В. Р. Ахметова¹*, Н. Н. Махмудиярова¹, И. С. Бушмаринов², Г. Р. Хабибуллина¹, Н. Ф. Галимзянова³

СИНТЕЗ И ФУНГИЦИДНАЯ АКТИВНОСТЬ АЛКИЛ(АРИЛ)ЗАМЕЩЁННЫХ 1,3,4-ТИАДИАЗОЛИДИНОВ

Циклотиометилированием метилгидразина формальдегидом и H₂S получен 3,3'-метандиилбис(4-метил-1,3,4-тиадиазолидин). Циклотиометилированием фенил(бензил)гидразинов с помощью алифатических и ароматических альдегидов и H₂S синтезирован ряд 2,5-диалкил(арил)-3-фенил(бензил)-1,3,4-тиадиазолидинов. Выявлена фунгицидная активность 2,5-диметил-3-фенил-1,3,4-тиадиазолидина относительно *Bipolaris* sorokiniana и Fusarium oxysporum и водорастворимого аддукта метилиодида и 2,5-диметил-3-фенил-1,3,4-тиадиазолидина относительно *Bipolaris*.

Ключевые слова: альдегиды, замещённые гидразины, сероводород, 1,3,4-тиадиазолидин, фунгицидная активность, циклотиометилирование.

Интерес к соединениям, содержащим в молекуле тиадиазольные циклы, обусловлен их гербицидной, антимикробной, противосудорожной, сосудорасширяющей, противотуберкулезной активностью [1–5]. Известно, что насыщенные производные этих соединений – 1,3,4-тиадиазолидины – проявляют фунгицидное действие [6].

Один из способов синтеза 1,3,4-тиадиазолидинов основывается на реакции циклотиометилирования гидразинов сероводородом и формальдегидом [6–11], однако существенный недостаток указанного способа связан с образованием 1,3,4-тиадиазолидинов с низкими выходами или в смеси с *N*-амино-1,3,5-дитиазинанами. Отметим, что сведения о циклотиометилировании гидразинов с участием H₂S и других алифатических альдегидов немногочисленны [12–15].

В продолжение наших исследований циклотиометилирования гидразинов [6–10] и с целью получения потенциально биоактивных алкил(арил)производных 1,3,4-тиадиазолидинов мы изучили трёхкомпонентную конденсацию метил- и арилзамещённых фенил- и бензилгидразинов с различными альдегидами и H₂S.

Нами установлено, что селективный синтез 3,3'-метандиилбис(4-метил-1,3,4-тиадиазолидина) (1) с выходом 78% осуществляется взаимодействием метилгидразина с формальдегидом и H₂S в соотношении 1 : 2.5 : 2 при 0 °C в воде. Изменение соотношения реагентов приводит к снижению селективности реакции. Вместе с тем реакция метилгидразина с другими алифатическими альдегидами и H₂S проходит неселективно и с неполной конверсией.

В отличие от метилгидразина циклотиометилирование фенилгидразина (2) в разработанных условиях с уксусным (4a), пропионовым (4b), масляным (4c), валериановым (4d), капроновым (4e) альдегидами и H₂S при 0 °C в соотношении исходных реагентов 1:2:2 селективно приводит к серии 2,5-диалкил-1,3,4-тиадиазолидинов 5а-е с выходами 64-81%. Причём выход 2,5-диалкил-3-фенил-1,3,4-тиадиазолидинов возрастает симбатно длине алифатической цепи альдегидов 4а-е. В свою очередь, взаимодействие фенил(бензил)гидразинов 2, 3 с CH_2O и H_2S даёт соответствующие тиадиазолидины в смеси с 1,3,5-дитиазинанами, а селективное образование 3-фенил-1,3,4-тиадиазолидина (выход 35%) конденсацией гидразина 2 с CH₂O и H₂S происходит только в присутствии HCl [7]. Реакция бензилгидразина (3) с алифатическими 4а-е и ароматическими альдегидами (фурфуролом (4f), *м*-бромбензальдегидом (4g), салициловым альдегидом (4h)) и H₂S приводит к образованию соответствующих 2,5-диалкил(арил,фурил)-3-бензил-1,3,4-тиадиазолидинов 6а-h. Выходы алкилзамещённых тиадиазолидинов ба-е составляют 64-81%, а арил(фурфурил)замещенных 6f-h - 80-88%.

RNHNH₂ + 2 R¹CHO + 2 H₂S
$$\xrightarrow{0 \circ C}$$
 H_2O R^1 R^1 R^1 R^2
2, 3 4a-h 5a-e, 6a-h

2, 5а-е R = Ph; 3, 6а-h R = Bn; 4-6 а R¹ = Me, b R¹ = Et, c R¹ = Pr, d R¹ = Bu, e R¹ = C₅H₁₁; 4, 6 f R¹ = 2-фурил, g R¹ = 3-BrC₆H₄, h R¹ = 2-HOC₆H₄

Структуры бистиадиазолидинилметана 1 и 2,5-дизамещённых 1,3,4-тиадиазолидинов **5а–е** и **6а–h** установлены спектроскопией ЯМР ¹Н и ¹³С, а соединения 1 – также методом РСА (рисунок).

