраниловая кислота, изоиндолон, *о*-фенилендиамин, 2-формилбензойная кислота, домино-реакция гетероциклизации, N,N-бинуклеофилы, N,O-бинуклеофилы.

В предыдущем сообщении нами описаны домино-реакции замещённых 2-формилбензойных кислот (ФБК) с 2-(1-аминоалкил)фенолами и 2-аминофенил(диэтил, дифенил)карбинолами, приводящие соответственно к 10*H*-изоиндоло[2,1-*b*][1,3]бензоксазин-12(4b*H*)-онам и 5*H*-изоиндоло[2,1-*a*][3,1]бензоксазин-11(6а*H*)-онам [1]. Среди последних выявлены соединения с пестицидной активностью [2].

Эти результаты послужили предпосылкой к проведению реакции ФБК с *о*-фенилендиамином (ФДА), антраниловой кислотой и антраниламидом с целью получения новых производных тетрациклических гетеросистем, содержащих изоиндолоновый фрагмент: 11*H*-изоиндоло[2,1-*a*]бензимидазол-11-она, 5*H*-изоиндоло[2,1-*a*][3,1]бензоксазин-5,11(6а*H*)-диона и 6,6а-дигидроизоиндоло[2,1-*a*]хиназолин-5,11-диона. Изоиндолоновый фрагмент входит в состав природных соединений – алкалоидов [3, 4] и, видимо, вносит определённый вклад в появление того или иного вида биологического действия [5–8].

В литературе описаны различные продукты взаимодействия ФБК с ФДА. Так, при кипячении в метаноле эквимолярных количеств реагентов и кислом катализе получена 2-(1*H*-бензимидазол-2-ил)бензойная кислота [9], а при кипячении в бензоле в присутствии TsOH с азеотропной отгонкой воды – 4b,5-дигидро-11*H*-изоиндоло[2,1-*a*]бензимидазол-11-он [6]. Авторы работы [10] кипячением исходных реагентов в толуоле (12 ч) в присутствии TsOH получили 11*H*-изоиндоло[2,1-*a*]бензимидазол-11-он.

Для получения 11*H*-изоиндоло[2,1-*a*]бензимидазол-11-онов также используются различные варианты взаимодействия ФДА с фталевым ангидридом: кипячение эквимолярных количеств реагентов в *н*-амиловом спирте [5], сплавление их без растворителя [11] или в растворе при микроволновом облучении [12].

В настоящей работе для получения производных 11H-изоиндоло[2,1-*a*]бензимидазол-11-онов мы использовали 2-(1*H*-бензимидазол-2-ил)бензойные кислоты **2а**–**d**. Нами установлено, что соединения **2а**–**d** легко образуются при взаимодействии эквимолярных количеств соответствующих ФБК **1а**–**d** и ФДА при комнатной температуре в уксусной кислоте, которая, как мы полагаем, служит и растворителем и катализатором. Хотя процесс протекает как последовательность реакций циклизации и дегидрирования (окисления) [13], выделить промежуточные продукты в данных условиях не удаётся. Реакция заканчивается за 1.5–2.0 ч выделением из реакционной смеси бесцветных кристаллов продуктов **2а–d**.

a $R = R^1 = H$; **b** $R = Cl, R^1 = H$; **c** $R = NO_2, R^1 = H$; **d** $R = R^1 = OMe$

Состав и строение синтезированных соединений установлены элементным анализом, ЯМР ¹Н и ¹³С спектроскопией и масс–спектрометрией (табл. 1–3). В ИК спектрах соединений **2a**–**d** отсутствуют полосы валентных колебаний связи C=O карбоксильной группы в области 1720–1680 см⁻¹, характерные для исходных кислот **1a–d**, но наблюдаются интенсивные полосы поглощения при 1605–1580 и 1390–1360 см⁻¹, относящиеся к валентным асимметричным и симметричным колебаниям карбоксилат-аниона. В области 2250–1800 см⁻¹ присутствуют широкие полосы поглощения, принадлежащие протонированным аминогруппам [14, 15]. Очевидно, в кристаллическом состоянии соединения **2a–d** находятся в цвиттер-ионной форме. В спектрах ЯМР ¹Н, записанных в ДМСО-d₆, сигналы протонов карбоксильной и аминной групп не фиксируются, видимо, из-за достаточно быстрого обмена в шкале времени ЯМР. В спектрах присутствуют сигналы только ароматических протонов в области 7.22–8.54 м. д., в спектре соединения **2d** – также сигналы двух метоксигрупп (табл. 2).

	Физико-химич	еские хар	актери	стики сі	интезир	ованных соедин	ений	
Соеди-	Брутто-		<u>Найде</u> Вычис:	<u>ено, %</u> пено, %	Т. пл., °С	$R_{ m f}$	Выход,	
нение	формула	С	Н	Ν	Hal			/0
2a	$C_{14}H_{10}N_2O_2$	<u>70.21</u> 70.58	<u>4.42</u> 4.23	<u>11.58</u> 11.76	_	243–245 (245 [33])	0.11	72
2b	$C_{14}H_9ClN_2O_2$	<u>61.73</u> 61.66	<u>3.26</u> 3.33	$\frac{10.18}{10.27}$	$\frac{13.07}{13.00}$	228–290	0.05	74
2c	$C_{14}H_9N_3O_4$	<u>59.45</u> 59.37	<u>3.09</u> 3.20	<u>14.71</u> 14.84	-	290–293	0.07	65
2d	$C_{16}H_{14}N_2O_4$	<u>64.22</u> 64.42	<u>4.85</u> 4.73	<u>9.21</u> 9.39	_	230–233	0.10	77
3a	$C_{14}H_8N_2O$	<u>76.52</u> 76.35	<u>3.45</u> 3.66	<u>12.52</u> 12.72	_	>290 (с разл.) (>290 [5])	0.60	70
3b	$C_{14}H_7CIN_2O$	<u>66.36</u> 66.03	<u>2.50</u> 2.77	$\frac{11.35}{11.00}$	<u>14.20</u> 13.92	190–192	0.71	72
3c	$C_{14}H_7N_3O_3$	<u>63.75</u> 63.40	<u>2.31</u> 2.66	$\frac{15.48}{15.84}$	_	242–245	0.80	80
3d	$C_{16}H_{12}N_2O_3$	<u>68.71</u> 68.56	$\frac{4.05}{4.32}$	<u>10.21</u> 9.99	_	230–233	0.37	75
4b	$C_{15}H_{10}ClNO_4$	<u>59.28</u> 59.32	<u>3.51</u> 3.32	<u>4.36</u> 4.61	<u>11.82</u> 11.67	211–213	0.53	70
4c	$C_{15}H_{10}N_2O_6$	<u>57.10</u> 57.33	<u>3.35</u> 3.21	<u>8.64</u> 8.91	_	207–209	0.71	75
5a	C ₁₅ H ₉ NO ₃	<u>71.52</u> 71.71	<u>3.83</u> 3.61	<u>5.37</u> 5.58	_	210–212 (219 [19])	0.45	77
5b	C ₁₅ H ₈ ClNO ₃	<u>63.26</u> 63.06	<u>2.65</u> 2.82	<u>4.78</u> 4.90	<u>12.32</u> 12.41	>250 (с разл.)	0.52	60
5c	$C_{15}H_8N_2O_5$	$\frac{60.65}{60.82}$	<u>2.92</u> 2.72	<u>9.58</u> 9.46	_	261–263	0.80	65
5d	$C_{17}H_{13}NO_5$	<u>65.32</u> 65.59	<u>4.05</u> 4.21	$\frac{4.71}{4.50}$	-	232–235	0.68	52
6a	$C_{15}H_{10}N_2O_2$	<u>72.39</u> 71.99	<u>3.90</u> 4.03	<u>11.56</u> 11.19	-	255–258 (250–253 [25])	0.54	80
6b	$C_{15}H_9ClN_2O_2$	$\frac{\underline{63.10}}{\underline{63.28}}$	<u>3.25</u> 3.19	<u>9.75</u> 9.84	<u>12.31</u> 12.45	292–295	0.53	78
6c	$C_{15}H_{9}N_{3}O_{4}$	<u>61.41</u> 61.02	$\frac{3.27}{3.07}$	$\frac{14.15}{14.23}$	-	212–215	0.10	72
6d	$C_{17}H_{14}N_2O_4$	<u>65.45</u> 65.80	<u>4.71</u> 4.55	<u>8.85</u> 9.03	-	298–300	0.15	52
6e	$C_{15}H_9BrN_2O_2$	<u>54.75</u> 54.74	<u>2.35</u> 2.76	<u>8.63</u> 8.51	<u>24.07</u> 24.28	265–267	0.56	80
6f	$C_{15}H_9IN_2O_2$	<u>47.55</u> 47.90	<u>2.23</u> 2.41	<u>7.30</u> 7.45	<u>33.52</u> 33.74	282–284	0.60	73
6g	$C_{16}H_{12}N_2O_3$	<u>68.57</u> 68.56	<u>4.28</u> 4.32	<u>10.00</u> 9.99	_	286–289	0.20	80

