И. В. Украинец*, К. В. Андреева, О. В. Горохова, В. Н. Кравченко

4-ГИДРОКСИХИНОЛОНЫ-2

221*. СИНТЕЗ, СТРОЕНИЕ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ 3-(3-АЛКИЛКАРБАМОИЛ-4-ГИДРОКСИ-2-ОКСО-1,2-ДИГИДРО-ХИНОЛИН-1-ИЛ)ПРОПАНОВЫХ КИСЛОТ

Предложен простой метод получения и осуществлён синтез серии 3-(3-алкилкарбамоил-4-гидрокси-2-оксо-1,2-дигидрохинолин-1-ил)пропановых кислот. Проведён сравнительный анализ анальгетических и диуретических свойств полученных соединений и их синтетических предшественников – соответствующих 4-гидрокси-2-оксо-1-(2-цианоэтил)-1,2-дигидрохинолин-3-карбоксамидов.

Ключевые слова: 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоксамиды, 3-(1хинолинил)пропановые кислоты, анальгетическая активность, диуретики.

Арил(гетарил)пропановые кислоты и их производные обладают чрезвычайно широким спектром биологических свойств, благодаря чему стали основой многочисленных жизненно необходимых лекарственных препаратов из различных фармакологических групп [2–4]. Например, только среди разрешённых к медицинскому применению и относящихся к ненаркотическим анальгетикам нестероидных противовоспалительных средств таких соединений насчитывается около двух десятков [5]. Данное обстоятельство и послужило предпосылкой для вовлечения в круг проводимых нами исследований, посвящённых поиску новых эффективных обезболивающих средств в ряду производных 4-гидроксихинолона-2, синтетически легкодоступных 3-(1-хинолинил)пропановых кислот. Ещё одним фактором, повлиявшим на выбор в качестве объектов изучения именно этих соединений, стала очень важная для работ такого типа возможность практически неограниченной структурной модификации, что позволит не только выявить перспективные структурылидеры, но и при необходимости целенаправленно улучшить их свойства путём несложных химических преобразований.

Синтез целевых 3-(3-алкилкарбамоил-4-гидрокси-2-оксо-1,2-дигидрохинолин-1-ил)пропановых кислот **1a**–l осуществлён щелочным гидролизом соответствующих 4-гидрокси-2-оксо-1-(2-цианоэтил)-1,2-дигидрохинолин-3-карбоксамидов **2a–l**, в свою очередь получаемых взаимодействием этилового эфира **3** с аммиаком или алкиламинами. В большинстве случаев эта синтетическая схема даёт вполне приемлемые результаты – выходы и степень чистоты конечных продуктов остаются достаточно высокими (табл. 1).

Некоторые трудности возникают лишь при синтезе незамещённого амида 4-гидрокси-2-оксо-1-(2-цианоэтил)-1,2-дигидрохинолин-3-карбоновой кислоты (2а). Сложные эфиры 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот обладают высокой реакционной способностью [6] и с многими *N*-нуклеофилами легко образуют разнообразные амидные производные. Однако

^{*} Сообщение 220 см. [1].

1, 2 а R = H, b R = Me, c R = Et, d R = аллил, e R = Pr, f R = *i*-Pr, g R = Bu, h R = *i*-Bu, i R = *s*-Bu, j R = C₅H₁₁, k R = *i*-C₅H₁₁, l R = C₆H₁₃

по отношению к аммиаку они (и цианоэтильное производное **3** в том числе) проявляют на удивление избирательную инертность. Эта проблема подробно рассматривалась нами ранее [7], в результате чего было найдено её простое и эффективное решение с успехом использованное и в синтезе амида **2a**.

Следующая стадия – щелочной гидролиз нитрилов **2a–I** до кислот **1a–I**, как правило, протекает без заметных осложнений. Нежелательная деструкция амидной группы если и происходит, то в незначительной степени и ею можно пренебречь. Исключение составляет всё тот же незамещённый амид **2a**. В отличие от алкиламидов **2b–I**, гидролиз соединения **2a** в аналогичных условиях сопровождается более глубокими преобразованиями, затрагивающими не только нитрильный, но в значительной мере и карбамоильный фрагмент молекулы. В итоге выход целевой кислоты **1a** составляет около 20% (по данным спектра ЯМР ¹Н реакционной смеси). Основным же продуктом этой реакции является 3-(4-гидрокси-2-оксо-1,2-дигидрохинолин-1-ил)пропановая кислота **(4)**, аналитический образец которой получен гидролизом с одновременным декарбоксилированием эфира **3**.