В кристалле **1** 1,3,4-тиадиазолидиновые циклы имеют конформацию "*твист*-конверт" с *транс*-конфигурацией *N*-заместителей (атомы азота отклоняются на 0.27–0.34 Å в противоположные стороны от плоскости, образованной атомами серы и углерода). Двугранный угол между циклами – 73.4°. Геометрические параметры циклов одинаковы, средние длины связей N–N, С–N и С–S равны 1.44, 1.46 и 1.84 Å соответственно.

Молекулярная структура 3,3'-метандиилбис(4-метил-1,3,4-тиадиазолидина) (1) в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

В спектрах ЯМР ¹Н соединений **5а**–е, помимо сигналов атомов водорода фенильных заместителей, наблюдаются сигналы неэквивалентных метиновых протонов тиадиазолидиновых циклов в виде мультиплетов с разницей сдвигов при атомах C-2 и C-5 0.8–1.5 м. д., что характерно для N-фенил-1,3,4тиадиазолидинов [7]. Например, в спектре соединения 5а метиновые протоны цикла резонируют в виде мультиплетов в областях 3.35-3.75 и 4.50-4.80 м. д. Атомы водорода алкильных заместителей в положениях 2 и 5 тиадиазолидинов резонируют в виде мультиплетов (соединение 5а: 1.22–1.29 м. д.). Очевидно, заместители в положениях 2 и 5 соединений 5а-е и 6а-е находятся в виде смеси цис- и транс-изомеров, что согласуется с литературными данными [14, 16]. В спектрах ЯМР ¹³С соединений 1, 5а-е и 6а-h за счёт наличия магнитно-неэквивалентных метиновых углеродов в тиадиазолидиновых циклах наблюдаются два резонансных сигнала углеродных атомов в положениях 2 и 5, причём для соединений 6а-е данные сигналы смещаются в слабопольную область. Отметим, что в спектрах 2,5-диарил-1,3,4-тиадиазолидинов 6f-h аналогично наблюдается набор углеродных сигналов заместителей в положениях 2 и 5. В ИК спектрах соединений **5а-е**, **6а-h** для связи C-S характерно поглощение в области 670-750 см⁻¹, при 1590-1600 см⁻¹ наблюдается поглощение, характерное для колебаний ароматического кольца. Соединения 1, 5а-е и 6а-h стабильны при хранении до года.

Учитывая, что тиадиазолидиновый аддукт с метилиодидом проявляет высокую фунгицидную активность [6], мы осуществили трансформацию соединения **5a** с избыточным количеством метилиодида и получили водорастворимый аддукт **7**. Согласно данным спектров ЯМР ¹H и ¹³С, вероятно, образуется N-координированный моноаддукт с MeI. Так, в спектре ЯМР ¹H аддукта **7** наблюдается смещение в слабое поле химических сдвигов протонов фенильного заместителя, а также метиновых и метильных групп по сравнению с исходным соединением **5a**.

Нами изучена фунгицидная активность 2,5-диметил-3-фенил-1,3,4-тиадиазолидина **5a** и водорастворимого аддукта **7**. Исследование фунгицидной активности осуществлено с использованием микроскопических грибов *Bipolaris sorokiniana*, *Fusarium oxysporum*, *Aspergillus fumigatus*, *Aspergillus niger*, и *Paecilomyces variotii*, которые вызывают различные заболевания сельскохозяйственных растений [17, с. 127, 168], аллергические реакции и микозы у людей с ослабленной иммунной системой [18, с. 52, 58, 292], а *Paecilomyces variotii* и *Aspergillus niger* используются при лабораторных испытаниях материалов и изделий на грибкостойкость [19].

Для проведения сравнительной оценки изучена также фунгицидная активность метилиодида и растворителя диметилформамида (ДМФА). Оценка влияния ДМФА на тест-культуры грибков показала отсутствие негативного воздействия на развитие микроскопических грибков. Раствор метилиодида в ДМФА подавляет развитие большинства тест-культур грибков в зоне непосредственного действия. При этом в зоне действия наблюдается слабое развитие субстратного мицелия микроскопических грибков и слабое спорообразование, что свидетельствует о задержке развития тест-культур под влиянием метилиодида. Вне зоны действия микроскопические грибки развиваются в соответствии со своими видовыми характеристиками. Ингибирующий эффект по отношению *Paecilomyces variotii* проявляется начиная с концентрации 0.04% MeI в ДМФА. Не выявлена достоверная прямая зависимость степени подавления развития микроскопических грибков от концентрации метилиодида (табл. 1).