Спектральные характеристики синтезированных соединений

Соеди- нение	ИК спектр, v , см ⁻¹	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)
1	2	3
2a	2000–1900 (N ⁺ H); 1590, 1370 (COO ⁻)	7.26 (1H, \exists , \exists , $J = 6.0$, $J = 3.0$, H-7); 7.28 (1H, \exists , \exists , $J = 6.0$, $J = 3.0$, H-4); 7.61 (1H, \exists , \exists , $J = 6.0$, $J = 3.0$, H-6); 7.63 (1H, \exists , \exists , $J = 6.0$, $J = 3.0$, H-5); 7.65 (1H, \exists , \exists , $J = 7.0$, $J = 1.5$, H-4'); 7.72 (1H, \exists , \exists , $J = 7.0$, $J = 1.5$, H-5'); 7.82 (1H, \exists , \exists , $J = 7.0$, $J = 1.5$, H-3'); 7.88 (1H, \exists , \exists , $J = 7.0$, $J = 1.5$, H-6')
2b	2250 (N ⁺ H); 1580, 1370 (COO ⁻)	7.23 (1H, д. д, <i>J</i> = 6.0, <i>J</i> = 3.0, H-7); 7.25 (1H, д. д, <i>J</i> = 6.0, <i>J</i> = 3.0, H-4); 7.59 (1H, д. т, <i>J</i> = 6.0, <i>J</i> = 3.0, H-6); 7.61 (1H, д. т, <i>J</i> = 6.0, <i>J</i> = 3.0, H-5); 7.77 (1H, д. д, <i>J</i> = 8.7, <i>J</i> = 2.0, H-4'); 7.83–7.87 (2H, м, H-3',6')
2c	2000–1800 (N ⁺ H); 1580, 1390 (COO ⁻); 1510, 1328 (NO ₂)	7.27 (1H, д. д, <i>J</i> = 6.0, <i>J</i> = 3.0, H-7); 7.29 (1H, д. д, <i>J</i> = 6.0, <i>J</i> = 3.0, H-4); 7.64 (1H, д. т, <i>J</i> = 6.0, <i>J</i> = 3.0, H-6); 7.66 (1H, д. т, <i>J</i> = 6.0, <i>J</i> = 3.0, H-5); 8.12 (1H, д. д, <i>J</i> = 7.0, <i>J</i> = 2.4, H-4'); 8.50–8.54 (2H, м, H-3',6')
2d	1900–1800 (N ⁺ H); 1590, 1360 (COO ⁻)	3.89 (3H, c, OCH ₃), 3.91 (3H, c, OCH ₃); 7.24 (1H, д. д, <i>J</i> = 6.0, <i>J</i> = 3.0, H-7); 7.26 (1H, д. д, <i>J</i> = 6.0, <i>J</i> = 3.0, H-4); 7.38 (1H, c, H-3'); 7.53 (1H, c, H-6'); 7.60 (1H, д. т, <i>J</i> = 6.0, <i>J</i> = 3.0, H-6); 7.62 (1H, д. т, <i>J</i> = 6.0, <i>J</i> = 3.0, H-5)
3 a	1735 (C=O); 1648 (C=N)	7.10–7.30 (2Н, м, Н-7,8); 7.35 (1Н, д, <i>J</i> = 8.1, Н-6); 7.52 (1Н, д, <i>J</i> = 8.1, Н-9); 7.71–7.75 (4Н, м, Н-1,2,3,4)
3b	1750 (C=O); 1610 (C=N)	7.28 (1H, т, <i>J</i> = 6.0, H-8); 7.37 (1H, т, <i>J</i> = 6.0, H-7); 7.60–7.75 (2H, м, H-6,9); 7.77–7.83 (2H, м, H-3,4); 7.90 (1H, с, H-1)
3c	1750 (C=O); 1600 (C=N); 1450, 1320 (NO ₂)	7.39 (1H, д. т, <i>J</i> = 7.5, <i>J</i> = 1.2, H-8); 7.47 (1H, д. т, <i>J</i> = 7.5, <i>J</i> = 1.2, H-7); 7.78 (1H, д. д, <i>J</i> = 7.5, <i>J</i> = 1.2, H-6); 7.81 (1H, д. д, <i>J</i> = 7.5, <i>J</i> = 1.2, H-9); 8.14 (1H, д, <i>J</i> = 8.1, H-4); 8.35 (1H, д. д, <i>J</i> = 8.1, <i>J</i> = 2.1, H-3); 8.48 (1H, д, <i>J</i> = 2.1, H-1)
3d	1730 (C=O); 1590 (C=N)	3.90 (3H, с, OCH ₃); 4.00 (3H, с, OCH ₃); 7.27 (1H, т, <i>J</i> = 7.0, H-8); 7.32 (1H, т, <i>J</i> = 7.0, H-7); 7.40 (1H, с, H-4); 7.45 (1H, с, H-1); 7.58–7.72 (2H, м, H-6,9)
4b	3200–2500, 1780 (COOH); 3350 (NH); 1680 (C=O)	6.93 (1H, д. д, <i>J</i> = 7.9, <i>J</i> = 7.5, H-7); 7.27 (1H, д, <i>J</i> = 7.9, H-8); 7.31 (1H, д, <i>J</i> = 8.0, H-5); 7.58 (1H, д. д, <i>J</i> = 7.5, <i>J</i> = 8.0, H-6); 7.83 (1H, д, <i>J</i> = 8.7, 2-CH); 7.91–7.96 (2H, м, H-3',4'); 7.98 (1H, д, <i>J</i> = 1.5, H-6'); 8.70 (1H, д, <i>J</i> = 8.7, NH); 13.13 (1H, уш. с, COOH)
4c	3200–2500, 1770 (COOH); 3340 (NH); 1650 (C=O); 1500, 1330 (NO ₂)	6.94 (1H, д. д. <i>J</i> = 8.0, <i>J</i> = 7.5, H-7); 7.32 (1H, д, <i>J</i> = 8.0, H-8); 7.43 (1H, д, <i>J</i> = 8.0, H-5); 7.59 (1H, д. д, <i>J</i> = 8.0, <i>J</i> = 7.5, H-6); 7.93 (1H, д, <i>J</i> = 9.8, H-3'); 8.07 (1H, д, <i>J</i> = 10.3, 2-CH); 8.57 (1H, д, <i>J</i> = 1.6, H-6'); 8.68 (1H, д. д, <i>J</i> = 9.8, <i>J</i> = 1.6, H-4'); 8.79 (1H, д, <i>J</i> = 10.3, NH); 13.20 (1H, уш. с, COOH)
5a	1750 (COO); 1720 (CON)	6.66 (1H, c, 6a-CH); 7.35 (1H, д. д. д. J = 7.8, J = 7.5, J = 1.0, H-2); 7.66 (1H, д. д. д. J = 7.5, J = 7.4, J = 1.2, H-3); 7.72–7.79 (3H, м, H-7,8,9); 7.97 (1H, д. д. J = 7.4, J = 1.0, H-4); 8.15 (1H, д. д. J = 7.8, J = 1.2, H-1); 8.18 (1H, д. д. J = 7.4, J = 0.6, H-10)
5b	1735 (COO); 1700 (CON)	7.13 (1H, c, 6a-CH); 7.45 (1H, μ . μ , $J = 8.5$, $J = 8.0$, H-3); 7.85 (1H, μ . μ , $J = 8.5$, $J = 8.0$, H-2); 7.90 (1H, μ , $J = 7.7$, H-8); 7.97 (1H, μ , $J = 7.7$, H-7); 8.00 (1H, c, H-10); 8.06 (1H, μ , $J = 8.5$, H-4); 8.08 (1H, μ , $J = 8.5$, H-1)

