## О. В. Хиля\*, Т. А. Воловненко, А. В. Туров, Р. И. Зубатюк<sup>а</sup>, О. В. Шишкин<sup>а</sup>, Ю. М. Воловенко

### СИНТЕЗ 2-(2-ГЕТАРИЛ)-6-ГИДРОКСИ-3-(R-АМИНО)-2-ГЕКСЕННИТРИЛОВ

Изучено взаимодействие 2-гетарил-2-(тетрагидрофуран-2-илиден)ацетонитрилов и 2-(2-гетарилиден)-3-оксо-6-хлоргексаннитрилов с аминами. Показано, что взаимодействие первичных алифатических аминов с 2-(2-гетарилиден)-3-оксо-6-хлоргексаннитрилами происходит через стадию образования 2-гетарил-2-(тетрагидрофуран-2-илиден)ацетонитрилов с последующим раскрытием фуранилиденового фрагмента последних и образованием 2-(2-гетарил)-6-гидрокси-3-(R-амино)-2-гексеннитрилов.

Ключевые слова: гетарилацетонитрилы, 2-(2-гетарил)-6-гидрокси-3-(R-амино)-2-гексеннитрилы, 2-гетарил-2-(тетрагидрофуран-2-илиден)ацетонитрилы, первичные амины, аминирование.

Ранее [1–3] нами был разработан метод синтеза 2-гетарил-2-(тетрагидрофуран-2-илиден)ацетонитрилов из соответствующих 2-(2-гетарилиден)-3-оксо-6-хлоргексан(гептан)нитрилов.



Исходные нитрилы содержат фрагмент γ-хлормасляной кислоты, что вызвало интерес к дальнейшим исследованиям этих веществ как субстратов для аминирования. Учитывая, что γ-аминомасляная кислота является медиатором центральной нервной системы, замена атома хлора на аминогруппу в этих соединениях могла бы привести к появлению полезных биологических свойств.

Хорошо изучено аминирование α-бромацетилфенилацетонитрила, завершающееся образованием 3-гидрокси-4-диалкиламино-2-фенил-2-бутеннитрилов [4]. Возможна их последующая внутримолекулярная циклизация взаимодействием нитрильной и аминогрупп, завершающаяся образованием 1-R-2-амино-3-фенил-4(5*H*)-оксопирролов. В случае использования вторичных алифатических и жирно-ароматических аминов последняя стадия сопровождается дезалкилированием аминогруппы [4].

Замена арильного фрагмента азагетарильным приводит к увеличению количества возможных продуктов реакции. Так, взаимодействие 2-(2-азагетарилиден)-3-кето-4-хлорбутаннитрилов с первичными алифатическими аминами может проходить по двум направлениям [5]: алкилирование амина с последующим присоединением вторичной аминогруппы к нитрильной, приводящее к 1-алкил-2-амино-3-(2-азагетарил)-4(5*H*)-оксопирролам [5, 6] или внутримолекулярное алкилирование с образованием пирроло[1,2-*a*]азагетероциклов [7]. Взаимодействие с первичными ароматическими аминами также завершается циклизацией в 1-алкил-2-амино-3-(2-азагетарил)-4(5*H*)-оксопирролы [5, 8].



Реакция 2-(2-азагетарилиден)-3-кето-4-хлорбутаннитрилов с высокоосно́вными вторичными аминами также проходит неоднозначно: наряду с продуктами замещения атома галогена аминогруппой образуются продукты внутримолекулярного алкилирования – пирроло[1,2-*a*]азагетероциклы [5]. Аминированием заканчивается и взаимодействие с *N*,*N*-дизамещённым гидразином [6]. Алкилированию аминогруппы способствует уменьшение основности атома азота гетероцикла и его пространственное экранирование [5].

Известно также [9, 10], что при аминировании метилового эфира 6-хлор-3-оксогексановой кислоты, содержащей ү-хлорбутирильный фрагмент, первичными аминами происходит замещение атома хлора на аминный остаток и циклизация в производные 2-метилиденпирролидина. Кроме того, основность амина способствует образованию побочного продукта – 2-метилидентетрагидрофурана.



В данной работе изучено взаимодействие 2-(2-гетарилиден)-3-оксо-6-хлоргексаннитрилов **1а**–**i** с первичными алифатическими аминами. Учитывая результаты вышеупомянутых исследований, при нагревании соединений **1а**–**i** в диоксане с двукратным избытком амина мы ожидали получить 6-амино-2-(2-гетарилиден)-3-оксогексаннитрилы **A**, 2-гетарил-2-(тетрагидро-1*H*-2-пирролилиден)ацетонитрилы **A'** или 2-гетарил-2-(тетрагидрофуран-2-илиден)ацетонитрилы **2а**–**i**.

По данным спектров ЯМР <sup>1</sup>Н продукты внутримолекулярной циклизации – 2-гетарил-2-(тетрагидрофуран-2-илиден)ацетонитрилы 2a-i [3] – присутствуют во всех продуктах реакции лишь в небольшом количестве. Проведение реакции с эквимолярным количеством амина повышает выход циклических соединений 2a-i до 40–60% (табл. 1). Использование 1.1 экв. амина с предварительной обработкой нитрилов 1a-i 1 экв.  $Et_3N$  позволило получить в чистом виде основной продукт реакции (без примесей соединений 2a-i). Однако по спектральным характеристиками он не соответствует ожидаемой структуре **A** или **A**': кроме необходимых для этих структур сигналов в спектрах ЯМР <sup>1</sup>Н присутствует дополнительный триплет в области 4.5–4.8 м. д., обменивающийся с D<sub>2</sub>O, что характерно для протонов гидроксигрупп.



Следует отметить, что взаимодействие соединений **2а**-i с эквимолярным количеством соответствующего амина приводит к тем же соединениям. Спектральные характеристики, хроматографические данные, а также отсутствие депрессии температуры плавления в пробе смешения с достоверным образцом подтверждают идентичность продуктов, полученных из соединений **1а**-i и **2а**-i при действии аминов.

В ходе дальнейших исследований установлено, что действие аминов как на соединения 1a-i, так и на производные фурана 2a-i приводит к образованию (Z)-2-(2-гетарил)-6-гидрокси-3-(R-амино)-2-гексеннитрилов 3a-w. Таким образом, при использовании в качестве исходных реагентов ацилпроизводных 1a-i на первой стадии амин действует как основание и приводит к циклизации в продукты 2a-i, которые далее реагируют со вторым эквивалентом амина как с нуклеофилом, образуя аминопроизводные 3a-w.