1,3,4-Тиадиазолидин **5a** проявляет фунгицидную активность во всех испытанных концентрациях по отношению *Bipolaris sorokiniana* и *Fusarium oxysporum* и не оказывает негативного воздействия на Aspergillus fumigatus, *Paecilomyces variotii*, незначительно задерживает развитие Aspergillus niger в концентрациях 0.16 и 0.2% (табл. 2).

Водорастворимый аддукт 7 не оказывает негативного воздействия на *Fusarium oxysporum*, *Aspergillus fumigatus*, *Aspergillus niger*, *Paecilomyces variotii*, однако нарушает развитие колоний *Bipolaris sorokiniana* в концентрациях 0.04–0.13%, вызывая утрату окраски воздушного мицелия (табл. 3, депигментированный воздушный мицелий), а при концентрации 0.16–0.2% полностью подавляют развитие грибка в зоне действия вещества.

Таблица 1

Фунгицидная активность раствора MeI в ДМФА через 7 суток инкубирования (диаметр зоны подавления роста грибка, мм)

Тест-культура	Концентрация МеІ в ДМФА, %						
	0.04	0.09	0.13	0.16	0.2	Контроль	
Bipolaris sorokiniana	СПО*	12.3±0.8	12.3±1.6	14.7±1.6	13.8±0.8	СПО	
Fusarium oxysporum	17.1±1.2	15.0±5.4	16.7±1.6	16.7±3.2	12.8±0.8	СПО	
Aspergillus fumigatus	15.8±1.5	18.3±3.1	14.0±0.7	16.8±2.0	16.0±2.0	СПО	
Aspergillus niger	14.1±4.1	18.1±1.3	16.8±0.8	20.3±2.1	11.3±1.6	СПО	
Paecilomyces variotii	13.6±4.1	СПО	СПО	СПО	СПО	СПО	

* СПО — спорообразование.

Таблица 2

Фунгицидная активность раствора 2,5-диметил-3-фенил-1,3,4-тиадиазолидина 5а через 7 суток инкубирования (диаметр зоны подавления роста грибка, мм)

Тест-культура	Концентрация соединения 5а в ДМФА, %						
	0.04	0.09	0.13	0.16	0.2	Контроль	
Bipolaris sorokiniana	14.6± 3.3	23.0± 5.0	24.4± 6.3	25.9±2.5	28.9 ± 9.5	СПО	
Fusarium oxysporum	15.3±3.2	15.5±1.2	14.8±1.3	16.5±2.7	15.0±1.7	СПО	
Aspergillus fumigatus	СПО*	СПО	СПО	СПО	СПО	СПО	
Aspergillus niger	СПО	СПО	СПО	28.6±0.9**	СПО	СПО	
Paecilomyces variotii	СПО	СПО	СПО	СПО	СПО	СПО	

* СПО — спорообразование.

** Вне зоны действия вещества – задержка развития грибка, т. е. ослабление пигментации за счёт уменьшения интенсивности спорообразования.

Тест-культура	Концентрация соединения 7 в H ₂ O, %						
	0.04	0.09	0.13	0.16	0.2	Контроль	
Bipolaris sorokiniana	ДВМ*	ДВМ	ДВМ	14.9± 2.6	16.0 ± 1.7	СПО	
Fusarium oxysporum	СПО**	СПО	СПО	СПО	СПО	СПО	
Aspergillus fumigatus	СПО	СПО	СПО	СПО	СПО	СПО	
Aspergillus niger	СПО	СПО	СПО	СПО	СПО	СПО	
Paecilomyces variotii	СПО	СПО	СПО	СПО	СПО	СПО	

Фунгицидная активность раствора N-координированного метилиодидом 2,5-диметил-3-фенил-1,3,4-тиадиазолидина 7 в H₂O через 7 суток инкубирования (диаметр зоны подавления роста грибка, мм)

* ДВМ – депигментированный воздушный мицелий.