1431

Окончание таблицы 2

.			
ວ -	1	2	3
	5c	1750 (COO); 1720 (CON); 1530, 1310 (NO ₂)	7.25 (1H, c, 6a-CH); 7.47 (1H, д. д. <i>J</i> = 8.4, <i>J</i> = 7.7, H-2); 7.89 (1H, д. д. <i>J</i> = 8.4, <i>J</i> = 7.7, H-3); 8.08 (1H, д. <i>J</i> = 6.7, H-7); 8.12 (1H, д. <i>J</i> = 6.7, H-8); 8.19 (1H, д. <i>J</i> = 8.4, H-4); 8.55 (1H, c, H-10); 8.65 (1H, д. <i>J</i> = 8.4, H-1)
	5d	1740 (COO); 1720 (CON)	3.86 (3H, c, OCH ₃); 3.89 (3H, c, OCH ₃); 6.96 (1H, c, 6a-CH); 7.32–7.38 (2H, м, H-3,7); 7.40 (1H, c, H-10); 7.79 (1H, д. д, <i>J</i> = 8.0, <i>J</i> = 7.5, H-2); 7.98 (1H, д, <i>J</i> = 8.0, H-4); 8.00 (1H, д, <i>J</i> = 8.0, H-1)
	6a	3170 (NH); 1720, 1680 (C=O)	6.41 (1H, c, 6a-CH); 7.30 (1H, д. д, <i>J</i> = 8.1, <i>J</i> = 8.0, H-9); 7.61–7.65 (2H, м, H-2,8); 7.72 (1H, д. д, <i>J</i> = 7.9, <i>J</i> = 7.5, H-3); 7.84 (1H, д, <i>J</i> = 7.9, H-4); 7.90 (1H, д, <i>J</i> = 7.6, H-7); 7.98 (1H, д, <i>J</i> = 8.1, H-10); 8.08 (1H, д, <i>J</i> = 8.3, H-1); 8.92 (1H, yш. c, NH)
	6b	3210 (NH); 1710, 1676 (C=O)	6.47 (1H, c, 6a-CH); 7.33 (1H, д. д, <i>J</i> = 8.0, <i>J</i> = 7.6, H-3); 7.68 (1H, д. д, <i>J</i> = 8.4, <i>J</i> = 7.6, H-2); 7.83 (1H, д, <i>J</i> = 8.0, H-8); 7.86 (1H, c, H-10); 7.89 (1H, д, <i>J</i> = 8.0, H-7); 7.97 (1H, д, <i>J</i> = 8.4, H-4); 8.05 (1H, д, <i>J</i> = 8.0, H-1); 9.39 (1H, c, NH)
	6c	3210 (NH); 1750, 1670 (C=O); 1510, 1330 (NO ₂)	6.92 (1H, д, <i>J</i> = 9.4, 6а-CH); 6.96 (1H, д. д, <i>J</i> = 7.7, <i>J</i> = 7.6, H-2); 7.29 (1H, д, <i>J</i> = 8.5, H-4); 7.49–7.53 (2H, м, H-1,3); 7.87 (1H, д, <i>J</i> = 8.2, H-7); 8.61 (1H, д. д, <i>J</i> = 8.2, <i>J</i> = 2.1, H-8); 8.76 (1H, д, <i>J</i> = 2.1, H-10); 9.01 (1H, д, <i>J</i> = 9.4, NH)
	6d	3200 (NH); 1730, 1680 (C=O)	3.85 (3H, c, OCH ₃); 3.90 (3H, c, OCH ₃); 6.25 (1H, c, 6a-CH); 7.21 (1H, c, H-7); 7.25 (1H, д. д, <i>J</i> = 7.7, <i>J</i> = 7.3, H-2); 7.40 (1H, c, H-10); 7.60 (1H, д. д, <i>J</i> = 7.3, <i>J</i> = 7.5, H-3); 7.88 (1H, д, <i>J</i> = 7.5, H-4); 7.98 (1H, д, <i>J</i> = 7.7, H-1); 9.27 (1H, уш. c, NH)
	6e	3180 (NH); 1710, 1680 (C=O)	6.45 (1H, c, 6a-CH); 7.33 (1H, д. д. д. д. J = 7.8, J = 7.5, J = 1.0, H-3); 7.67 (1H, д. д. д. J = 8.0, J = 7.5, J = 1.5, H-2); 7.78 (1H, д. J = 8.1, H-10); 7.84 (1H, д. д. J = 8.1, J = 1.6, H-9); 7.92 (1H, д. д, J = 7.8, J = 1.5, H-4); 8.00 (1H, д. д, J = 8.0, J = 1.0, H-1); 8.07 (1H, д. J = 1.6, H-7); 9.31 (1H, c, NH)
	6f	3172 (NH); 1729, 1674 (C=O)	6.39 (1H, c, 6a-CH); 7.32 (1H, т, <i>J</i> = 8.3, H-2); 7.65–7.71 (2H, м, H-3,7); 7.98 (1H, д, <i>J</i> = 8.3, H-4); 8.06 (1H, д, <i>J</i> = 8.5, H-8); 8.09 (1H, д, <i>J</i> = 8.3, H-1); 8.14 (1H, c, H-10); 8.96 (1H, уш. с, NH)
	6g	3190 (NH); 1725, 1670 (C=O)	3.89 (3H, c, OCH ₃); 6.41 (1H, c, 6a-CH); 7.30 (1H, д. д, <i>J</i> = 8.2, <i>J</i> = 1.5, H-8); 7.32 (1H, д, <i>J</i> = 1.5, H-10); 7.33 (1H, д. д, <i>J</i> = 7.7, <i>J</i> = 7.6, H-2); 7.66 (1H, д. д. д. д. <i>J</i> = 8.0, <i>J</i> = 7.6, <i>J</i> = 1.5, H-3); 7.77 (1H, д, <i>J</i> = 8.2, H-7); 7.93 (1H, д. д, <i>J</i> = 7.7, <i>J</i> = 1.5, H-1); 8.01 (1H, д, <i>J</i> = 8.0, H-4); 9.33 (1H, c, NH)