Подобное превращение реализуется для производных 2-(ацилметилен)тетрагидрофурана при их взаимодействии с первичными алифатическими аминами [11, 12].



| Т | а | б | Л | И | ц | а | 1 |
|---|---|---|---|---|---|---|---|
|---|---|---|---|---|---|---|---|

| Физико-химические характеристики синтезированных соединении за-w |                                                               |                                |                             |                                       |                       |          |                |
|------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------|-----------------------------|---------------------------------------|-----------------------|----------|----------------|
| Соеди-                                                           | Брутто-                                                       | <u>Найдено, %</u>              |                             |                                       |                       | Т. пл.*, | Dumon 0/       |
| нение                                                            | формула                                                       | C                              | C H N Br                    |                                       | Br                    | °C       | выход, %       |
| <b>3</b> a                                                       | C <sub>14</sub> H <sub>14</sub> N <sub>4</sub> O <sub>2</sub> | <u>62.28</u>                   | <u>5.36</u>                 | 20.81                                 | -                     | 211-212  | 88             |
| 3b                                                               | $C_{15}H_{16}N_4O_2$                                          | 62.21<br>63.30<br>62.27        | 5.22<br><u>5.86</u>         | 20.73<br><u>19.85</u><br>10.71        | _                     | 216–217  | 73             |
| 3c                                                               | $C_{17}H_{20}N_4O_3$                                          | 63.37<br><u>62.27</u><br>62.18 | 5.67<br><u>6.19</u><br>6.14 | <u>19.71</u><br><u>17.31</u><br>17.06 | _                     | 182–183  | 91             |
| 3d                                                               | $C_{21}H_{20}N_4O_2$                                          | <u>69.91</u><br>69.98          | <u>5.77</u><br>5.59         | <u>15.78</u><br>15.55                 | _                     | 179–181  | 81**,<br>36*** |
| 3e                                                               | $C_{22}H_{22}N_4O_2$                                          | <u>70.69</u><br>70.57          | <u>5.86</u><br>5.92         | <u>15.23</u><br>14.96                 | -                     | 177–178  | 83**           |
| 3f                                                               | $C_{18}H_{22}N_4O_3$                                          | <u>63.21</u><br>63.14          | <u>6.62</u><br>6.48         | <u>16.57</u><br>16.36                 | -                     | 153–154  | 96             |
| 3g                                                               | $C_{20}H_{19}N_5O_2$                                          | <u>66.60</u><br>66.47          | <u>5.43</u><br>5.30         | <u>19.44</u><br>19.38                 | -                     | 189–190  | 76             |
| 3h                                                               | $C_{18}H_{22}N_4O_3$                                          | <u>63.10</u><br>63.14          | <u>6.59</u><br>6.48         | <u>16.60</u><br>16.36                 | -                     | 164–165  | 94             |
| 3i                                                               | $C_{23}H_{24}N_4O_2$                                          | <u>71.23</u><br>71.11          | <u>6.44</u><br>6.23         | <u>14.65</u><br>14.42                 | -                     | 169–170  | 82             |
| 3ј                                                               | $C_{21}H_{26}N_4O_2$                                          | <u>68.91</u><br>68.83          | <u>7.25</u><br>7.15         | <u>15.41</u><br>15.29                 | -                     | 196–197  | 81             |
| 3k                                                               | $C_{22}H_{22}N_4O_2$                                          | <u>70.74</u><br>70.57          | <u>6.07</u><br>5.92         | <u>15.23</u><br>14.96                 | -                     | 186–187  | 91             |
| 31                                                               | $C_{17}H_{19}BrN_4O_3$                                        | <u>50.27</u><br>50.14          | <u>4.89</u><br>4.70         | <u>13.90</u><br>13.76                 | <u>19.85</u><br>19.62 | 175–176  | 74**           |
| 3m                                                               | $C_{20}H_{26}N_4O_3$                                          | <u>64.96</u><br>64.84          | <u>7.21</u><br>7.07         | <u>15.33</u><br>15.13                 | _                     | 187–188  | 88             |
| 3n                                                               | $C_{23}H_{24}N_4O_2$                                          | <u>71.22</u><br>71.11          | <u>6.17</u><br>6.23         | <u>14.71</u><br>14.42                 | _                     | 237–239  | 78**           |
| 30                                                               | $C_{13}H_{14}N_4O$                                            | <u>64.40</u><br>64.45          | <u>5.96</u><br>5.82         | <u>23.27</u><br>23.13                 | _                     | 170–171  | 78             |
| 3p                                                               | $C_{16}H_{20}N_4O_2$                                          | <u>63.90</u><br>63.98          | <u>6.88</u><br>6.71         | <u>18.88</u><br>18.65                 | _                     | 151–152  | 85             |
| 3q                                                               | C <sub>19</sub> H <sub>19</sub> N <sub>5</sub> O              | <u>68.50</u><br>68.45          | <u>5.69</u><br>5.74         | <u>21.15</u><br>21.01                 | -                     | 180–181  | 84             |
| 3r                                                               | $\mathrm{C}_{14}\mathrm{H}_{16}\mathrm{N}_{4}\mathrm{O}$      | <u>65.54</u><br>65.61          | <u>6.44</u><br>6.29         | <u>21.77</u><br>21.86                 | -                     | 162–163  | 83             |
| 38                                                               | $C_{21}H_{22}N_4O$                                            | <u>72.89</u><br>72.81          | <u>6.52</u><br>6.40         | <u>16.31</u><br>16.17                 | -                     | 137–139  | 76,<br>41***   |
| 3t                                                               | $C_{20}H_{19}N_3OS^{*4}$                                      | <u>68.82</u><br>68.74          | <u>5.39</u><br>5.48         | <u>12.30</u><br>12.02                 | _                     | 129–130  | 78             |
| 3u                                                               | $C_{21}H_{21}N_3OS^{*5}$                                      | <u>69.58</u><br>69.39          | <u>5.93</u><br>5.82         | <u>11.73</u><br>11.56                 | _                     | 160–161  | 80             |
| 3v                                                               | $\mathrm{C}_{18}\mathrm{H}_{24}\mathrm{N}_{4}\mathrm{OS}$     | <u>62.59</u><br>62.76          | <u>7.16</u><br>7.02         | <u>16.22</u><br>16.26                 | _                     | 103–104  | 85             |
| 3w                                                               | $\mathrm{C}_{16}\mathrm{H}_{18}\mathrm{N}_4\mathrm{OS}$       | <u>61.25</u><br>61.12          | <u>5.98</u><br>5.77         | <u>17.89</u><br>17.82                 | -                     | 74–75    | 81             |

Физико-химические характеристики синтезированных соединений За-w

\* Соединения **3a,g,o-w** перекристаллизовали из EtOH, соединения **3b,c,f,m** – из *n*-BuOH, соединения **3d,e,h–l,n** – из 2-PrOH. \*\* Синтез по методу Б. \*\*\* Синтез с использованием дибензиламина. \*<sup>4</sup> Найдено: S 9.44%. Вычислено: S 9.18%. \*<sup>5</sup> Найдено: S 9.08%. Вычислено: S 8.82%.