** СПО — спорообразование.

Таким образом, селективные синтезы алкил(арил)производных 1,3,4-тиадиазолидинов реализуются при циклотиометилировании метил-, фенил- и бензилгидразинов при 0 °C в воде. В случае взаимодействия метилгидразина с формальдегидом и H₂S происходит образование димерного 3,3'-метандиилбис(4-метил-1,3,4-тиадиазолидина), а при циклотиометилировании фенил-(бензил)гидразинов с помощью неразветвлённых алифатических альдегидов и H₂S образуются соответствующие 2,5-диалкил-3-фенил(бензил)-1,3,4-тиадиазолидины. Показано, что 2,5-диметил-3-фенил-1,3,4-тиадиазолидин проявляет фунгицидную активность по отношению к *Bipolaris sorokiniana* и *Fusarium охуѕрогит*, а его координированная метилиодидом водорастворимая форма – только по отношению к *Bipolaris sorokiniana*. В то же время метилиодид оказывает фунгистатическое действие по отношению ко всем вышеперечисленным микроскопическим грибкам.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на спектрофотометре Specord 75 IR в суспензии в вазелиновом масле (соединения 6f-h) и в таблетках с КВг (соединения 5, 6 a-e). Спектры ЯМР ¹H и 13 C соединений **6f–h** и 7 зарегистрированы на спектрометре Bruker Avance 400 (400 и 100 МГц соответственно), спектры остальных соединений – на спектрометре Jeol FX-90Q (90 и 23 МГц соответственно). Растворители: ДМСО-d₆ (для соединений **6g,h**), D₂O (для соединения **7**) или CDCl₃ (для остальных соединений). В качестве внутреннего стандарта использовали сигналы растворителя (ДМСО-d₆: 2.50 м. д. для ядер ¹Н, 39.5 м. д. для ядер ¹³С; D₂O: 4.79 м. д. для ядер ¹Н; CDCl₃: 7.27 м. д. для ядер ¹Н, 77.1 м. д. для ядер ¹³С). Элементный анализ выполнен на элементном анализаторе фирмы Karlo Erba, модель 1108. Количественное определение галогенов и серы проведено по методу Шенигера [20]. Температуры плавления определены на приборе РНМК 80/2617. Анализ продуктов реакции проведён методом ГЖХ на хроматографе Chrom-5 с пламенно-ионизационным детектором, неподвижная фаза SE-30 (5%) на носителе Chromaton N-AW-HMDS (насадочная стальная колонка 2400 × 3 мм, программирование температуры 50-270 °С, 8 град./мин, газ-носитель гелий). Для оценки биологической активности соединений 5a, 7 и MeI использованы тест-грибки из коллекции Института биологии УНЦ РАН. Наблюдение за развитием микроскопических грибков проведено с помощью микроскопа марки Amplival (Carl Zeiss, JENA). Сероводород получен из расчётного количества Na₂S·9H₂O реакцией с HCl. В реакциях тиометилирования использовали водный раствор формальдегида (37%).

3,3'-Метандиилбис(4-метил-1,3,4-тиадиазолидин) (1). При 0 °С 0.93 мл (12.5 ммоль) формальдегида (37% формалина) насыщают 10 ммоль сероводорода в течение 30 мин, затем по каплям добавляют 0.26 мл (5 ммоль) метилгидразина. Смесь перемешивают 3 ч при 0 °С. Продукт экстрагируют CHCl₃ (2 × 30 мл), высушивают над CaCl₂ и упаривают. Выход 0.42 г (77%). Бесцветные кристаллы. Т. пл. 96–98 °С. Спектр ЯМР ¹Н, δ , м. д.: 2.35 (6H, c, 2CH₃); 2.93 (2H, c, CH₂); 3.94 (4H, c, 2CH₂); 4.23 (4H, c, 2CH₂). Спектр ЯМР ¹³С, δ , м. д.: 43.7; 54.8; 60.2; 76.4. Найдено, %: С 38.23; H 7.27; N 25.56; S 29.05. C₇H₁₆N₄S₂. Вычислено, %: С 38.15; H 7.32; N 25.43; S 29.10.

Синтез 2,5-диалкил(арил)-3-фенил(бензил)-1,3,4-тиадиазолидинов 5а–е, 6а–h (общая методика). При 0 °С 0.01 моль соответствующего альдегида 4а–h в 5 мл H_2O насыщают 0.01 моль сероводорода в течение 30 мин, затем по каплям добавляют 0.005 моль фенилгидразина или бензилгидразина. Смесь перемешивают в течение 3 ч при 0 °С. Продукт экстрагируют CHCl₃ (2 × 30 мл), высушивают над CaCl₂ и упаривают.

2,5-Диметил-3-фенил-1,3,4-тиадиазолидин (5а). Выход 0.63 г (65%). Красное масло. ИК спектр, v, см⁻¹: 750 (С–S), 1380, 1600, 2900, 3300–3400 (NH). Спектр ЯМР ¹H, δ, м. д.: 1.22–1.29 (6H, м, 2CH₃); 3.35–3.75 (1H, м, CH); 4.20 (1H, уш. с, NH); 4.50–4.80 (1H, м, CH); 6.76 (2H, м, H Ph); 7.25 (3H, м, H Ph). Спектр ЯМР ¹³С, δ, м. д.: 21.9; 22.4; 48.9; 50.1; 112.8; 117.3; 129.5; 146.6. Найдено, %: С 61.55; H 7.09; N 14.24; S 16.39. С₁₀H₁₄N₂S. Вычислено, %: С 61.82; H 7.26; N 14.42; S 16.50.

3-Фенил-2,4-диэтил-1,3,4-тиадиазолидин (5b). Выход 0.75 г (68%). Красное масло. ИК спектр, v, см-¹: 755 (С–S), 1380, 1600, 2900, 3250–3390 (NH). Спектр ЯМР ¹H, δ, м. д.: 0.92–1.15 (6H, м, 2CH₃); 1.72–1.92 (4H, м, 2CH₂); 3.01–3.22 (1H, м, CH); 4.48 (H, уш. с, NH); 4.78–5.03 (1H, м, CH); 6.55–6.69 (2H, м, H Ph); 7.06–7.22 (3H, м, H Ph). Спектр ЯМР ¹³С, δ, м. д.: 10.1; 11.2; 25.2; 28.8; 50.8; 56.3; 112.4; 117.0; 129.0; 146.0. Найдено, %: С 64.63; H 8.09; N 12.24; S 14.39. С₁₂H₁₈N₂S. Вычислено, %: С 64.82; H 8.16; N 12.60; S 14.42.