1432

Масс-спектры синтезированных соединений

Соеди-	<i>m/z (I</i> _{отн} , %)
нение	
2a	238 [M] ⁺ (10), 220 (15), 194 (100), 193 (20), 165 (8), 130 (12), 104 (20), 102 (25), 97 (12), 90 (40), 76 (42), 63 (67)
2b	274 [M (³⁷ Cl)] ⁺ (4), 272 [M (³⁵ Cl)] ⁺ (12), 256 (16), 254 (50), 230 (35), 228 (100), 211 (10), 193 (8), 191 (15), 167 (10), 149 (11), 137 (10), 124 (15), 104 (17), 101 (18), 92 (18), 77 (20)
2c	283 [M] ⁺ (26), 265 (7), 239 (96), 219 (17), 193 (100), 192 (35), 164 (16), 90 (20), 77 (16), 63 (48)
2d	298 [M] ⁺ (40), 280 (82), 265 (20), 254 (100), 252 (55), 239 (29), 237 (30), 211 (32), 195 (22), 168 (45), 140 (36), 92 (67), 77 (25)
3a	220 [M] ⁺ (4), 207 (10), 206 (100), 194 (12), 179 (20), 177 (18), 152 (11), 151 (20), 104 (7), 103 (22), 89 (20), 76 (33)
3b	256 [M (³⁷ Cl)] ⁺ (37), 254 [M (³⁵ Cl)] ⁺ (100), 239 (3), 191 (12), 165 (5), 136 (7), 127 (6), 90 (8), 76 (5), 63 (9)
3c	265 [M] ⁺ (100), 235 (53), 219 (62), 191 (22), 165 (12), 164 (19), 140 (7), 90 (7), 76 (8), 75 (10)
3d	280 [M] ⁺ (100), 265 (27), 237 (40), 235 (15), 207 (12), 194 (38), 179 (10), 166 (12), 152 (8), 140 (15), 104 (5), 91 (8), 77 (8)
4b	305 [M (³⁷ Cl)] ⁺ (7), 303 [M (³⁵ Cl)] ⁺ (22), 285 (5), 259 (7), 257 (8), 230 (10), 214 (13), 180 (10), 169 (30), 167 (100), 139 (35), 119 (22), 75 (35)
4c	314 [M] ⁺ (100), 296 (60), 268 (18), 251 (15), 241 (19), 225 (24), 205 (10), 178 (80), 132 (39), 119 (23), 104 (12), 76 (22)
5a	251 [M] ⁺ (47), 250 (17), 223 (22), 207 (100), 179 (30), 178 (32), 151 (13), 140 (6), 105 (8), 95 (8), 77 (15)
5b	287 [M (³⁷ Cl)] ⁺ (11), 285 [M (³⁵ Cl)] ⁺ (30), 259 (3), 257 (10), 243 (36), 241 (100), 213 (27), 206 (7), 178 (27), 164 (12), 151 (18), 139 (10), 123 (15), 110 (20), 90 (45), 77 (35), 75 (76)
5c	296 [M] ⁺ (35), 268 (5), 252 (55), 206 (100), 194 (17), 177 (18), 164 (10), 151 (23), 103 (12), 90 (50), 77 (25), 75 (73)
5d	311 [M] ⁺ (40), 283 (20), 267 (46), 252 (41), 251 (72), 250 (38), 224 (30), 223 (60), 208 (20), 207 (100), 179 (20), 178 (40), 165 (20), 151 (20), 101 (11), 77 (17)
6a	250 [M] ⁺ (41), 249 (100), 222 (28), 220 (15), 192 (6), 179 (5), 146 (6), 132 (11), 130 (45), 119 (23), 102 (13), 90 (19), 77 (37)
6b	286 [M (³⁷ Cl)] ⁺ (35), 285 (27), 284 [M (³⁵ Cl)] ⁺ (100), 283 (85), 258 (7), 256 (20), 249 (9), 248 (7), 239 (8), 192 (27), 187 (20), 119 (45), 105 (28), 75 (12)
6c	295 [M] ⁺ (25), 294 (70), 293 (51), 265 (44), 263 (50), 249 (40), 247 (57), 236 (43), 219 (55), 191 (33), 164 (55), 146 (70), 119 (35), 101 (98), 90 (100), 77 (45)
6d	310 [M] ⁺ (10), 309 (100), 308 (25), 294 (10), 293 (13), 265 (32), 249 (29), 222 (10), 173 (25), 119 (12), 101 (18), 95 (13), 77 (12)
6e	331 [M (⁸¹ Br)] ⁺ (12), 330 (98), 329 [M (⁷⁹ Br)] ⁺ (13), 328 (100), 303 (10), 301 (12), 249 (25), 248 (31), 210 (58), 208 (53), 192 (13), 182 (18), 155 (21), 119 (37), 103 (20), 90 (18), 77 (9)
6f	376 [M] ⁺ (100), 375 (45), 374 (20), 295 (25), 287 (19), 249 (25), 248 (40), 222 (10), 206 (12), 191 (12), 175 (10), 119 (13), 102 (20), 90 (29), 77 (50)
6g	280 [M] ⁺ (100), 279 (72), 278 (7), 252 (15), 248 (5), 236 (17), 195 (6), 191 (5), 181 (9), 119 (10), 107 (8), 76 (31)

Характерной особенностью масс-спектров (ионизация ЭУ) кислот **2а**–**d** является последовательное отщепление от их молекулярного иона $[M]^+$ молекул воды и ацетилена, что приводит к катион-радикалам **Ф**₁ и **Ф**₂ (табл. 3).

