Е. Г. Галкин¹, А. С. Ерастов^{1*}, Е. М. Вырыпаев¹, И. И. Фурлей¹

ТЕРМИЧЕСКАЯ РЕЦИКЛИЗАЦИЯ 2-АРИЛСПИРО[3,1-БЕНЗОКСАЗИН-4,1'-ЦИКЛОПЕНТАНОВ] В ГАЗОВОЙ ФАЗЕ

Методом хромато-масс-спектрометрии изучена термическая стабильность 2-арилспиро[3,1-бензоксазин-4,1'-циклопентанов] и изомерных им N-[2-(циклопент-1-ен-1-ил)фенил]ариламидов. Зарегистрирована термическая изомеризация бензоксазинов в ариламиды в хроматографической колонке. Изменение отношений интенсивностей пиков диагностических ионов $[M]^+$ и $[M-C_2H_5]^+$ позволяет наблюдать за соотношением открытой и циклической форм. Нагрев до 250 °С при атмосферном давлении или длительное хранение бензоксазинов также приводит к изомеризации их в ариламиды с количественными выходами.

Ключевые слова: 2-арилспиро[3,1-бензоксазин-4,1'-циклопентаны], *N*-[2-(циклопент-1-ен-1-ил)фенил]ариламиды, внутримолекулярная рециклизация, ионная массхроматография, кольчато-цепное равновесие, масс-спектрометрия с ионизацией электронным ударом.

Изучение реакции *N*-[2-(циклопент-1-ен-1-ил)фенил]ариламидов с HCl продемонстрировало, что они способны к образованию соответствующих 2-арилспиро[3,1-бензоксазин-4,1'-циклопентанов] при комнатной температуре [1, 2].

Нами показано [2], что некоторая часть молекулярных ионов упомянутых амидов в условиях ионизации электронным ударом (ЭУ) в масс-спектрометре претерпевает процессы гетероциклизации, наблюдающиеся для этих соединений в условиях кислотного катализа [2, 3].

В растворе стадии перегруппировки бензамидов в бензоксазины принципиально могут быть обратимыми, но термодинамическая стабильность последних определяет при комнатной температуре односторонность протекания процессов получения оксазинов [1, 2].

Изомеризация циклической формы в открытую возможна при повышенной температуре или под влиянием катализаторов [4, с. 46, 131, 188]. Процесс изомеризации в конденсированной фазе предполагает равновесие двух форм, при котором циклическая форма доминирует [4–6]. На многих примерах показано, что в растворах повышение температуры сдвигает равновесие в сторону открытого изомера [4, с. 46, 189]. Кроме равновесия известны процессы термической рециклизации гетероциклов в растворе [4, с. 149].

Поскольку существуют аналогии в протекании мономолекулярных превращений органических соединений в конденсированной и газовой фазах [7, с. 55], то сочетание масс-спектрометрии с хроматографическим разделением компонентов позволяет регистрировать процессы кольчато-цепной изомеризации и рециклизации оксазинов в хроматографической системе.

Нами изучены температурные и временные изменения масс-спектров 2-арилспиро[3,1-бензоксазин-4,1'-циклопентанов] **1–6** и изомерных им *N*-[2-(циклопент-1-ен-1-ил)фенил]ариламидов **7–12**.

1, 7 R = H; 2, 8 R = 3-Br; 3, 9 R = 4-Cl; 4, 10 R = 4-NO₂; 5, 11 R = 4-Me; 6, 12 R = 2-OMe

Состав ионов установлен на основании масс-спектров высокого разрешения ($\Delta M = 0.0001 - 0.0008$ а. е. м.), а последовательность образования дочерних ионов определена по спектрам связанных сканирований (B/E = const). В таблице 1 приведены относительные интенсивности молекулярных и характеристических ионов в масс-спектрах соединений 1–12.