Все синтезированные нами кислоты 1b–l и нитрилы 2a–l представляют собой белые с желтоватым оттенком кристаллические вещества с узкими интервалами температур плавления (табл. 1), хорошо растворимые в ДМСО, ДМФА и горячих спиртах, практически нерастворимые в воде. Их строение подтверждено спектрами ЯМР ¹H (табл. 2). Переход от нитрилов 2 к соответствующим кислотам 1 на спектрах ЯМР ¹H отражается незначительно и в целом они остаются весьма схожими. Тем не менее отличительные особенности в них тоже имеются. Прежде всего, это, конечно же, закономерное появление в слабом поле уширенного синглета, обусловленного протоном карбоксильной группы. Обращает на себя внимание и ароматическая область. В частности, в спектрах ЯМР ¹H нитрилов 2a–l сигнал протона H-8 претерпевает заметный парамагнитный сдвиг (очевидно сказывается сильная магнитная анизотропия близлежащей группы С \equiv N), вследствие чего протоны H-7 и H-8 проявляются одним общим узким мультиплетом. Для сравнения

Таблица 1

Соеди-	Брутто-	тто- Найден			Т. пл., °С	Выход,	AA*,	ДА**,
нение	формула	C	H N		(EtOH)	%	%	%
1b	$C_{14}H_{14}N_2O_5$	<u>57.84</u> 57.93	$\frac{4.78}{4.86}$	<u>9.56</u> 9.65	220-222	91	35	39
1c	$C_{15}H_{16}N_2O_5$	<u>59.28</u> 59.21	<u>5.39</u> 5.30	<u>9.13</u> 9.21	231–233	90	28	28
1d	$C_{16}H_{16}N_2O_5$	<u>60.89</u>	<u>5.20</u>	8.94 8.94	215-217	87	73	80
1e	$C_{16}H_{18}N_2O_5$	$\frac{60.76}{60.45}$	5.10 5.76	8.80 <u>8.74</u>	186–188	92	0	14
1f	$C_{16}H_{18}N_2O_5$	60.37 <u>60.29</u>	5.70 <u>5.58</u>	8.80 <u>8.87</u>	179–181	93	40	22
1g	$C_{17}H_{20}N_2O_5$	60.37 <u>61.53</u>	5.70 <u>6.14</u>	8.80 <u>8.35</u>	165–167	85	33	15
1h	$C_{17}H_{20}N_2O_5$	61.44 <u>61.55</u>	6.07 <u>6.15</u>	8.43 <u>8.51</u>	174–176	89	0	42
1i	$C_{17}H_{20}N_2O_5$	61.44 <u>61.37</u>	6.07 <u>5.96</u>	8.43 <u>8.54</u>	131–133	86	10	21
1j	$C_{18}H_{22}N_2O_5$	61.44 <u>62.50</u>	6.07 <u>6.51</u>	8.43 <u>7.98</u>	122–124	89	40	37
1k	$C_{18}H_{22}N_2O_5$	62.42 <u>62.49</u>	6.40 <u>6.48</u>	8.09 <u>8.16</u>	133–135	92	20	88
11	$C_{19}H_{24}N_2O_5$	$\frac{62.42}{63.40}$	6.40 <u>6.65</u>	8.09 <u>7.84</u>	127–129	90	17	36
2a	$C_{13}H_{11}N_3O_3$	63.32 <u>60.76</u>	$\frac{6.71}{4.24}$	<u>16.40</u>	251-253	82	70	53
2b	$C_{14}H_{13}N_3O_3$	$\frac{60.70}{62.08}$	$\frac{4.31}{4.70}$	<u>16.33</u> <u>15.41</u>	174–176	98	36	34
2c	$C_{15}H_{15}N_3O_3$	61.99 63.05	4.83 <u>5.22</u> 5.20	<u>13.49</u> <u>14.62</u> 14.72	158–160	95	44	35
2d	$C_{16}H_{15}N_3O_3$	<u>64.74</u>	5.30 5.17 5.09	14.73 14.04 14.13	140–142	96	59	63
2e	$C_{16}H_{17}N_3O_3$	$\frac{64.26}{64.20}$	<u>5.79</u> 5.72	$\frac{14.19}{14.04}$	131–133	93	51	22
2f	$C_{16}H_{17}N_3O_3$	$\frac{64.11}{64.20}$	<u>5.60</u> 5.72	<u>13.93</u> 14.04	144–146	87	38	28
2g	$C_{17}H_{19}N_3O_3$	<u>65.08</u> 65.16	<u>6.06</u> 6.11	$\frac{13.51}{13.41}$	118–120	93	18	24
2h	$C_{17}H_{19}N_3O_3$	<u>65.07</u> 65.16	<u>6.02</u> 6.11	<u>13.49</u> 13.41	126–128	96	62	10
2i	$C_{17}H_{19}N_3O_3$	<u>65.23</u> 65.16	<u>6.20</u> 6.11	<u>13.53</u> 13.41	114–116	88	64	29
2j	$C_{18}H_{21}N_3O_3$	<u>65.93</u> 66.04	<u>6.55</u> 6.47	<u>12.77</u> 12.84	101–103	94	38	68
2k	$C_{18}H_{21}N_3O_3$	<u>65.95</u> 66.04	<u>6.53</u> 6.47	<u>12.89</u> 12.84	109–111	95	42	57
21	$C_{19}H_{23}N_3O_3$	<u>66.92</u> 66.84	<u>6.88</u> 6.79	<u>12.22</u> 12.31	90–92	92	47	40
	Метамизол натрия	-		-	-	-	50	- 51
					1	1	I	