Как и отмечалось ранее в работе [16], замыкание центрального лактамного цикла в кислотах 2a-d проходит в более жёстких условиях: кипячением соединений 2a,c в уксусном ангидриде (метод А) или кипячением соединений 2b,d в хлористом тиониле (метод Б) получены изоиндолобензимидазолоны 3a,c и 3b,d соответственно.

a $R = R^{1} = H$; **b** R = Cl, $R^{1} = H$; **c** $R = NO_{2}$, $R^{1} = H$; **d** $R = R^{1} = OMe$

Структура изоиндолобензимидазолонов **3а–d** подтверждается наличием в их ИК спектрах интенсивной полосы при 1730–1750 см⁻¹, характерной для валентных колебаний карбонильной группы в конденсированных циклических γ -лактамах [14]. Другим важным свидетельством, подтверждающим строение соединений **3а–d**, является соответствие их молекулярных ионов катион-радикалам **Ф**₁, образующимся на первом этапе фрагментации молекулярных ионов кислот **2а–d** (табл. 3).

Для получения 5*H*-изоиндоло[2,1-*a*][3,1]бензоксазин-5,11(6а*H*)-дионов исследователями использованы различные методы, основанные на циклизации *N*-(2-дибромметилбензоил)антраниловой кислоты [17], окислении 1*H*-изоиндоло[2,1-*a*]индол-11-карбоксиальдегида [18], пиролизе производных *N*-бензилбензизоксазолонов [19].

При взаимодействии замещённых ФБК **1b**,**c** с антраниловой кислотой в уксусной кислоте при комнатной температуре и эквимолярном соотношении реагентов нами выделены кислоты **4b**,**c** (табл. 1–3). В спектры ЯМР ¹Н этих соединений имеется характеристичная пара дублетов – сигналы протонов 2-СН и 1-NH с одинаковыми вицинальными константами (табл. 2) и уширенный синглет протона карбоксильной группы.

Внутримолекулярная дегидратация кислот **4b**,**c** в полифосфорной кислоте (ПФК, PPA) приводит к 5*H*-изоиндоло[2,1-*a*][3,1]бензоксазин-5,11(6а*H*)дионам **5b**,**c**. Тетрациклические соединения **5a**–**d** образуются также в одну стадию при нагревании формилбензойных кислот **1a**–**d** с антраниловой кислотой в ПФК.

a $R = R^{1} = H$; **b** R = Cl, $R^{1} = H$; **c** $R = NO_{2}$, $R^{1} = H$; **d** $R = R^{1} = OMe$; **e** R = H, $R^{1} = Br$; **f** R = I, $R^{1} = H$; **g** R = OMe, $R^{1} = H$

Соединения 4b,с и 5а–d представляют собой бесцветные кристаллы, хорошо растворимые в большинстве органических растворителей.

ИК спектры изоиндолобензоксазиндионов **5а–d** содержат характеристичные полосы валентных колебаний сложноэфирной и лактамной карбонильных групп в области 1735–1750 и 1700–1720 см⁻¹. В спектрах ЯМР ¹Н имеются синглетные сигналы метиновых (6а-CH) и ароматических протонов при 6.66–7.25 и 7.32–8.65 м. д. соответственно (табл. 2).

Отметим смещение сигнала ароматического протона H-1 в спектрах соединений **5b**,**c** в слабое поле (на 0.81 и 1.33 м. д. соответственно) по сравнению с сигналом аналогичного протона H-8 в спектрах соединений **4b**,**c** (табл. 2). Очевидно, этот эффект – результат изменения электроотрицательности атома азота после его ацилирования и возникновения внутримолекулярного контакта между протоном H-1 и атомом кислорода амидной группы в структурах изоиндолобензоксазиндионов **5b**,**c**. Такая же закономерность наблюдается при сравнении спектров ЯМР ¹Н изоиндолобензимидазолонов **3а**–**d** и бензимидазолов **2а**–**d** в отношении сигналов ароматических протонов бензимидазольных циклов H-9 и H-7 (табл. 2).

В масс-спектрах соединений **4b**,**c** и **5а**–**d** фиксируются пики молекулярных ионов достаточно высокой интенсивности (табл. 3). Фрагментация молекулярных ионов кислот **4b**,**c** начинается с отщепления молекулы воды; катионрадикалы $\Phi_1 [M-H_2O]^+$ фактически являются молекулярными ионами соответствующих молекул **5а**–**d**. Первый шаг фрагментации молекулярных ионов соединений **5а**–**d** затрагивает сложноэфирный фрагмент молекул (конкурентный

выброс CO и CO₂), что свидетельствует о локализации заряда и спина в молекулярном ионе на карбонильном кислороде эфирной группы (табл. 3).

Для получения изоиндолохиназолиновой структуры **6** наиболее часто используют домино-реакцию амидов антраниловой кислоты и *о*-аминокарбоксамидов с *о*-формил(ацил)бензойными кислотами, в ходе которой последовательно формируются два кольца – пиримидиновое и изоиндолоновое. Авторы работ [20–29] *а priori* считают, что и первичные, и вторичные аминокарбоксамиды с *о*-формил(ацил)бензойными кислотами образуют тетрациклические структуры с одним и тем же ангулярным гетероциклическим скелетом **С**, хотя, по нашему мнению, ни в одной из цитированных работ не приведено убедительных доказательств ангулярного, а не линеарного строения скелета продуктов взаимодействия первичных амидов антраниловой кислоты с ФБК.

В недавней работе [8] изоиндолохиназолиндионовые структуры **6** получены по новой трёхкомпонентной реакции изатового ангидрида с незамещённой ФБК и карбонатом аммония или первичными аминами. На примере 6-(4-хлорфенил)метил-6,6а-дигидроизоиндоло[2,1-*a*]хиназолин-5,11-диона методом РСА подтверждена ангулярная структура гетероциклического скелета полученных соединений, которые, фактически являясь продуктами взаимодействия вторичного амида антранилой кислоты и ФБК, и должны иметь ангулярную структуру скелета. Полученному с использованием карбоната аммония 6-незамещённому производному изоиндолохиназолидиндиона ангулярная структура приписана, видимо, по аналогии, но не доказана.