В спектрах ЯМР <sup>1</sup>Н соединений **За–w** сигналы ароматических протонов наблюдаются в области 6.97–8.07 м. д., присутствуют три протона, обменивающихся с D<sub>2</sub>O (протоны гидроксильной группы и двух аминогрупп). В частности, протон NH-группы гетероцикла резонирует при 9.93–11.96 м. д., а в области 4.6–4.8 м. д. наблюдается триплет гидроксильной группы. Сигналы метиленовых протонов проявляются при 1.45–3.60 м. д. (табл. 2). Однозначное отнесение сигналов сделано на основе корреляционных спектров ЯМР <sup>1</sup>Н (COSY). Спектр COSY соединения **3f** показал наличие взаимодействия между слабопольным сигналом NH-группы (12.32 м. д.) и сигналом метиленовой группы при 3.68 м. д., а также выявил связи между алифатическими протонами, позволил сделать однозначное отнесение сигналов NH-групп.

Особенностью спектров ЯМР <sup>1</sup>Н соединений  $3\mathbf{f}$ , **i** является магнитная неэквивалентность протонов метиленовых групп (4,5-CH<sub>2</sub> (соединение  $3\mathbf{f}$ ) и 5-CH<sub>2</sub> (соединение  $3\mathbf{i}$ )) вследствие наличия в молекулах этих соединений хиральных центров.

Реакция циклических нитрилов 2a-i, очевидно, начинается с нуклеофильной атаки атома C-2 тетрагидрофуранового цикла, входящего в состав акрилонитрильного фрагмента, приводящей к аддукту Михаэля (структура **B**). Далее происходит раскрытие тетрагидрофуранового цикла с образованием интермедиата C, который в результате прототропии переходит в (*Z*)-2-(2-гетарил)-6-гидрокси-3-(R-амино)-2-гексеннитрилы 3a-w.

Следует отметить, что при взаимодействии соединений **2**а,**b**,**g** с дибензиламином вместо ожидаемых продуктов, содержащих дибензиламиногруппу, наблюдалось образование соединений, идентичных продуктам **3**d,**k**,**s**, в которых есть только один бензильный заместитель. Выходы (*Z*)-3-бензиламино-6-гидрокси-2-гетарил-2-гексеннитрилов **3**d,**k**,**s** в этой реакции невысокие. Идентичность этих веществ подтверждена спектральными характеристиками, отсутствием депрессии температуры плавления в пробе смешения с достоверным образцом и данными рентгеноструктурного анализа. В литературе известны примеры элиминирования бензильного [4, 13] и этильного [13] катионов в процессе циклизации  $\omega$ -диалкиламинонитрилов. Возможно, элиминирование бензильной группы происходит вследствие стерического напряжения, возникающего при размещении объёмных заместителей в *Z*-конфигурации, или на стадии образования интермедиата **С**.

В спектрах ЯМР <sup>1</sup>Н соединений **3d**,**k** из ароматических протонов в наиболее сильном поле наблюдается сигнал H-8 хиназолинового цикла в результате экранирования кольцевыми токами фенильного кольца. Данные ЯЭО подтверждают пространственное сближение протона H-8 хиназолинона с бензиламинным фрагментом. Так, при дополнительном облучении на частоте NH-протона бензиламиногруппы наблюдается увеличение интенсивности сигналов протонов фенильного кольца и протона H-8 хиназолинонового фрагмента.

Окончательно строение соединений **За–w** подтверждено с помощью рентгеноструктурного исследования 3-бензиламино-6-гидрокси-2-(4-оксо-3,4-дигидро-2-хиназолинил)-2-гексеннитрила **Зd** (рис. 1).

В молекуле соединения **3d** кроме хиназолинового и бензольного ядер можно выделить ещё несколько планарных фрагментов: атомы C(7), C(9), C(11), N(4), C(12), C(13), C(19) вместе с нитрильной группой, а также неводородные атомы пропанольного заместителя. Углы их поворота относительно плоскости хиназолинового бицикла составляют 8.3 и 76.5° соответ-



Рис. 1. Строение соединения 3d по данным РСА

ственно. Бензольное кольцо повёрнуто относительно хиназолинового фрагмента на 46.4°. Пропанольный заместитель имеет *транс-транс* конфигурацию (торсионные углы C(11)–C(19)–C(20)–C(21)–179.9(2)° и C(19)–C(20)–C(21)–O(2)–176.9(2)°). Близкая к копланарной ориентация хиназолинового и аминобутенового фрагментов дополнительно стабилизируется образованием внутримолекулярной резонансно-усиленной водородной связи N(4)–H…N(1) (H…N 1.96 Å, N–H…N 138°).

Сильное сопряжение в фрагменте между донором и акцептором протона приводит к укорочению связей N(4)–C(11) 1.327(2) Å (среднее значение 1.34 Å [14]), C(7)–C(9) 1.448(3) Å (1.46 Å) и удлинению связей C(9)–C(11) 1.394(3) Å (1.33 Å), N(1)–C(7) 1.304(2) Å (1.28 Å).Таким образом, исходя из значений длин связей, можно предполагать существенный вклад цвиттерионной резонансной структуры в строение соединения **3d** (рис. 2).

В кристалле молекулы **3d** образуют центросимметричные димеры за счёт межмолекулярных водородных связей O(2)–H···O(1) [1–x, 2–y, 1–z] (H···O 2.00 Å, O–H···O 168°), что приводит к удлинению связи O(1)–C(8) до 1.233(2) Å (среднее значение 1.210 Å).



*Рис. 2.* Поляризация электронной плотности в кристалле соединения **3d** по данным PCA