Для каждой пары изомеров, как и ожидалось, наблюдалось совпадение массовых чисел основных сигналов масс-спектров. Анализ масс-спектров оксазинов 1–6 и амидов 7–12 позволил выделить характеристические фрагменты, хорошо отражающие особенности строения каждой пары изомеров (табл. 1). Основным критерием идентификации оксазинов 1–6 и амидов 7–12 являются значения отношений интенсивностей пиков диагностических ионов $[M]^+$ и $[M-C_2H_3]^+$. Для каждой пары изомеров наиболее информативны отношения интенсивностей пиков ионов $[M]^+$ и $[M-C_2H_5]^+$ $I([M]^+)/I([M-C_2H_5]^+)$ (табл. 1), максимальные для амидов и минимальные для оксазинов.

Анализ температурных изменений спектров соединений 1–12 проводили в следующих хроматографических режимах:

 температура инжектора 200 °C, температура колонки 100 °C, изотерма 3 мин, нагрев со скоростью 10 °/мин до 200 °C, изотерма 15 мин, температура интерфейса 200 °C, температура источника ионов 200 °C;

2) температура инжектора и колонки 250 °C, остальные параметры те же.

Таблица 1

и изомерных им оензамидов 7–12, <i>m</i> /2 (1 _{отн} , 76)											
Соеди- нение	$[M]^+$	$[M-C_2H_5]^+$	$[M-ArCO]^+$	[ArCO] ⁺	$\left[\operatorname{Ar}\right]^{+}$	$\frac{I([M]^+)}{I([M-C_2H_5]^+)}$					
1	263 (92)	234 (100)	158 (70)	105 (45)	77 (26)	0.92					
7	263 (42)	234 (1.2)	158 (100)	105 (85)	77 (47)	35.0					
2	341 (73)	312 (86)	158 (100)	183 (29)	155 (12)	0.9					
	343 (69)	314 (82)		185 (26)	157 (10)						
8	341 (22)	312 (0.6)	158 (100)	183 (28)	155 (19)	40.0					
	343 (21)	314 (0.5)		185 (25)	157 (17)						
3	297 (81)	268 (88)	158 (100)	139 (61)	111 (21)	0.91					
	299 (27)	270 (30)		141 (20)	113 (7)						
9	297 (41)	268 (1.1)	158 (100)	139 (79)	111 (33)	36.7					
	299 (14)	270 (0.4)		141 (26)	113 (11)						
4	308 (62)	279 (59)	158 (100)	150 (15)	122 (1.1)	1.05					
10	308 (41)	279 (2.6)	158 (100)	150 (17)	122 (0.5)	15.8					
5	277 (94)	248 (100)	158 (59)	119 (71)	91 (20)	0.94					
11	277 (35)	248 (0.7)	158 (67)	119 (100)	91 (36)	50.0					
6	293 (38)	264 (38)	158 (42)	135 (100)	107 (0.2)	1.0					
12	293 (28)	264 (0.1)	158 (40)	135 (100)	107 (0.2)	280.0					

Характеристические пики ионов в масс-спектрах бензоксазинов 1–6 и изомерных им бензамилов 7–12, *m/z* (*L*_{arm} %)

Ионные хроматограммы 2-фенилспиро[3,1-бензоксазин-4,1'-циклопентана] (1) по ПИТ и фрагменту [М-С₂H₅]⁺ при конечной температуре колонки хроматографа 200 °С (верхняя хроматограмма) и 250 °С (нижняя хроматограмма)

В первом варианте эксперимента регистрировался один хроматографический пик (рисунок, верхняя хроматограмма), а ионные масс-хроматограммы по массовым числам характеристических ионов $[M]^+$, $[M-C_2H_5]^+$, $[M-ArCO]^+$, $[ArCO]^+$, $[Ar]^+$ полностью повторяли профиль хроматограммы по полному ионному току (ПИТ). В случае оксазина **1** видно полное совпадение профиля иона $[M-C_2H_5]^+$ и ПИТ. Фрагмент масс-спектра (диапазон массовых значений 150–270 Да), соответствующего пику с временем удерживания 20.87 мин, приведён на верхнем рисунке.

Следовательно, при температуре 200 °С изомеризация оксазинов в хроматографической колонке не наблюдается.

При температуре колонки 250 °C регистрировалась хроматограмма, содержащая два пика и размытый сигнал между ними. Ионные масс-хроматограммы диагностических пиков лишь частично повторяли профиль ПИТ первого пика и диффузного максимума.