Проведённые нами эксперименты показали, что взаимодействие эквимолярных количеств ряда ФБК **1а–g** с антраниламидом в уксусной кислоте приводит к образованию соответствующих 6,6а-дигидроизоиндоло[2,1-*a*]хиназолин-5,11-дионов **6а–g** без выделения промежуточных кислот **A**. Синтез 9-нитроизоиндолохиназолиндиона **6с** осуществляется при комнатной температуре, соединения **6а,b,d–g** образуются лишь при повышении температуры до 70–75 °С. Используя уксусную кислоту как растворитель и катализатор, мы значительно упрощаем методику получения целевых соединений **6а–g** по сравнению с описанными в литературе методами [8, 25].

Соединения **6а–g** являются бесцветными кристаллами, плохо растворимыми в большинстве органических растворителей.

Спектры ЯМР ¹Н тетрациклических соединений **6а–g** содержат характеристичные синглетные сигналы метиновых протонов 6а-СН в области 6.25– 6.92 м. д. и синглетные сигналы протонов NH при 8.92–9.39 м. д., что характерно скорее для амидного, чем аминного протонов [30]. В ИК спектрах этих продуктов наблюдаются интенсивные полосы валентных колебаний лактамных и амидных карбонильных групп при 1710–1750 и 1670–1680 см⁻¹ соответственно (табл. 2).

Положение атома	Спектр ЯМР ¹ Н,	HSQC (13 C)	НМВС	NOESY					
NH	9.22	_	67.4; 120.5	7.89; 6.47					
1	8.05	120.0	125.4; 120.5	7.68					
4	7.97	128.7	163.9; 137.4; 133.9	7.33					
7	7.89	133.8	135.6; 133.5	6.47					
10	7.86	123.9	135.6; 163.5	_					
8	7.83	126.5	139.8	7.89					
2	7.68	133.9	137.4; 128.7; 120.0	8.05; 7.33					
3	7.33	125.4	120.5	7.97; 7.68					
6a	6.47	67.4	163.5; 139.8; 133.8	9.22; 7.89					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									

Результаты экспериментов по гомоядерной (NOESY) и гетероядерной корреляции (HSQC и HMBC) для соединения 6b

Рис. 1. Структурно-значимые корреляция спектров НМВС и NOESY для соединения 6b

Анализ масс-спектров изоиндолохиназолиндионов **6а–g** свидетельствует о наличии во всех образцах пиков молекулярных ионов, характерной особенностью первичного распада которых является экструзия атома водорода (табл. 3).

Проведённые корреляционные эксперименты HSQC, HMBC и NOESY для изоиндолохиназолиндиона **6b** (табл. 4, рис. 1) не позволяют сделать окончательный выбор между структурами **B** и **C**, хотя отсутствие в NOESY спектрах кросс-пиков, отвечающих взаимодействию протонов NH и H-1, которое должно быть характерным для структуры **B**, косвенно свидетельствует в пользу структуры **C**. Таким же косвенным свидетельством в пользу структуры **C** может служить отсутствие дальних спин-спиновых взаимодействий между протоном NH и атомами углерода C-1 и C-13, которые должны быть характерны для структуры **B**.

Для однозначного выбора между линеарной **В** и ангулярной **С** структурами гетероциклического скелета изоиндолохиназолиндионов **6** нами проведен PCA одного из представителей этого ряда соединений – 8-бром-6,6а-дигидроизоиндоло[2,1-*a*]хиназолин-5,11-диона (**6**е). Общий вид этой молекулы приведён на рис. 2, по которому видно, что соединение **6**е действительно является ангулярным изомером **С**.

Рис. 2. Молекулярная структура соединения 6е по данным РСА

В гетероциклическом скелете молекулы имеется единственный sp^3 -гибридизованный атом – углерод C(8), в конечном итоге именно он и определяет двускладчатое строение кора молекулы в целом. Молекула соединения **6e** не плоская и может быть описана набором трёх пересекающихся плоскостей. Бензольное кольцо C(10)...C(15) и прилежащие к нему атомы C(9), N(1) и N(2) составляют плоскость 1 (среднее отклонение атомов от плоскости составляет 0.0323 Å). Атом C(8) выходит из этой плоскости на 0.4223 Å и вместе с атомами N(1) и N(2) образует плоскость 2. Угол между плоскостями 1 и 2 равен 143.7°. Изоиндолоновый фрагмент молекулы (атомы C(1)...C(8) и N(1)) плоский (плоскость 3, среднее отклонение атомов от плоскости равно 0.382 Å). Угол между плоскостями 2 и 3 равен 127.4°. Такая геометрия гетероцикла обеспечивает отсутствие угловых напряжений у тетраэдрического атома углерода C(8) и плоское тригональное окружение у обоих атомов азота.

Некоторые из полученных нами соединений испытаны в лабораторных и полевых условиях на пестицидную активность во Всероссийском научноисследовательском институте биологической защиты растений (Краснодар).

Соединения 2c, 5b, 6a,d,f проявили антидотную активность по отношению к гербициду гормонального действия 2,4-дихлорфеноксиуксусной кислоты (2,4-Д) на проростках и вегетирующих растениях подсолнечника сорта "Мастер". Лабораторные испытания изоиндолохиназолиндионов 6a.d.f показали, что после обработки проростков подсолнечника водными растворами гербицида (в концентрации 10⁻³ %) и антидота (в концентрации 10^{-2} , 10^{-3} , 10^{-4} и 10^{-5} %, табл. 5) происходит увеличение длины гипокотиля от 116 до 131%, а длины корня – от 116 до 154% по отношению к эталону. Из результатов полевых испытаний соединений 2с, 5b следует, что прибавка урожайности подсолнечника по отношению к эталону при применении в качестве антидота бензимидазола 2с составляет 14%, а при применении изоиндолобензоксазиндиона 5b – 12% (табл. 6). Приведённые результаты перспективность испытаний показывают использования указанных препаратов при возделывании подсолнечника и поиск новых антидотов в данных рядах гетероциклов.

Таким образом, нами показана возможность получения тетрациклических конденсированных гетеросистем: 11*H*-изоиндоло[2,1-*a*]бензимидазол-11-она, 5*H*-изоиндоло[2,1-*a*][3,1]бензоксазин-5,11(6*aH*)-диона и 6,6а-дигидроизоиндоло-[2,1-*a*]хиназолин-5,11-диона, а также 2-замещённых бензимидазолонов путём подбора оптимальных условий реакций замещённых ФБК с бифункциональными соединениями и определены их некоторые полезные свойства.