Таблица 2

| Соеди- | ИК спектр, $\nu$ , см <sup>-1</sup> |      | Спектр ЯМР <sup>1</sup> Н, δ, м. д. ( <i>J</i> , Гц)                                                                                                                                         |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|--------|-------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| нение  | СО                                  | CN   | H Het                                                                                                                                                                                        | NHR <sup>4</sup>                                                                                                                                                                                                                                                                                     | (CH <sub>2</sub> ) <sub>2</sub> CH(R)OH                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 1      | 2                                   | 3    | 4                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 3a     | 1650                                | 2200 | 10.22 (1H, ym. c, NH); 7.99 (1H, ym. g, ${}^{3}J = 8.2$ , H-5); 7.66 (1H, ym. r, ${}^{3}J = 8.2$ , H-7); 7.58 (1H, ym. g, ${}^{3}J = 8.2$ , H-8); 7.31 (1H, ym. r, ${}^{3}J = 8.2$ , H-6)    | 10.80 (1H, уш. с) и 8.81 (1H, уш. с, NH <sub>2</sub> );                                                                                                                                                                                                                                              | 4.54 (1H, ym. c, OH); 3.52–3.47 (2H, M, 6-CH <sub>2</sub> ); 2.57 (2H, ym. r, ${}^{3}J$ = 6.8, 4-CH <sub>2</sub> ); 1.85–1.78 (2H, M, 5-CH <sub>2</sub> )                                                                                                                                                                                                                                                                  |  |  |
| 3b     | 1665                                | 2180 | 9.93 (1H, ym. c, NH); 7.99 (1H, ym. $_{,3}^{,3}J = 8.2$ , H-5); 7.66 (1H, ym. $_{,3}^{,3}J = 8.2$ , H-7); 7.56 (1H, ym. $_{,3}^{,3}J = 8.2$ , H-8); 7.29 (1H, ym. $_{,3}^{,3}J = 8.2$ , H-6) | 11.86 (1Н, уш. с, NH); 3.20 (3Н, уш. с,<br>CH <sub>3</sub> )                                                                                                                                                                                                                                         | 4.57 (1H, уш. с, OH); 3.58–3.52 (2H, м.<br>6-CH <sub>2</sub> ); 2.73–2.67 (2H, м, 4-CH <sub>2</sub> ); 1.80–<br>1.74 (2H, м, 5-CH <sub>2</sub> )                                                                                                                                                                                                                                                                           |  |  |
| 3c     | 1675                                | 2210 | 10.50 (1H, ym. c, NH); 7.99 (1H, ym. g, ${}^{3}J = 8.0$ , H-5); 7.75 (1H, ym. ${}^{3}J = 8.0$ , H-7); 7.45 (1H, ym. g, ${}^{3}J = 8.0$ , H-8); 7.35 (1H, ym. ${}^{3}J = 8.0$ , H-6)          | 12.92 (1H, уш. с, NH); 3.76–3.58 (4H, м, NHC <u>H</u> <sub>2</sub> C <u>H</u> <sub>2</sub> OMe); 3.41 (3H, с, OCH <sub>3</sub> )                                                                                                                                                                     | 4.72 (1H, T, ${}^{3}J$ = 5.6, OH); 3.53–3.47 (2H, M, 6-CH <sub>2</sub> ); 2.67 (2H, YIII. T, ${}^{3}J$ = 7.8, 4-CH <sub>2</sub> ); 1.77–1.69 (2H, M, 5-CH <sub>2</sub> )                                                                                                                                                                                                                                                   |  |  |
| 3d     | 1668                                | 2180 | 10.13 (1H, ym. c, NH); 8.00 (1H, ym. g, ${}^{3}J = 8.1$ , H-5); 7.60 (1H, ym. r, ${}^{3}J = 8.1$ , H-7); 7.28 (1H, ym. r, ${}^{3}J = 8.1$ , H-6); 7.16 (1H, ym. r, ${}^{3}J = 8.1$ , H-8)    | 12.49 (1H, уш. с, NH); 7.43–7.27 (5H, м,<br>H Ph); 4.79 (2H, д, <sup>3</sup> <i>J</i> = 5.6, NHC <u>H</u> <sub>2</sub> Ph)                                                                                                                                                                           | 4.59 (1H, T, ${}^{3}J$ = 4.8, OH); 3.58–3.51 (2H, M, 6-CH <sub>2</sub> ); 2.77 (2H, YIII. T, ${}^{3}J$ = 6.8, 4-CH <sub>2</sub> ); 1.85–1.78 (2H, M, 5-CH <sub>2</sub> )                                                                                                                                                                                                                                                   |  |  |
| 3e     | 1665                                | 2210 | 10.50 (1H, уш. с, NH); 7.97 (1H, уш. д, ${}^{3}J = 8.0$ ,<br>H-5); 7.65 (1H, уш. т, ${}^{3}J = 8.0$ , H-7); 7.30–7.22<br>(1H, м, H-6); 7.07 (1H, уш. д, ${}^{3}J = 8.0$ , H-8)               | 11.99 (1H, уш. с, NH); 7.42–7.30 (5H, м,<br>H Ph); 3.88–3.80 (2H, м, NHC <u>H</u> <sub>2</sub> CH <sub>2</sub> Ph);<br>3.06–2.98 (2H, м, NHCH <sub>2</sub> C <u>H</u> <sub>2</sub> Ph)                                                                                                               | 4.78 (1H, уш. с, OH); 3.54–3.48 (2H, м, 6-<br>CH <sub>2</sub> ); 2.70–2.64 (2H, м, 4-CH <sub>2</sub> ); 1.76–1.68<br>(2H, м, 5-CH <sub>2</sub> )                                                                                                                                                                                                                                                                           |  |  |
| 3f     | 1680                                | 2210 | 10.10 (1H, ym. c, NH); 7.99 (1H, ym. d, ${}^{3}J = 7.7$ , H-5); 7.68 (1H, ym. t, ${}^{3}J = 7.7$ , H-7); 7.42 (1H, ym. d, ${}^{3}J = 7.7$ , H-8); 7.31 (1H, ym. t, ${}^{3}J = 7.7$ , H-6);   | 12.32 (1H, уш. c, NH); 3.77–3.61 (4H, м, NHC <u>H</u> <sub>2</sub> C <u>H</u> <sub>2</sub> OMe); 3.46 (3H, c, OCH <sub>3</sub> )                                                                                                                                                                     | 4.56 (1H, ym. c, OH); 3.77–3.61 (1H, M, CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> C <u>H</u> (CH <sub>3</sub> )OH); 2.82–2.73 (1H, M) H 2.68–2.59 (1H, M, CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH(CH <sub>3</sub> )OH); 1.73–1.55 (2H, M, CH <sub>2</sub> CH <sub>2</sub> CH(CH <sub>3</sub> )OH); 1.14 (3H, $\pi$ , <sup>3</sup> <i>J</i> = 7.0, CH <sub>2</sub> CH <sub>2</sub> CH(CH <sub>3</sub> )OH) |  |  |
| 3g     | 1670                                | 2200 | 10.04 (1H, уш. с, NH); 8.00 (1H, уш. д, <sup>3</sup> <i>J</i> = 7.4,<br>H-5); 7.63 (1H, уш. т, <sup>3</sup> <i>J</i> = 7.4, H-7); 7.34–7.22<br>(2H, м, H-6,8);                               | 12.48–12.44 (1H, м, NH); 8.65 (1H, д, ${}^{4}J$ = 1.2, H-2 Py); 8.54 (1H, д. д, ${}^{3}J$ = 4.2, ${}^{4}J$ = 1.2, H-6 Py); 7.84 (1H, д. ${}^{3}J$ = 7.6, H-4 Py); 7.41 (1H, д. д, ${}^{3}J_{5,6}$ = 4.2, ${}^{3}J_{5,4}$ = 7.6, H-5 Py); 4.84 (2H, д, ${}^{3}J$ = 5.7, NHC <u>H</u> <sub>2</sub> Py) | 4.62 (1H, т, <sup>3</sup> <i>J</i> = 4.8, OH); 3.58–3.54 (2H, м,<br>6-CH <sub>2</sub> ); 2.80–2.76 (2H, м, 4-CH <sub>2</sub> ); 1.85–<br>1.79 (2H, м, 5-CH <sub>2</sub> )                                                                                                                                                                                                                                                  |  |  |