2,4-Дипропил-3-фенил-1,3,4-тиадиазолидин (5с). Выход 0.91 г (73%). Красное масло. ИК спектр, v, см⁻¹: 745 (С–S), 1380, 1600, 2850, 3270–3410 (NH). Спектр ЯМР ¹H, δ, м. д.: 1.04–1.11 (6H, м, 2CH₃); 1.50–1.90 (8H, м, 4CH₂); 3.12–3.39 (1H, м, CH); 4.39 (H, уш. с, NH); 4.73–5.12 (1H, м, CH); 6.68–6.85 (2H, м, H Ph); 7.19–7.27 (3H, м, H Ph). Спектр ЯМР ¹³С, δ, м. д.: 13.4; 13.5; 13.7; 13.8; 16.5; 17.7; 18.9; 19.9; 36.1; 36.6; 37.2; 37.7; 49.4; 52.9; 112.2; 117.0; 129.1; 146.5. Найдено, %: С 67.08; H 8.64; N 11.15; S 12.56. С₁₄H₂₂N₂S. Вычислено, %: С 67.15; H 8.86; N 11.19; S 12.80.

2,5-Дибутил-3-фенил-1,3,4-тиадиазолидин (5d). Выход 1.07 г (77%). Красное масло. ИК спектр, v, см⁻¹: 750 (С–S), 1380, 1600, 2900, 3300–3400 (NH). Спектр ЯМР ¹H, δ, м. д.: 0.90–1.13 (6H, м, 2CH₃); 1.30–2.12 (12H, м, 6CH₂); 2.90–3.20 (1H, м, CH); 3.97 (1H, уш. с, NH); 4.67–5.11 (1H, м, CH); 6.77 (2H, м, H Ph); 7.27 (3H, м, H Ph). Спектр ЯМР ¹³С, δ, м. д.: 13.7; 13.8; 22.2; 22.3; 26.9; 27.3; 28.0; 28.4; 33.7; 34.02; 34.5; 35.5; 49.8; 53.9; 112.4; 116.9; 129.3; 146.0. Найдено, %: С 68.88; H 9.29; N 10.00; S 11.32. С₁₆H₂₆N₂S. Вычислено, %: С 69.01; H 9.41; N 10.06; S 11.52.

2,5-Дипентил-3-фенил-1,3,4-тиадиазолидин (5е). Выход 1.27 г (83%). Красное масло. ИК спектр, v, см-¹: 750 (С–S), 1380, 1600, 2900, 3300–3400 (NH). Спектр ЯМР ¹H, δ, м. д.: 0.87 (6H, уш. с, 2CH₃); 1.30–1.36 (8H, м, 4CH₂); 1.57–1.74 (8H, м, 4CH₂); 3.26–3.30 (1H, м, CH); 3.81 (1H, уш. с, NH); 4.78–4.82 (1H, м, CH); 6.56–7.17 (5H, м, H Ph). Спектр ЯМР ¹³С, δ, м. д.: 13.8; 22.4; 26.7; 27.3; 28.3; 31.6; 33.4; 34.5; 63.6; 68.1; 116.9; 118.4; 128.3; 146.0. Найдено, %: С 70.46; Н 9.90; N 9.01; S 10.22. C₁₈H₃₀N₂S. Вычислено, %: С 70.53; H 9.87; N 9.14; S 10.46.

3-Бензил-2,5-диметил-1,3,4-тиадиазолидин (6а). Выход 0.70 г (67%). Красное масло. ИК спектр, ν, см⁻¹: 750 (С–S), 1030 (С–N), 1300, 1600, 2920, 3050–3100 (NH). Спектр ЯМР ¹H, δ, м. д.: 1.19–1.54 (6H, м, 2CH₃); 2.86 (H, с, NH); 3.76 (2H, с, CH₂); 4.13–4.16 (1H, м, CH); 4.64–4.66 (1H, м, CH); 6.74–7.34 (5H, м, H Ph). Спектр

ЯМР ¹³С, б, м. д.: 20.0; 26.7; 59.4; 66.5; 73.4; 127.2; 128.3; 128.7; 138.4. Найдено, %: С 63.13; Н 7.52; N 13.42; S 15.24. С₁₁Н₁₆N₂S. Вычислено, %: С 63.42; Н 7.74; N 13.45; S 15.39.