Физико-химические характеристики хинолинилпропановых кислот 1b-l и нитрилов 2a-l

^{*} Анальгетическая активность – уменьшение количества "уксуснокислых корчей" по сравнению с контролем. ** Диуретическая активность – усиление диуреза по отношению к контролю, принятому за

^{100%.}

отметим, что влияние карбоксильной группы оказалось не столь существенным (возможно из-за образования ассоциатов с растворителем) и в спектрах ЯМР ¹Н кислот **1b–l** ароматические протоны дают классическую для спиновой системы AMPX картину, состоящую из хорошо разрешённых сигналов: двух дублетов и двух триплетов (табл. 2). Различия в силе дезэкранирующего эффекта, оказываемого нитрильной и карбоксильной группами, отражаются также и на положениях резонансных сигналов протонов связанных с ними метиленовых групп – в спектрах нитрилов **2a–l** они сдвинуты в среднем на 0.36 м. д. в слабое поле по сравнению с их положением в спектрах кислот **1b–l**.

Пространственное строение 3-(3-алкилкарбамоил-4-гидрокси-2-оксо-1,2-дигидрохинолин-1-ил)пропановых кислот изучено с помощью РСА на примере *н*-бутильного производного **1g** (рисунок). При этом установлено, что хинолоновый фрагмент, а также атомы O(1), O(2), C(13), O(3), N(2) и C(14) изучаемой молекулы лежат в одной плоскости с точностью 0.03 Å. Вероятно это обусловлено наличием двух сильных внутримолекулярных водородных связей: O(2)–H(2O)···O(3) (H···O 1.55 Å, O–H···O 159°) и N(2)–H(2N)···O(1) (H···O 1.81 Å, N–H···O 139°). Их образование наряду с присутствием межмолекулярной водородной связи O(5)–H(5O)···O(3)' ((*x*, *y*, 1+*z*) H···O 1.85 Å, O–H···O 149°) приводит к значительному удлинению связей C(9)–O(1) до 1.248(3) Å и C(13)–O(3) до 1.274(3) Å по сравнению с их средним значением 1.210 Å [8].

Атом N(2) и бутильный фрагмент находятся в *ap-ap-(-sc)*-конформации (торсионные углы C(13)–N(2)–C(14)–C(15)–172.7(2)°, N(2)–C(14)–C(15)–C(16)–178.1(2)°, C(14)–C(15)–C(16)–C(17)–62.4(3)°), что, очевидно, способствует возникновению укороченных внутримолекулярных контактов H(14a)···C(17) 2.81 Å (сумма ван-дер-ваальсовых радиусов 2.87 Å [9]), H(14a)···H(17a) 2.22 Å (2.34 Å) и H(17a)···C(14) 2.77 Å (2.87 Å).