# ИК и ЯМР <sup>1</sup>Н спектры соединений За–w

Окончание таблицы 2

| 1  | 2    | 3    | 4                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                              |
|----|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3h | 1670 | 2180 | 10.43 (1H, ym. c, NH); 7.82 (1H, ym. c, H-5);<br>7.60 (1H, ym. $\alpha$ , ${}^{3}J = 7.6$ , H-7); 7.38 (1H, $\alpha$ , ${}^{3}J = 7.6$ , H-8); 2.40 (3H, c, 6-CH <sub>3</sub> ) | 12.25 (1H, уш. с, NH); 3.75–3.55 (4H, м, NHC <u>H</u> <sub>2</sub> C <u>H</u> <sub>2</sub> OMe); 3.42 (3H, с, OCH <sub>3</sub> )                                                                                                                                                                                 | 4.74 (1H, уш. с, ОН); 3.55–3.48 (2H, м,<br>6-CH <sub>2</sub> ); 2.71–2.62 (2H, м, 4-CH <sub>2</sub> ); 1.79–<br>1.72 (2H, м, 5-CH <sub>2</sub> )                                               |
| 3i | 1670 | 2180 | 10.55 (1H, ym. c, NH); 7.84 (1H, ym. c, H-5);<br>7.60 (1H, ym. $\pi$ , ${}^{3}J = 7.6$ , H-7); 7.41 (1H, $\pi$ , ${}^{3}J = 7.6$ , H-8); 2.42 (3H, c, 6-CH <sub>3</sub> )       | 12.64 (1H, уш. с, NH); 5.13–5.09 (1H, м, NHC <u>H</u> (Me)Ph); 7.47–7.39 (5H, м, H Ph); 1.65 (3H, д, <sup>3</sup> <i>J</i> = 6.0, NHCH(C <u>H</u> <sub>3</sub> )Ph)                                                                                                                                              | 4.75 (1H, т, <sup>3</sup> <i>J</i> = 5.2, OH); 3.50–3.42 (2H, м, 6-CH <sub>2</sub> ); 2.65–2.58 (2H, м, 4-CH <sub>2</sub> ); 1.78–1.45 (2H, м, 5-CH <sub>2</sub> )                             |
| 3ј | 1665 | 2180 | 9.93 (1H, уш. с, NH); 7.83 (1H, уш. с, H-5) 7.50–<br>7.30 (2H, м, H-7,8); 2.45 (3H, с, 6-CH <sub>3</sub> )                                                                      | 12.26 (1Н, уш. с, NH); 3.85–3.81 (1Н, м, NHC <u>H</u> ); 1.95–1.25 (10Н, м, (CH <sub>2</sub> ) <sub>5</sub> )                                                                                                                                                                                                    | 4.75 (1H, T, ${}^{3}J = 5.6$ , OH); 3.56–3.50 (2H,<br>m, 6-CH <sub>2</sub> ); 2.70 (2H, yiii. T, ${}^{3}J = 8.0$ ,<br>4-CH <sub>2</sub> ); 1.83–1.76 (2H, m, 5-CH <sub>2</sub> )               |
| 3k | 1665 | 2180 | 10.46 (1H, yui. c, NH); 7.80 (1H, yui. c, H-5);<br>7.52 (1H, yui. g, ${}^{3}J = 7.2$ , H-7); 7.18 (1H, g, ${}^{3}J = 7.2$ , H-8); 2.38 (3H, c, 6-CH <sub>3</sub> )              | 12.36 (1H, уш. с, NH); 7.48–7.34 (5H, м,<br>H Ph); 4.80 (2H, м, NHC <u>H</u> <sub>2</sub> Ph)                                                                                                                                                                                                                    | 4.80 (1H, м, OH); 3.56–3.48 (2H, м, 6-<br>CH <sub>2</sub> ); 2.77–2.70 (2H, м, 4-CH <sub>2</sub> ); 1.82–1.74<br>(2H, м, 5-CH <sub>2</sub> )                                                   |
| 31 | 1680 | 2210 | 10.75 (1H, yui. c, NH); 8.07 (1H, c, H-5); 7.91 (1H, yui. $a$ , ${}^{3}J = 8.0$ , H-7); 7.40 (1H, $a$ , ${}^{3}J = 8.0$ , H-8)                                                  | 12.22 (1H, уш. с, NH); 3.77–3.56 (4H, м, NHC <u>H</u> <sub>2</sub> C <u>H</u> <sub>2</sub> OMe); 3.41 (3H, с, OCH <sub>3</sub> )                                                                                                                                                                                 | 4.73 (1H, уш. с, ОН); 3.55–3.49 (2H, м,<br>6-CH <sub>2</sub> ); 2.72–2.65 (2H, м, 4-CH <sub>2</sub> ); 1.78–<br>1.70 (2H, м, 5-CH <sub>2</sub> )                                               |
| 3m | 1660 | 2180 | 9.97 (1H, ym. c, NH); 7.67 (1H, c, H-5); 7.38 (1H, c, H-7); 2.40 (3H, c, 8-CH <sub>3</sub> ); 2.39 (3H, c, 6-CH <sub>3</sub> )                                                  | 11.79 (1H, уш. с, NH); 3.63–3.57 (2H, м, NHC <u>H</u> <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OMe); 3.44 (2H, т, ${}^{3}J$ = 5.8, NHCH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OMe); 3.27 (3H, с, OCH <sub>3</sub> ); 1.96–1.88 (2H, м, NHCH <sub>2</sub> C <u>H</u> <sub>2</sub> CH <sub>2</sub> OMe) | 4.59 (1H, т, <sup>3</sup> <i>J</i> = 5.2, OH); 3.57–3.52 (2H, м, 6-CH <sub>2</sub> ); 2.71 (2H, уш. т, <sup>3</sup> <i>J</i> = 7.8, 4-CH <sub>2</sub> ); 1.81–1.74 (2H, м, 5-CH <sub>2</sub> ) |
| 3n | 1670 | 2200 | 10.55 (1H, уш. с, NH); 7.65 (1H, с, H-5); 7.33 (1H, с, H-7); 2.32 (3H, с, 6-CH <sub>3</sub> ); 1.76 (3H, с, 8-CH <sub>3</sub> )                                                 | 12.06 (1H, уш. с, NH); 7.44–7.31 (5H, м,<br>H Ph); 4.77 (2H, д, <sup>3</sup> <i>J</i> = 5.9, NHC <u>H</u> <sub>2</sub> Ph)                                                                                                                                                                                       | 4.77 (1H, уш. с, OH); 3.57–3.52 (2H, м,<br>6-CH <sub>2</sub> ); 2.79 (2H, уш. т, <sup>3</sup> <i>J</i> = 8.0, 4-CH <sub>2</sub> );<br>1.84–1.77 (2H, м, 5-CH <sub>2</sub> )                    |
| 30 | _    | 2200 | 11.81 (1H, уш. с, NH); 7.42–7.33 (2H, м, H-4,7);<br>7.06–7.00 (2H, м, H-5,6)                                                                                                    | 10.19 (1H, уш. с) и 8.15 (1H, уш. с, NH <sub>2</sub> );                                                                                                                                                                                                                                                          | 4.48 (1H, уш. с, OH); 3.54–3.48 (2H, м,<br>6-CH <sub>2</sub> ); 2.57 (2H, уш. т, <sup>3</sup> <i>J</i> = 7.8, 4-CH <sub>2</sub> );<br>1.89–1.82 (2H, м, 5-CH <sub>2</sub> )                    |
| 3p | _    | 2200 | 11.82 (1Н, уш. с, NH); 7.42–7.33 (2Н, м, H-4,7);<br>7.08–7.01 (2Н, м, H-5,6)                                                                                                    | 11.24 (1H, уш. с, NH); 3.72–3.57 (4H, м, NHC <u>H</u> <sub>2</sub> C <u>H</u> <sub>2</sub> OMe); 3.41 (3H, с, OCH <sub>3</sub> )                                                                                                                                                                                 | 4.56 (1H, T, ${}^{3}J$ = 5.2, OH); 3.56–3.51 (2H, m, 6-CH <sub>2</sub> ); 2.75–2.69 (2H, m, 4-CH <sub>2</sub> ); 1.79–1.72 (2H, m, 5-CH <sub>2</sub> )                                         |