3-Бензил-2,5-диэтил-1,3,4-тиадиазолидин (6b). Выход 0.84 г (71%). Красное масло. ИК спектр, v, см⁻¹: 750 (С–S), 1035 (С–N), 1300, 1600, 2925, 3050–3100 (NH). Спектр ЯМР ¹H, δ, м. д.: 1.19–1.26 (6H, м, 2CH₃); 1.46–1.68 (4H, м, 2CH₂); 4.12 (2H, с, CH₂); 4.28–4.42 (1H, м, CH); 4.92–5.06 (1H, м, CH); 7.26–7.31 (5H, м, H Ph). Спектр ЯМР ¹³С, δ, м. д.: 17.6; 18.2; 21.1; 23.6; 57.4; 59.7; 71.9; 127.1; 128.3; 128.7; 138.4. Найдено, %: С 66.17; H 8.43; N 11.94; S 13.51. С₁₃H₂₀N₂S. Вычислено, %: С 66.06; H 8.53; N 11.85; S 13.57.

3-Бензил-2,5-дипропил-1,3,4-тиадиазолидин (6с). Выход 1.07 г (81%). Красное масло. ИК спектр, v, см⁻¹: 750 (С–S), 1035 (С–N), 1300, 1600, 2925, 3060–3100 (NH). Спектр ЯМР ¹H, δ, м. д.: 0.90–0.97 (6H, м, 2CH₃); 1.25–1.56 (8H, м, 4CH₂); 3.80 (2H, с, CH₂); 4.10–4.32 (1H, м, CH); 4.77–4.98 (1H, м, CH); 7.28–7.79 (5H, м, H Ph). Спектр ЯМР ¹³С, δ, м. д.: 13.1; 13.3; 18.5; 18.6; 33.8; 35.7; 53.1; 64.2; 71.6; 127.7; 128.0; 128.3; 138.0. Найдено, %: С 67.95; H 9.16; N 10.61; S 12.10. С₁₅H₂₄N₂S. Вычислено, %: С 68.13; H 9.15; N 10.59; S 12.13.

3-Бензил-2,5-дибутил-1,3,4-тиадиазолидин (6d). Выход 0.93 г (64%). Красное масло. ИК спектр, v, см⁻¹: 750 (С–S), 1055 (С–N), 1300, 1600, 2925, 3060–3100 (NH). Спектр ЯМР ¹H, δ, м. д.: 0.90–0.97 (6H, м, 2CH₃); 1.28–1.72 (12H, м, 6CH₂); 3.86 (2H, с, CH₂); 4.02–4.36 (1H, м, CH); 4.77–4.97 (1H, м, CH); 7.11–7.29 (5H, м, H Ph). Спектр ЯМР ¹³С, δ, м. д.: 13.4; 22.0; 28.0; 29.4; 35.2; 35.5; 51.7; 57.1; 71.1; 126.9; 127.9; 128.9; 138.1. Найдено, %: С 69.85; H 9.27; N 9.42; S 10.75. С₁₇H₂₈N₂S. Вычислено, %: С 69.81; H 9.65; N 9.58; S 10.96.

3-Бензил-2,5-дипентил-1,3,4-тиадиазолидин (6е). Выход 1.26 г (79%). Красное масло. ИК спектр, v, см⁻¹: 750 (С–S), 1055 (С–N), 1305, 1600, 2925, 3050–3100 (NH). Спектр ЯМР ¹H, δ, м. д.: 1.05–1.13 (6H, м, 2CH₃); 1.40–1.85 (16H, м, 8CH₂); 3.34 (2H, с, CH₂); 4.10–4.80 (2H, м, 2CH); 7.13–7.88 (5H, м, H Ph). Спектр ЯМР ¹³С, δ, м. д.: 9.0; 18.9; 19.5; 26.8; 29,7; 42.8; 57.2; 59.5; 125.7; 127.0; 128.0; 138.0. Найдено, %: С 71.05; H 10.00; N 8.42; S 9.55. С₁₉H₃₂N₂S. Вычислено, %: С 71.19; H 10.06; N 8.74; S 10.00.

3-Бензил-2,5-ди(2-фурил)-1,3,4-тиадиазолидин (6f). Выход 1.25 г (80%). Тёмнокоричневые кристаллы. Т. пл 65–67 °С. ИК спектр, v, см⁻¹: 675, 750 (С–S), 880, 1120 (С–N), 1450, 1590, 2972, 3060–3100 (NH). Спектр ЯМР ¹Н, δ, м. д.: 4.86–5.17 (4H, м, 2CH, CH₂); 6.12–6.50 (6H, м, H Ar); 7.20–7.43 (5H, м, H Ph). Спектр ЯМР ¹³С, δ, м. д.: 44.6; 46.4; 50.8; 109.0; 110.4; 110.6; 111.1; 125.9; 128.8; 129.0; 142.9; 143.0; 143.2; 149.9.