Хорошо известно [4, с. 18, 189], что в растворе превращения циклических изомеров в открытые сопровождаются соответствующими изменениями спектральных характеристик. Аналогичную картину для оксазинов мы зарегистрировали и в газовой фазе при температуре 250 °C.

Однако внешняя форма двух пиков и размытого максимума нивелирует суть происходящих процессов. Суть процессов проясняется при сравнении масс-спектров, записанных в разных точках хроматографического пика. Спектры на переднем фронте (до полувысоты пика), полностью соответствуют оксазину 1. Центральный участок (время регистрации 19.66 мин, 150–270 Да) частично совпадает со спектрами оксазина 1 и амида 7. Так, значение отношения $I([M]^+)/I([M-C_2H_5]^+) = 1.07$ специфично для оксазина, а 100% интенсивность пиков ионов с m/z 158 – для амида (табл. 2). Хотя строгую количественную оценку вкладов изомерных форм произвести сложно, можно с большой уверенностью утверждать о присутствии минорных

House m/z	Время, мин						
ми/2	19.66	19.80	20.30	20.85	21.32		
[M] ⁺ , 263	79	40	39	35	32		
$[M-C_2H_5]^+, 234$	74	18	6	3	0.9		
$[M-C_5H_8O]^+, 179$	30	7	2	2	0.3		
[M–ArCO] ⁺ , 158	100	100	100	100	100		
$[M-ArCO-C_2H_4]^+$, 130	13	18	18	19	18		
[ArCO]+, 105	72	91	94	92	93		
[Ar] ⁺ , 77	41	49	51	53	50		

Зависимость интенсивностей пиков диагностических ионов (%) в масс-спектре оксазина 1 при температуре хроматографической колонки 250 °C от времени

количеств открытой формы, соответствующих времени удерживания 19.66 мин. Аналогичный анализ спектра обратной стороны пика (19.80 мин, табл. 2) приводит к заключению, что он соответствует суммарному спектру оксазина и амида, а значение отношения $I([M]^+)/I([M-C_2H_5]^+) = 2.2$ свидетельствует об увеличении вклада амида по сравнению со спектром в области максимума (19.66 мин).

В размытом сигнале (временной интервал 19.85–21.2 мин) по спектрам можно выявить последовательный рост отношения $I([M]^+)/I([M-C_2H_5]^+)$ от 2.2 до 31; это означает, что вклад амида в суммарный спектр достигает максимума. Появление диффузных пиков – характерное явление, когда один из компонентов, разделяемых в хроматографической колонке, превращается в другой [8]. Это проявляется в наложении составляющих диффузного пика продукта на пик исходного компонента. В нашем случае при температуре 250 °C спектры максимума и обратного "склона" первого пика (19.66 и 19.80 мин) подтверждают такое наложение.

Следовательно, в хроматографической колонке при температуре 250 °C 2-фенилспиро[3,1-бензоксазин-4,1'-циклопентан] (1) превращается в *N*-[2-(циклопент-1-ен-1-ил)фенил]бензамид (7).

Спектры второго хроматографического пика (время удерживания 21.32 мин) полностью соответствуют амиду 7. Часть масс-спектра приведена на рис. 1. Отношения интенсивностей пиков характерных ионов $[M]^+$ и $[M-C_2H_5]^+ - 35$ (интенсивности приведены в экспериментальной части). Аналогичный вид "высокотемпературных" хроматограмм (два пика и размытый максимум) типичен для всех оксазинов 1–6.

Оксазины 1–6 нагревали до 250 °С при атмосферном давлении в токе аргона. Последующий анализ показал, что 87–96% полученных проб составляют амиды 7–12. В результате хранения в течение трёх месяцев при комнатной температуре и нормальном давлении оксазины с количественными выходами изомеризовались в амиды, в то время как для амидов никаких изменений при длительном хранении зарегистрировано не было.