| 3q | _ | 2196 | 11.96 (1H, c, NH); 7.42–7.35 (2H, м, H-4,7);<br>7.09–7.01 (2H, м, H-5,6)                                                                                                           | 11.55–11.51 (1Н, м, NH); 8.61 (1Н, д,<br>${}^{4}J$ = 1.6, H-2 Py); 8.50 (1Н, д. д, ${}^{3}J$ = 4.6,<br>${}^{4}J$ = 1.6, H-6 Py); 7.76 (1Н, д, ${}^{3}J$ = 8.0,<br>H-4 Py); 7.42–7.35 (1Н, м, H-5 Py); 4.82<br>(2H, д, ${}^{3}J$ = 6.0, NHC <u>H</u> <sub>2</sub> Py)                                                                                                       | 4.60 (1H, т, <sup>3</sup> <i>J</i> = 5.2, OH); 3.57–3.53 (2H, м,<br>6-CH <sub>2</sub> ); 2.77–2.72 (2H, м, 4-CH <sub>2</sub> ); 1.84–<br>1.77 (2H, м, 5-CH <sub>2</sub> )    |
|----|---|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3r | - | 2190 | 11.82 (1H, с, NH); 7.44–7.34 (2H, м, H-4,7);<br>7.07–7.01 (2H, м, H-5,6)                                                                                                           | 10.96–10.94 (1Н, м, NH); 3.20 (3Н, уш.с, CH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                 | 4.54 (1H, уш. с, OH); 3.58–3.54 (2H, м,<br>6-CH <sub>2</sub> ); 2.72 (2H, уш. т, <sup>3</sup> <i>J</i> = 8, 4-CH <sub>2</sub> );<br>1.81–1.76 (2H, м, 5-CH <sub>2</sub> )    |
| 3s | - | 2200 | 7.42–7.27 (2H, м, H-4,7); 7.18–7.08 (2H, м, H-5,6); 3.96 (3H, с, NCH <sub>3</sub> )                                                                                                | 11.84 (1H, уш. с, NH); 7.42–7.27 (5H, м,<br>H Ph); 4.76 (2H, д, <sup>3</sup> <i>J</i> = 5.2, NHC <u>H</u> <sub>2</sub> Ph)                                                                                                                                                                                                                                                 | 4.58 (1H, уш. с, OH); 3.57–3.53 (2H, м,<br>6-CH <sub>2</sub> ); 2.76 (2H, уш. т, <sup>3</sup> <i>J</i> = 7.0, 4-CH <sub>2</sub> );<br>1.85–1.79 (2H, м, 5-CH <sub>2</sub> )  |
| 3t | - | 2195 | 7.97 (1Н, уш. д, <sup>3</sup> <i>J</i> = 8.0, Н-7); 7.64 (1Н, уш. д, <sup>3</sup> <i>J</i> = 8.0, Н-4); 7.34–7.26 (2Н, м, Н-5,6)                                                   | 11.39 (1H, уш. с, NH); 7.47–7.34 (5H, м,<br>H Ph); 4.82 (2H, д, <sup>3</sup> <i>J</i> = 6.0, NHC <u>H</u> <sub>2</sub> Ph)                                                                                                                                                                                                                                                 | 4.71 (1H, уш. с, OH); 3.54–3.47 (2H, м,<br>6-CH <sub>2</sub> ); 2.74 (2H, уш. т, <sup>3</sup> <i>J</i> = 10.0, 4-CH <sub>2</sub> );<br>1.83–1.74 (2H, м, 5-CH <sub>2</sub> ) |
| 3u | - | 2195 | 7.98 (1Н, уш. д, <sup>3</sup> <i>J</i> = 8.0, Н-7); 7.65 (1Н, уш. д,<br><sup>3</sup> <i>J</i> = 8.0, Н-4); 7.28–7.22 (2Н, м, Н-5,6)                                                | 11.40 (1H, уш. с, NH); 7.41–7.29 (5H, м,<br>H Ph); 3.89–3.81 (2H, м, NHC <u>H</u> <sub>2</sub> CH <sub>2</sub> Ph);<br>3.06–2.97 (2H, м, NHCH <sub>2</sub> C <u>H</u> <sub>2</sub> Ph)                                                                                                                                                                                     | 4.63 (1H, уш. с, OH); 3.57–3.50 (2H, м,<br>6-CH <sub>2</sub> ); 2.70 (2H, уш. т, <sup>3</sup> <i>J</i> = 7.0, 4-CH <sub>2</sub> );<br>1.80–1.71 (2H, м, 5-CH <sub>2</sub> )  |
| 3v | - | 2195 | 7.86 (1H, $\exists$ , ${}^{3}J$ = 8.0, H-4); 7.69 (1H, $\exists$ , ${}^{3}J$ = 8.0, H-7); 7.38 (1H, $\exists$ , ${}^{3}J$ = 8.0, H-6); 7.25 (1H, $\exists$ , ${}^{3}J$ = 8.0, H-5) | 11.04 (1H, уш. с, NH); 3.60–3.53 (2H, м,<br>NHC <u>H<sub>2</sub>(CH<sub>2</sub>)<sub>2</sub>NMe<sub>2</sub>); 2.41 (2H, т, <sup>3</sup><i>J</i> = 6.8,<br/>NH(CH<sub>2</sub>)<sub>2</sub>C<u>H<sub>2</sub></u>NMe<sub>2</sub>); 2.22 (6H, с, N(CH<sub>3</sub>)<sub>2</sub>);<br/>1.85–1.78 (2H, м, NHCH<sub>2</sub>C<u>H<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)</u></u> | 4.56 (1H, уш. с, OH); 3.60–3.53 (2H, м,<br>6-CH <sub>2</sub> ); 2.75–2.70 (2H, м, 4-CH <sub>2</sub> ); 1.85–<br>1.78 (2H, м, 5-CH <sub>2</sub> )                             |
| 3w | _ | 2200 | 6.97 (1H, c, H-5); 2.28 (3H, c, CH <sub>3</sub> )                                                                                                                                  | 11.07–11.01 (1H, M, NH); 8.58 (1H, ym. c,<br>H-2 Py); 8.49 (1H, $\pi$ , ${}^{3}J$ = 4.0, H-6 Py);<br>7.74 (1H, $\pi$ , ${}^{3}J$ = 7.5, H-4 Py); 7.49–7.40<br>(1H, M, H-5 Py); 4.75 (2H, $\pi$ , ${}^{3}J$ = 5.6,<br>NHC <u>H</u> <sub>2</sub> Py)                                                                                                                         | 4.70 (1H, т, <sup>3</sup> <i>J</i> = 5.2, OH); 3.52–3.44 (2H, м, 6-CH <sub>2</sub> ); 2.70–2.63 (2H, м, 4-CH <sub>2</sub> ); 1.77–1.69 (2H, м, 5-CH <sub>2</sub> )           |