3-Бензил-2,5-ди(3-бромфенил)-1,3,4-тиадиазолидин (6g). Выход 2.03 (83%), Тёмно-коричневые кристаллы. Т. пл. 69–71 °С. ИК спектр, v, см⁻¹: 670, 750 (С–S), 880, 1120 (С–N), 1450, 1590, 2970, 3060–3100 (NH). Спектр ЯМР ¹Н, δ, м. д.: 3.67 (2H, с, CH₂); 3.80–4.12 (2H, м, CH); 7.10–7.63 (13H, м, H Ar). Спектр ЯМР ¹³С, δ, м. д.: 50.0; 56.1; 67.2; 121.8 (2C); 129.7; 129.8; 131.1; 131.4; 131.5; 131.8; 131.9; 134.2; 136.9; 137.1, 140.1. Найдено, %: C 51.14; H 3.42; N 5.65; S 6.31. С₂₁Н₁₈Вг₂N₂S. Вычислено, %: C 51.45; H 3.70; N 5.71; S 6.54.

2,2'-(3-Бензил-1,3,4-тиадиазолидин-2,5-диил)дифенол (6h). Выход 1.60 г (88%). Бесцветные кристаллы. Т. пл. 67–69 °С. ИК спектр, v, см⁻¹: 690, 750 (С–S), 875, 1120 (С–N), 1450, 1595, 2975, 3060–3100 (NH). Спектр ЯМР ¹Н, δ, м. д.: 5.80–6.06 (4H, м, 2CH, CH₂); 7.02–7.07 (8H, м, H Ar); 7.32–7.41 (5H, м, H Ph). Спектр ЯМР ¹³С, δ, м. д.: 50.8; 64.4; 79.2; 116.0; 119.7; 120.3; 121.3; 124.5; 129.0; 129.7; 153.6; 153.9; 156.0.

Аддукт метилиодида и 2,5-диметил-3-фенил-1,3,4-тиадиазолидина (7). В колбу с механической мешалкой помещают 0.19 г (1 ммоль) соединения 5а в 5 мл CHCl₃ и добавляют 10 ммоль MeI, перемешивают при комнатной температуре в течение 3 ч. В реакционную смесь добавляют 5 мл H₂O, перемешивают в течение 10 мин. Водную фазу упаривают. Выход 0.22 г (67%). Оранжевый порошок. Спектр ЯМР ¹H, δ, м. д.:

1.10 (3H, c, CH₃); 1.34–1.36 (6H, м, 2CH₃); 3.40–3.43 (2H, м, CH); 4.33 (1H, уш. c, NH); 6.52–6.55 (1H, м, CH); 7.13–7.40 (5H, м, H Ph). Спектр ЯМР ¹³С, δ, м. д.: 5.7; 21.5; 22.2; 48.5; 49.8; 112.7; 117.2; 129.1; 146.1. Найдено, %: С 39.14; H 4.94; I 37.66; N 8.11; S 9.18. С₁₁Н₁₇IN₂S. Вычислено, %: С 39.29; H 5.10; I 37.74; N 8.33; S 9.54.

Рентгеноструктурное исследование соединения 1. Бесцветные пластинчатые кристаллы (C₇H₁₆N₄S, M 220.36) моноклинные; при 120 К: а 6.700(2), b 17.678(5), с 9.526(3) Å; β 108.426(5)°; V 1070.3(6) Å³, пространственная группа Р2₁/с; Z 4; D_{выч} 1.367 г/см³. Экспериментальный набор 6584 отражений получен на дифрактометре Bruker SMART CCD area detector при 120 К (λ Мо $K\alpha$ -излучение, 2 θ_{max} 56.0°) с монокристалла размером 0.20 × 0.18 × 0.16 мм. После усреднения эквивалентных отражений получено 2560 независимых отражений (R_{int} 0.0172), которые использованы для расшифровки и уточнения структуры. Поглощение (µ 0.461 мм⁻¹) учитывалось с помощью программы SADABS [21], коэффициенты трансмиссии T_{max} и T_{min} соответственно равны 0.930 и 0.913. Структура расшифрована прямым методом, все неводородные атомы локализованы в разностных синтезах электронной плотности и уточнены по F^2_{hkl} в анизотропном приближении; все атомы водорода помещены в геометрически рассчитанные позиции и учтены при уточнении по модели "наездник" с U(H) = 1.2 U(C), где U(C) – эквивалентный температурный фактор атома углерода, с которым связан соответствующий атом водорода. Окончательное значение факторов недостоверности: R_1 0.0356 (вычислен по F_{hkl} для 2195 отражений с $I > 2\sigma(I)$), wR_2 0.0882 (вычислен по F^2_{hkl} для всех 2560 отражений), GOOF 1.008, 120 уточняемых параметров. Все расчёты проведены по комплексу программ SHELXTL PLUS [22].

Оценку фунгицидной активности проводят методом диффузии в агар [23]. Поверхность питательной среды (картофельно-глюкозный агар), разлитой по 20–25 мл в стандартные чашки Петри *d* 90 мм, засевают суспензией спор тест-культур грибков. Затем в среде сверлом диаметром 10 мм вырезают 4 лунки, в которые помещают по 100 мкл испытуемых растворов. Фунгицидную активность оценивают по диаметру зоны подавления роста микромицетов, а также наблюдая за развитием тест-культур с использованием светового микроскопа. Контролем служит развитие грибков на питательной среде. Время инкубации 7 сут при 28 °C.