Строение молекулы соединения **1g** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

	Химические сдвиги, б, м. д. (<i>J</i> , Гц)*								
Соеди- нение	4-OH (1H, c)	CONHR (1H)	H Ar				1-NCH ₂ CH ₂		
			H-5 (1Н, д)	Н-6 (1Н, т)	Н-7 (1Н, т)	H-8 (1Н, д)	NCH ₂ (2Н, т)	NCH ₂ C <u>H</u> ₂ (2H, т)	R
1b	17.53	10.14 (к, <i>J</i> = 4.8)	8.08 (<i>J</i> = 8.0)	7.35 (<i>J</i> = 7.4)	7.78 (<i>J</i> = 7.8)	7.65 (<i>J</i> = 8.5)	4.45 (<i>J</i> = 7.7)	2.56 (<i>J</i> = 7.7)	2.89 (3H, д, <i>J</i> = 4.8, CH ₃)
1c	17.52	10.25 (T, $J = 5.4$)	8.08 (<i>J</i> = 8.1)	7.34 (<i>J</i> = 7.5)	7.78 (<i>J</i> = 7.8)	7.66 (<i>J</i> = 8.5)	4.44 (<i>J</i> = 7.8)	2.56 (<i>J</i> = 7.8)	3.38 (2H, кв, <i>J</i> = 6.6, C <u>H</u> ₂ CH ₃); 1.16 (3H, т, <i>J</i> = 7.1, CH ₂ C <u>H</u> ₃)
1d	17.29	10.40 (т, <i>J</i> = 5.5)	8.08 (<i>J</i> = 8.0)	7.36 (<i>J</i> = 7.6)	7.79 (<i>J</i> = 7.8)	7.67 (<i>J</i> = 8.6)	4.45 (<i>J</i> = 7.8)	2.56 (<i>J</i> = 7.8)	6.02–5.86 (1H, м, CH ₂ C <u>H</u> =); 5.22 (1H, д. к, <i>J</i> = 17.1, <i>J</i> = 1.5, <i>транс</i> -CH=C <u>H</u> H); 5.15 (1H, д. к, <i>J</i> = 10.2, <i>J</i> = 1.5, <i>цис</i> -CH=CH <u>H</u>); 4.01 (2H, т, <i>J</i> = 5.5, NCH ₂)
1e	17.52	10.31 (T, J = 5.5)	8.08 (<i>J</i> = 8.1)	7.35 (J = 7.5)	7.78 (J = 7.7)	7.66 $(J = 8.6)$	4.44 (<i>J</i> = 7.8)	2.56 (<i>J</i> = 7.8)	3.34 (2H, к, <i>J</i> = 6.4, NCH ₂); 1.61–1.52 (2H, м, NCH ₂ C <u>H₂</u>); 0.91 (3H, т, <i>J</i> = 7.5, CH ₃)
1f	17.47	10.21 (д, <i>J</i> = 7.5)	8.08 (<i>J</i> = 8.0)	7.34 (<i>J</i> = 7.4)	7.77 (<i>J</i> = 7.8)	7.65 (<i>J</i> = 8.4)	4.42 (<i>J</i> = 7.8)	2.56 (<i>J</i> = 7.8)	4.19–4.00 (1Н, м, С <u>Н</u> (СН ₃) ₂); 1.22 (6Н, д, <i>J</i> = 6.7, СН(С <u>Н</u> ₃) ₂)
1g	17.48	10.26 (т, <i>J</i> = 5.6)	8.05 (<i>J</i> = 8.1)	7.34 (<i>J</i> = 7.5)	7.76 (<i>J</i> = 7.7)	7.64 (<i>J</i> = 8.5)	4.42 (<i>J</i> = 7.9)	2.55 (<i>J</i> = 7.9)	3.37 (2H, к, <i>J</i> = 7.0, NCH ₂); 1.53 (2H, кв, <i>J</i> = 7.1, C <u>H</u> ₂ CH ₂ CH ₃); 1.37–1.29 (2H, м, C <u>H</u> ₂ CH ₃); 0.90 (3H, т, <i>J</i> = 7.3, CH ₃)