Таким образом, 2-гетарил-2-(тетрагидрофуран-2-илиден)ацетонитрилы, образующиеся из соответствующих 2-(2-гетарилиден)-3-оксо-6-хлоргексаннитрилов, способны претерпевать селективное аминирование и являются перспективными полифункциональными реагентами для получения (*Z*)-2-(2-гетарил)-6-гидрокси-3-(R-амино)-2-гексеннитрилов.

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе Руе-Unicam SP 3-300 в таблетках КВг. Спектры ЯМР <sup>1</sup>Н зарегистрированы на спектрометре Varian Mercury 400 (400 МГц) в ДМСО-d<sub>6</sub>, внутренний стандарт ТМС. Элементный анализ выполнен на приборе vario MICRO cube. Температуры плавления определены на малогабаритном нагревательном столике типа Boetius с наблюдательным устройством РНМК 05 фирмы VEB Analytik. Контроль за ходом реакций и чистотой синтезированных соединений проводился методом TCX на пластинах Silufol UV-254 в системе CHCl<sub>3</sub>–MeOH, 9:1.

Синтез (Z)-2-(2-гетарил)-6-гидрокси-3-(R-амино)-2-гексеннитрилов За-w из 2-гетарил-2-(тетрагидрофуран-2-илиден)ацетонитрилов 2а-i.

(Z)-3-Амино-2-гетарил-6-гидрокси-2-гексеннитрилы За,о (общая методика). Раствор 3 ммоль 2-гетарил-2-(тетрагидрофуран-2-илиден)ацетонитрила 2а,f в 20–25 мл МеОН, насыщенного аммиаком, кипятят в течение 3–4 ч, контролируя завершение реакции хроматографически. Реакционную смесь охлаждают, осадок продукта отфильтровывают, промывают водой, охлаждённым EtOH, сушат. Часть продукта дополнительно можно выделить после упаривания фильтрата в вакууме. К сухому остатку добавляют 5–10 мл H<sub>2</sub>O, осадок отфильтровывают.

(Z)-6-Гидрокси-3-метиамино-2-(4-оксо-3,4-дигидрохиназолин-2-ил)-2-гексеннитрил (3b) получают аналогично, добавляя к спиртовому раствору соответствующего ацетонитрила 2 вместо метанольного раствора аммиака 3.5-кратный избыток 40% водного раствора метиламина.

(Z)-2-(2-Гетарил)-6-гидрокси-3-(R-амино)-2-гексеннитрилы 3с,е,f,h–j,l,m,p,r,u,v (общая методика). К суспензии 8.0 ммоль 2-гетарил-2-(тетрагидрофуран-2-илиден)ацетонитрила 2а-h в 20 мл диоксана добавляют 8.4 ммоль соответствующего амина и кипятят в течение 30–60 мин до исчезновения исходного соединения. Кристаллизация продукта начинается, как правило, через 10–20 мин после начала реакции. Реакционную смесь охлаждают, осадок отфильтровывают, промывают охлаждённым EtOH. Фильтрат упаривают в вакууме. К сухому остатку добавляют 1–2 мл 2-PrOH или EtOH, растирают и отфильтровывают осадок, промывают охлаждённым EtOH, таким образом выделяют дополнительное количество продукта. Целевые нитрилы получают в достаточно чистом виде, но при необходимости они могут быть перекристаллизованы из подходящего растворителя (табл. 1).

(Z)-3-Бензиламино-2-гетарил-6-гидрокси-2-гексеннитрилы 3d,k,n,s,t (общая методика). К суспензии 2.0 ммоль 2-гетарил-2-(тетрагидрофуран-2-илиден)ацетонитрила 2а-с,g,h в 7–10 мл диоксана добавляют 0.26 мл (2.4 ммоль) бензиламина и кипятят в течение 2–3 ч, контролируя завершение реакции хроматографически. Реакционную смесь охлаждают, осадок продукта отфильтровывают (в случае соединения 3s к реакционной смеси добавляют 1–1.5 мл PhMe для инициирования кристаллизации продукта), промывают охлаждённым EtOH. Фильтрат упаривают в вакууме. К сухому остатку добавляют 1–2 мл EtOH, растирают смесь, отфильтровывают дополнительное количество продукта, промывают охлаждённым EtOH.