Таким образом, на примере 2-арилспиро[3,1-бензоксазин-4,1'-циклопентанов] зарегистрирована термическая, а также временная необратимая изомеризация их в ариламиды.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Масс-спектры зарегистрированы на системе хроматограф-масс-спектрометр Therто Finnigan MAT 95 XP, ионизация ЭУ (70 эВ). Колонка HP-5 MS, 30 м × 0.25 мм, толщина пленки фазы 0.25 мкм. Скорость газа-носителя (He) 1 см³ мин⁻¹. Все исследованные соединения синтезированы и охарактеризованы в Институте органической химии Уфимского научного центра РАН [1, 2].

Масс-спектр оксазина 1 (200 °С, время удерживания 20.80 мин), *m/z* (*I*_{отн}, %): 263 [M]⁺ (92), 245 (10), 244 (24), 235 (20), 234 [M–C₂H₅]⁺ (100), 221 (4), 206 (14), 179 (23), 178 (12), 158 [M–ArCO]⁺ (70), 130 (11), 105 [ArCO]⁺ (46), 103 (11), 77 [Ar]⁺ (26).

Масс-спектр оксазина **1** (оксазин–амид), полученный в результате наложения диффузного "хвоста" (250 °С, центр пика, время удерживания 19.66 мин), *m/z* ($I_{\text{отн}}$, %): 263 [M]⁺ (79), 244 (12), 235 (16), 234 [M–C₂H₅]⁺ (74), 206 (14), 179 (27), 178 (10), 159 (12), 158 [M–ArCO]⁺ (100), 143 (53), 130 (23), 105 [ArCO]⁺ (99), 103 (8), 89 (5), 77 [Ar]⁺ (68), 76 (15), 51 (14).

Масс-спектр оксазина 1 (оксазин–амид), полученный в результате наложения диффузного "хвоста" (250 °С, тыл пика, время удерживания 19.80 мин), m/z ($I_{\text{отн}}$, %): 264 (8), 263 [M]⁺ (40), 246 (9), 245 (27), 244 (44), 234 [M–C₂H₅]⁺ (18), 158 [M–ArCO]⁺ (100), 131 (15), 130 (28), 128 (6), 119 (11), 115 (10), 105 [ArCO]⁺ (85), 77 [Ar]⁺ (81).

Масс-спектр амида 7 (250 °С, время удерживания 21.32 мин), *m/z* (*I*_{отн}, %): 263 [M]⁺ (52), 245 (10), 244 (24), 235 (1.2), 234 [M–C₂H₅]⁺ (1.5), 158 [M–ArCO]⁺ (100), 130 (22), 105 [ArCO]⁺ (85), 77 [Ar]⁺ (47).

СПИСОК ЛИТЕРАТУРЫ

- 1. С. А. Казарьянц, Ш. М. Салихов, И. Б. Абдрахманов, С. Р. Иванова, *Башкирский хим. журн.*, **16**, № 4, 19 (2009).
- С. А. Казарьянц, А. С. Ерастов, Е. Г. Галкин, Е. М. Вырыпаев, Ш. М. Салихов, И. Б. Абдрахманов, XГС, 432 (2011). [Chem. Heterocycl. Compd., 47, 355 (2011).]
- Е. Г. Галкин, А. С. Ерастов, Е. М. Вырыпаев, И. Б. Абдрахманов, Ш. М. Салихов, С. А. Красько, XГС, 1160 (2013).
- 4. Р. Э. Валтер, Кольчато-цепная изомерия в органической химии, Зинатне, Рига, 1978.
- 5. К. Н. Зеленин, А. А. Потапов, В. В. Алексеев, И. В. Лагода, *XГС*, 1052 (2004). [*Chem. Heterocycl. Compd.*, **40**, 903 (2004).]
- 6. Л. Ю. Ершов, И. В. Лагода, С. И. Якимович, В. В. Пакальнис, В. В. Шаманин, *Журн. орган. химии*, **43**, 1742 (2007).
- 7. А. Т. Лебедев, Масс-спектрометрия в органической химии, Бином, Москва, 2003.
- 8. *Руководство по газовой хроматографии*, под ред. Э. Лейбница, Х. Г. Шруппе, Мир, Москва, 1988, ч. 2, с. 357.

¹ Институт органической химии УНЦ РАН, пр. Октября, 71, Уфа 450054, Россия e-mail: spectr@anrb.ru

Поступило 14.10.2011 После доработки 24.05.2013