Работа выполнена при финансовой поддержке отделения химии и наук о материалах РАН (программа ОХНМ №7).

СПИСОК ЛИТЕРАТУРЫ

- 1. H. Kubo, R. Sato, I. Hamura, T. Ohi, J. Agric. Food Chem., 18, 60 (1970).
- 2. G. Asato, G. Berkelhammer, E. L. Moon, J. Med. Chem., 13, 1015 (1970).
- C. B. Chapleo, M. Myers, L. Peter, J. F. Saville, A. C. B. Smith, M. R. Stillings, I. F. Tulloch, D. S. Walter, A. P. Welbourn, *J. Med. Chem.*, 29, 2273 (1986).
- S. Turner, M. Myers, B. Gadie, A. J. Nelson, R. Pape, J. F. Saville, J. C. Doxey, T. L. Berridge, *J. Med. Chem.*, **31**, 906 (1988).
- E. E. Oruç, S. Rollas, F. Kandemirli, N. Shvets, A. S. Dimoglo, J. Med. Chem., 47, 6760 (2004).
- В. Р. Ахметова, Н. Н. Мурзакова, Г. Р. Хабибуллина, Н. Ф. Галимзянова, *Журн.* прикл. химии, 84, № 2, 229 (2011).
- В. Р. Ахметова, Г. Р. Надыргулова, Т. В. Тюмкина, З. А. Старикова, Д. Г. Голованов, М. Ю. Антипин, Р. В. Кунакова, У. М. Джемилев, *Изв. АН, Сер. хим.*, **10**, 1758 (2006).
- С. Р. Хафизова, В. Р. Ахметова, Т. В. Тюмкина, Л. М. Халилов, Р. В. Кунакова, У. М. Джемилев, Изв. АН, Сер. хим., 8, 1652 (2004).

- В. Р. Ахметова, Г. Р. Надыргулова, С. Р. Хафизова, Р. Р. Хайруллина, Е. А. Парамонов, Р. В. Кунакова, У. М. Джемилев, *Журн. орган. химии.*, 42, 151 (2006).
- В. Р. Ахметова, Г. Р. Надыргулова, Н. Н. Мурзакова, З. А. Старикова, М. Ю. Антипин, Р. В. Кунакова, *Изв. АН, Сер. хим.*, **5**, 1063 (2009).
- Р. Г. Костяновский, П. Радемахер, Ю. И. Эльнатанов, Г. К. Кадоркина, Г. А. Никифоров, И. И. Червин, С. В. Усачев, В. Р. Костяновский, Изв. АН, Сер. хим., 7, 1346 (1997).
- 12. K. Rühlmann, J. Prakt. Chem., 8, 285 (1959).
- 13. J. Buter, S. Wassenaar, R. M. Kellogg, J. Org. Chem., 37, 4045 (1972).
- 14. R. M. Kellogg, M. Noteboom, J. K. Kaiser, J. Org. Chem., 40, 2573 (1975).
- 15. L. R. Collazo, F. S. Guziec, Jr, J. Org. Chem., 58, 43 (1993).
- В. Р. Ахметова, Н. Н. Мурзакова, Г. Р. Хабибуллина, Т. В. Тюмкина, З. А. Старикова, И. С. Бушмаринов, Л. Ф. Коржова, Изв. АН, Сер. хим., 1, 139 (2012).
- 17. Микроорганизмы возбудители болезней растений, под ред. В. И. Билай, Наукова думка, Киев, 1988.
- 18. Д. Саттон, А. Фотергилл, М. Ринальди, Определитель патогенных и условнопатогенных грибов, Мир, Москва, 2001.
- И. Г. Каневская, Биологическое повреждение промышленных материалов, Наука, Ленинград, 1984, с. 43.
- Методы количественного органического элементного микроанализа, под общ. ред. Н. Э. Гельмана, Химия, Москва, 1987, с. 226.
- 21. Bruker Molecular Analysis Research Tool, v. 5.059, Bruker AXS, Madison, 1998.
- 22. G. Sheldrick, Acta Crystallogr., Sect. A.: Found. Crystallogr., A64, 112 (2008).
- Практикум по микробиологии, под редакцией Н. С. Егорова, МГУ, Москва, 1976, с. 251.

¹ Институт нефтехимии и катализа РАН, пр. Октября, 141, Уфа 450075, Россия e-mail: ink@anrb.ru

Поступило 11.03.2012 После доработки 21.06.2013

² Институт элементоорганических соединений им. А. Н. Несмеянова РАН, ул. Вавилова, 28, Москва 119991, Россия e-mail: star@xray.ineos.ac.ru

³ Институт биологии УНЦ РАН, пр. Октября, 69, Уфа 450054, Россия e-mail: ib@anrb.ru