(Z)-2-Гетарил-6-гидрокси-3-(3-пиридилметил)амино-2-гексеннитрилы 3g,q,w (общая методика). К раствору 2.0 ммоль 2-гетарил-2-(тетрагидрофуран-2-илиден)ацетонитрила 2a,f,i в 20 мл диоксана добавляют 2.8 ммоль 3-пиридинилметиламина. Реакционную смесь кипятят в течение 10–15 ч, контролируя завершение реакции хроматографически. К охлаждённому раствору добавляют небольшое количество воды, образовавшийся осадок отфильтровывают, промывают H<sub>2</sub>O, EtOH, сушат.

Синтез (Z)-3-бензиламино-2-гетарил-6-гидрокси-2-гексеннитрилов 3d,k,s из 2-гетарил-2-(тетрагидрофуран-2-илиден)ацетонитрилов 2a,b,g и дибензиламина. При получении соединений 3d,k,s из 2-гетарил-2-(тетрагидрофуран-2-илиден)ацетонитрилов 2a,b,g и дибензиламина используют трёхкратный избыток последнего, смесь реагентов кипятят в течение 24–30 ч. Реакционную смесь упаривают в вакууме. К остатку добавляют 3–5 мл 2-РгОН, растирают смесь, отфильтровывают осадок соединений 3d,k,s.

Синтез (Z)-2-(2-гетарил)-6-гидрокси-3-(R-амино)-2-гексеннитрилов За–w из 2-(2-гетарилиден)-3-оксо-6-хлоргексаннитрилов 1а–i. К суспензии 5.0 ммоль 2-(2-гетарилиден)-3-оксо-6-хлоргексаннитрила 1а–i добавляют 5.0 ммоль Et<sub>3</sub>N и кипятят в течение 1–2 ч до исчезновения исходного соединения (по данным TCX). К реакционной смеси добавляют 5.5 ммоль соответствующего амина (в случае бензиламина – 6.0 ммоль) и кипятят в течение 0.5–3 ч, контролируя завершение реакции хроматографически. Осадок из нейтрального раствора отфильтровывают, промывают охлаждённым EtOH, H<sub>2</sub>O, сушат. Фильтрат упаривают досуха в вакууме, добавляют 5–10 мл 2-PrOH или EtOH, растирают осадок, отфильтровывают, промывают холодным EtOH. Таким образом выделяют дополнительное количество продукта.

Рентгеноструктурное исследование соединения 3d. Кристаллы соединения 3d ( $C_{21}H_{40}N_4O_2$ ) триклинные, при 20 °C: *a* 8.586(2), *b* 10.867(2), *c* 11.016(3) Å; а 90.03(2), β 108.82(2), γ 109.73(2)°; *V* 908.8(4) Å<sup>3</sup>; *M* 360.41; *Z* 2; пространственная группа  $P\overline{1}$ ,  $d_{BbI4}$  1.317 г/см<sup>3</sup>;  $\mu$ (МоКа) 0.087 мм<sup>-1</sup>; *F*(000) 380. Параметры элементарной ячейки и интенсивности 3439 отражений (3208 независимых,  $R_{int}$  0.035) измерены на автоматическом четырёхкружном дифрактометре Siemens P3/PC (МоКа, графитовый монохроматор, 2θ/θ-сканирование, 2 $\theta_{max}$  50°). Структура расшифрована прямым методом по комплексу программ SHELXTL [15]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездник" с  $U_{iso} = nU_{eq}$  (n = 1.5 для атомов водорода гидроксигруппы и n = 1.2 для остальных атомов водорода). Структура уточнена по  $F^2$  полноматричным МНК в анизотропном приближении для неводородных атомов до  $wR_2$  0.109 по 3200 отражениям ( $R_1$  0.041 по 1605 отражениям с  $F > 4\sigma(F)$ , *S* 0.914). Кристаллографические данные депонированы в Кембриджском банке структурных данных (депонент ССDC 887982).

#### СПИСОК ЛИТЕРАТУРЫ

- 1. О. В. Хиля, Дис. канд. хим. наук, Киев, 2003.
- 2. Ю. М. Воловенко, О. В. Хиля, Т. А. Воловненко, *ХГС*, 439 (2003). [*Chem. Heterocycl. Compd.*, **39**, 394 (2003).]
- О. В. Хиля, Т. А. Воловненко, А. В. Туров, Р. И. Зубатюк, О. В. Шишкин, Ю. М. Воловенко, XTC, 1385 (2011). [Chem. Heterocycl. Compd., 47, 1141 (2011).]
- 4. В. О. Ковтуненко, І. П. Купчевська, В. М. Кисіль, Укр. хим. журн., **67**, 36 (2001).
- Ю. М. Воловенко, Т. В. Шокол, А. С. Меркулов, Ф. С. Бабичев, Укр. хим. журн., 59, 55 (1993).
- 6. А. В. Твердохлебов, Ю. М. Воловенко, Т. В. Шокол, *XГС*, 50 (1998). [*Chem. Heterocycl. Compd.*, **34**, 44 (1998).]
- 7. Y. M. Volovenko, E. V. Resnyanskaya, Mendeleev Commun., № 3, 119 (2002).
- Е. В. Реснянская, Т. В. Шокол, Ю. М. Воловенко, А. В. Твердохлебов, XГС, 1412 (1999). [Chem. Heterocycl. Compd., 35, 1230 (1999).]
- 9. J. P. Michael, G. D. Hosken, A. S. Howard, Tetrahedron, 44, 3025 (1988).
- S. Calvet, O. David, C. Vanucci-Bacqué, M.-C. Fargeau-Bellassoued, G. Lhommet, *Tetrahedron*, 59, 6333 (2003).

- S. Batra, S. Srivastava, K. Singh, R. Chander, A. K. Khannab, A. P. Bhaduri, *Bioorg. Med. Chem.*, 8, 2195 (2000).
- 12. M. R. Detty, J. Org. Chem., 44, 2073 (1979).
- 13. Ф. С. Бабичев, Ю. А. Шаранин, В. К. Промоненков, В. П. Литвинов, Ю. М. Воловенко, *Внутримолекулярное взаимодействие нитрильной и аминогрупп*, Наук. думка, Киев, 1987.
- 14. H. B. Burgi, J. D. Dunitz, Structure Correlation, VCH, Weinheim, 1994, vol. 2, p.741.
- 15. G. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., A64, 112 (2008).

Киевский национальный университет им. Тараса Шевченко, ул. Владимирская, 64, Киев 01601, Украина e-mail: olgakhilya@mail.ru Поступило 4.07.2012

<sup>а</sup> НТК "Институт монокристаллов" НАН Украины, пр. Ленина, 60, Харьков 61001, Украина e-mail: shishkin@xray.isc.kharkov.com