(inclusion in the second s											
	Контроль	Гербицид (эталон)		Гербицид + антидот в концентрации, %							
Соединение				10 ⁻²		10 ⁻³		10 ⁻⁴		10^{-5}	
	А	А	С	А	В	А	В	А	В	А	В
6a	$\frac{103}{180}$	<u>49</u> 52	<u>52</u> 71	<u>51</u> 59	<u>104</u> 113	<u>57</u> 67	<u>116**</u> 129**	<u>57</u> 75	<u>116***</u> 144**	<u>52</u> 57	<u>106</u> 110
6d	$\frac{103}{180}$	<u>49</u> 52	<u>52</u> 71	$\frac{64}{80}$	<u>131**</u> 154**	<u>50</u> 54	<u>102</u> 104	<u>51</u> 53	$\frac{104}{102}$	<u>55</u> 59	<u>112</u> 113
6f	$\frac{103}{180}$	<u>49</u> 52	<u>52</u> 71	$\frac{60}{65}$	<u>122**</u> 125**	<u>55</u> 59	<u>112</u> 116***	<u>64</u> 73	$\frac{131^{**}}{140^{**}}$	<u>58</u> 67	<u>118***</u> 129**

Антидотная активность синтезированных соединений по отношению к 2,4-Д на проростках подсолнечника (числитель – гипокотиль, знаменатель – корень)*

* А – средняя длина гипокотиля (корня), мм; В – % к эталону; С – подавление роста гипокотиля (корня), %.
 ** Существенно при уровне вероятности 0.95.
 *** Существенно при уровне вероятности 0.90.

Антидот	Контроль (необработанные растения)	2,4-Д (эталон)	2,4-Д + антидот	Прибавка к эталону	
2c	43.4	15.3	17.5	2.2 (14%)	
5b	41.8	16.4	18.4	2.0 (12%)	

Влияние антидотной активности соединений 2с и 5b на урожайность (ц/га) подсолнечника сорта "Мастер" при полевых испытаниях

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборах Specord-71 в виде суспензии в вазелиновом масле (соединения 2, 3 a-d, 4b,c) и Spectrum Two с использованием насадки НПВО (соединения 5а–d, 6а–g). Спектры ЯМР ¹Н и 13 С соединений 6а–g, а также гетеро- и гомоядерные корреляционные спектры HSQC, HMBC и NOESY соединения 6b зарегистрированы на спектрометре Agilent 400/54 (400 МГц для ядер ¹Н, 100 МГц для ядер ¹³С). Спектры ЯМР ¹Н остальных соединений зарегистрированы на приборах Bruker DRX-500 (500 МГц, соединения 4b,с и 5b,с) и Bruker AM-300 (300 МГц, соединения 2a–d, 3a–d и 5a,d). Растворители: CDCl₃ (соединения 5a, 6c) и ДМСО- d_6 (остальные соединения), внутренний стандарт ТМС. Время смешения в эксперименте NOESY 200 мс. Масс-спектры записаны на приборе Varian CH-6 с применением метода прямого ввода образца в ионный источник при температуре 50-180 °С и энергии ионизации электронов 70 эВ. Элементный анализ выполнен на C,H,Nанализаторе Hewlett-Packard HP-185В. Температуры плавления определены на нагревательном приборе Stuart SNP 30 и не исправлены. Контроль за ходом реакций осуществляли методом TCX на пластинах Silufol UV-254 в системах PhH-Me₂CO, 4:1 (соединения **3a-d**, **4b**, **c**, **5a-d**, **6a-g**) и PhH–EtOH, 4:1 (соединения **2a-d**), проявитель – пары иода.

Лабораторные и полевые испытания соединений 2с, 5b, 6a,d,f проведены по методике, описанной в [31].

2-(1*Н***-Бензимидазол-2-ил)бензойные кислоты 2а-d** (общая методика). Смесь 4 ммоль кислоты **1а-d** и 0.43 г (4 ммоль) ФДА в 5 мл ледяной АсОН перемешивают при охлаждении на ледяной бане в течение 30 мин, затем 1.5 ч при комнатной температуре. По исчезновении из реакционной смеси исходных веществ образовавшийся бесцветный осадок отфильтровывают, перекристаллизовывают из смеси Me₂CO–ДМФА, 1:1, промывают водой, сушат.

Синтез 11*H*-изоиндоло[2,1-*a*]бензимидазол-11-онов 3а-d. А. Смесь 1 ммоль кислоты 2а,с и 2 мл Ac₂O нагревают до растворения, кипятят в течение 2–3 мин, затем охлаждают, осадок отфильтровывают, промывают петролейным эфиром, перекристаллизовывают из EtOH, сушат. Получают соединения 3а,с.

Б. К 1 ммоль кислоты **2b,d** добавляют 1.0–1.5 мл SOCl₂. Смесь нагревают, после прекращения газовыделения и образования однородной массы её выливают на лёд. Выделившийся жёлтый осадок отфильтровывают и перекристаллизовывают из EtOH.

5-Нитро-2-(4-оксо-1,4-дигидро-2*H***-3,1-бензоксазин-2-ил)бензойная кислота (4с)**. Смесь 0.78 г (4 ммоль) 5-нитро-2-формилбензойной кислоты (**1c**) и 0.55 г (4 ммоль) антраниловой кислоты в 10 мл ледяной АсОН перемешивают при комнатной температуре в течение 2 ч, при этом наблюдается исчезновение осадка исходных веществ и выпадение нового. Бесцветный осадок отфильтровывают, промывают смесью EtOH–H₂O, 3:1, сушат и перекристаллизовывают из EtOH. Выход 0.94 г (75%).

Соединение 4b получают аналогично.

9-Нитро-5*H***-изоиндоло[2,1-***a***][3,1]бензоксазин-5,11(6а***H***)-дион (5с). А. К 10 мл ПФК при перемешивании добавляют 1.25 г (4 ммоль) кислоты 4с. Смесь нагревают на водяной бане при 70–75 °С в течение 2.5–3 ч. Затем к охлаждённой на ледяной бане**

реакционной смеси небольшими порциями добавляют 15–20 мл H₂O. Выпавший осадок экстрагируют CH₂Cl₂. Органический слой отделяют, сушат, растворитель отгоняют, бесцветный остаток перекристаллизовывают из смеси EtOH–PhH, 4:1. Выход 0.77 г (65%).

Соединение 5b получают аналогично.

Б. К 10 мл ПФК при перемешивании добавляют 0.78 г (4 ммоль) кислоты 1с и 0.55 г (4 ммоль) антраниловой кислоты. Смесь нагревают на водяной бане при 70–75 °С в течение 3 ч. Выделение и очистку продукта проводят по методу А. Выход 0.91 г (77%).

Соединения 5а, b, d (бесцветные вещества) получают аналогично.

6,6а-Дигидроизоиндоло[2,1-а]хиназолин-5,11-дионы 6а– (общая методика). Смесь 4 ммоль кислоты **1а–** и 0.54 г (4 ммоль) антраниламида в 10 мл ледяной АсОН перемешивают при 70–75 °С (в случае нитропроизводного **1с** – при комнатной температуре) в течение 1.5–2 ч. По окончании реакции выпавший осадок отфильтровывают и перекристаллизовывают из EtOH, сушат. Выход 0.85 г (72%).

Рентгеноструктурное исследование соединения 6е. Бесцветные моноклинные кристаллы соединения 6е ($C_{15}H_9BrN_2O_2$) выращены кристаллизацией из ледяной AcOH. Параметры кристалла: $0.55 \times 0.23 \times 0.15$ мм³. При 20 °C: *а* 13.6774(12), *b* 7.4891(6), *c* 24.544(2) Å; *а* 90, β 103.258(2), γ 90°; *V* 2450.0(4) Å³; *M* 329.15; *Z* 8; $d_{выч}$ 1.785 г/см³. Пространственная группа *P*21/*n*. PCA выполнен на автоматическом круговом дифрактометре CAD4 (графический монохроматор, МоКа-излучение, ω -сканирование, $2\theta_{max}$ 24.98°). Получено 16959 отражений, из них 7136 независимых. Структура расшифрована прямым методом по комплексу программ SHELXTL [32] и уточнена в анизотропном (изотропном для атомов водорода) приближении для достижения фактов расходимости *R*¹ 0.0389 и *wR*² 0.0925. Полный набор координат атомов депонирован в Кембриджском банке структурных данных (депонент CCDC 934695).

Авторы благодарят Министерство образования и науки РФ за финансовую поддержку проведённого исследования.

СПИСОК ЛИТЕРАТУРЫ

- 1. Е. В. Громачевская, А. С. Пилипенко, А. В. Бутин, В. Е. Заводник, Г. Д. Крапивин, *XTC*, 125 (2010). [*Chem. Heterocycl. Compd.*, **46**, 106 (2010).]
- Е. В. Громачевская, А. В. Бутин, А. С. Пилипенко, Г. Д. Крапивин, А. А. Бородавко, Л. И. Исаева, В. Д. Стрелков, Пат. РФ 2345083; Бюлл. изобрет., № 3, 1222 (2009).
- Е. В. Болтухина, Ф. И. Зубков, В. А. Варламов, *ХГС*, 963 (2006). [*Chem. Heterocycl. Compd.*, 42, 831 (2006).]
- 4. Е. В. Болтухина, Ф. И. Зубков, В. А. Варламов, XTC, 1123 (2006). [Chem. Heterocycl. Compd., 42, 971 (2006).]
- S. K. Meegalla, G. J. Stevens, C. A. McQueen, A. Y. Chen, C. Yu, L. F. Liu, L. R. Barrows, E. J. LaVoie, *J. Med. Chem.*, 37, 3434 (1994).
- S. N. Khattab, S. Y. Hassan, A. El-Faham, A. M. M. El Massry, A. Amer, J. Heterocycl. Chem., 44, 617 (2007).
- 7. В. В. Лясковский, З. В. Войтенко, В. А. Ковтуненко, XTC, 323 (2007). [Chem. Heterocycl. Compd., 43, 253 (2007).]
- K. S. Kumar, P. M. Kumar, K. A. Kumar, M. Sreenivasulu, A. A. Jafar, D. Rambabu, G. R. Krishna, C. M. Reddy, R. Kapavarapu, K. Shivakumar, K. K. Priya, K. V. L. Parsa, M. Pal, *Chem. Commun.*, 5010 (2011).
- Л. Ю. Ухин, Л. Г. Кузьмина, Л. В. Белоусова, Е. Н. Шепеленко, Вторая Международная научная конференция. Новые направления в химии гетероциклических соединений, Железноводск, Россия, 2011, с. 241.

- 10. A. Cul, A. Daïch, B. Decroix, G. Sanz, L. Van Hijfte, Tetrahedron, 60, 11029 (2004).
- 11. A. Bistrzycki, A. Lecco, Helv. Chim. Acta, 4, 425 (1921).
- 12. P. V. L. Boddupally, Y. Tallapally, S. R. Pamulaparthy, N. Banda, *Heterocycles*, **65**, 2329 (2005).
- 13. К. Н. Зеленин, И. В. Украинцев, В. В. Алексеев, *XTC*, 363 (1998). [*Chem. Heterocycl. Compd.*, **34**, 329 (1998).]
- 14. А. Кросс, *Введение в практическую инфракрасную спектроскопию*, Изд-во иностр. лит., Москва, 1961, с. 93.
- 15. Л. А. Казицына, Н. Б. Куплетская, *Применение УФ-, ИК-, ЯМР- и масс-спектрометрии в органической химии*, Изд-во МГУ, Москва, 1979, с. 74.
- 16. Й. Ариент, Успехи химии, 34, 1908 (1965).
- 17. H. Diesbach, A. Schürch, G. Cavin, Helv. Chim. Acta, 31, 716 (1948).
- 18. E. Desarbre, J.-Y. Mérour, Heterocycles, 41, 1987 (1995).
- 19. J. Khalafy, R. H. Prager, Aust. J. Chem., 51, 925 (1998).
- 20. E. F. M. Stephenson, J. Chem. Soc., 2354 (1954).
- 21. J. Honzl, Chem. Listy, 49, 1671 (1955).
- 22. J. Honzl, Collect. Czech. Chem. Commun., 21, 725 (1956).
- 23. M. Lamchen, J. Chem. Soc. C, 573, (1966).
- 24. I. Butula, W. Otting, Monatsh. Chem., 99, 1320 (1968).
- 25. M. Chelardoni, V. Pestellini, Ann. Chim., 64, 421 (1974).
- 26. V. Pestellini, M. Ghelardoni, C. Bianchini, A. Liquori, Boll. Chim. Farm., 117, 54 (1978).
- 27. V. Balasubramaniyan, N. P. Argade, Tetrahedron, 45, 835 (1989).
- 28. P. Pigeon, J. Sikoraiova, S. Marchalin, B. Decroix, Heterocycles, 56, 129 (2002).
- 29. P. Aeberli, W. J. Houlihan, J. Org. Chem., 33, 2402 (1968).
- 30. А. Гордон, Р. Форд, Спутник химика, Мир, Москва, 1976, с. 293.
- В. Д. Стрелков, Л. В. Дядюченко, Л. И. Исакова, И. Г. Дмитриева, *Агрохимия*, 28 (2010).
- 32. G. M. Sheldrick, SHELXL-97: Program for the Solution of Crystal Structures, University of Göttingen, Germany, 1997.
- 33. C. J. Perry, J. Chem. Soc., Perkin Trans. 2, 977 (1997).

¹ Кубанский государственный технологический университет, ул. Московская, 2, Краснодар 350072, Россия e-mail: organics@kubstu.ru

Поступило 26.06.2013

² Пермский государственный университет, ул. Букирева, 15, Пермь 614990, Россия e-mail: alexander butin@mail.ru