1h	17.48	10.37 (т, <i>J</i> = 5.8)	8.08 (<i>J</i> = 8.0)	7.35 (<i>J</i> = 7.5)	7.78 (<i>J</i> = 7.8)	7.66 (<i>J</i> = 8.5)	4.44 (<i>J</i> = 7.8)	2.57 (<i>J</i> = 7.8)	3.21 (2H, т, <i>J</i> = 6.2, NCH ₂); 1.95–1.75 (1H, м, C <u>H</u> (CH ₃) ₂); 0.92 (6H, д, <i>J</i> = 6.8, CH(C <u>H₃</u>) ₂)
1i	17.50	10.23 (д, <i>J</i> = 7.8)	8.08 (<i>J</i> = 8.0)	7.35 (<i>J</i> = 7.5)	7.78 (<i>J</i> = 7.8)	7.66 (<i>J</i> = 8.5)	4.44 (<i>J</i> = 7.8)	2.57 (<i>J</i> = 7.8)	4.02–3.88 (1H, м, NCH); 1.55 (2H, кв, <i>J</i> = 7.1, C <u>H</u> ₂ CH ₃); 1.18 (3H, д, <i>J</i> = 6.6, NCHC <u>H</u> ₃); 0.89 (3H, т, <i>J</i> = 7.4, CH ₂ C <u>H</u> ₃)
1j	17.49	10.27 (т, <i>J</i> = 5.8)	8.07 (<i>J</i> = 8.0)	7.34 (<i>J</i> = 7.5)	7.78 (<i>J</i> = 7.8)	7.65 (<i>J</i> = 8.5)	4.43 (<i>J</i> = 7.8)	2.56 (<i>J</i> = 7.8)	3.36 (2H, к, <i>J</i> = 6.5, NCH ₂); 1.55 (2H, кв, <i>J</i> = 6.6, NCH ₂ C <u>H₂</u>); 1.35–1.24 (4H, м, (C <u>H₂</u>) ₂ CH ₃); 0.87 (3H, т, <i>J</i> = 6.6, CH ₃)
1k	17.48	10.26 $(T, J = 5.3)$	8.06 (<i>J</i> = 8.1)	7.34 (<i>J</i> = 7.5)	7.76 (J = 7.8)	7.64 (<i>J</i> = 8.6)	4.42 (<i>J</i> = 7.9)	2.55 (<i>J</i> = 7.9)	3.37 (2H, к, <i>J</i> = 6.6, NCH ₂); 1.68–1.56 (1H, м, C <u>H</u> (CH ₃) ₂); 1.44 (2H, к, <i>J</i> = 7.0, NCH ₂ C <u>H₂</u>); 0.90 (6H, д, <i>J</i> = 6.6, CH(C <u>H₃)₂)</u>
11	17.47	10.25 (т, <i>J</i> = 5.6)	8.05 (<i>J</i> = 8.1)	7.32 (<i>J</i> = 7.5)	7.76 (J = 7.8)	7.63 $(J = 8.6)$	4.42 (<i>J</i> = 7.8)	2.58 (<i>J</i> = 7.8)	3.34 (2H, к, <i>J</i> = 6.2, NCH ₂); 1.53 (2H, кв, <i>J</i> = 6.4, NCH ₂ C <u>H₂</u>); 1.34–1.20 (6H, м, (C <u>H₂</u>) ₃ CH ₃); 0.84 (3H, т, <i>J</i> = 6.5, CH ₃)

Спектры ЯМР ¹Н хинолинилпропановых кислот 1b–l и нитрилов 2a–l

2a	17.96	См. R	8.08 (<i>J</i> = 7.9)	7.36 (<i>J</i> = 6.8)	7.84–7.70 (2Н, м)	4.52 (<i>J</i> = 7.0)	2.92 (<i>J</i> = 7.0)	9.52 (1H, c) и 8.64 (1H, c, NH ₂)
2b	17.61	10.03 (κ , $J = 4.8$)	8.07 (<i>J</i> = 8.0)	7.35 (<i>J</i> = 6.7)	7.80–7.73 (2Н, м)	4.52 (<i>J</i> = 6.9)	2.93 (<i>J</i> = 6.9)	2.86 (3H, д, <i>J</i> = 4.8, CH ₃)
2c	17.62	10.16 (T, J = 5.4)	8.08 (<i>J</i> = 8.0)	7.36 (<i>J</i> = 6.6)	7.80–7.74 (2Н, м)	4.52 (<i>J</i> = 7.0)	2.92 (<i>J</i> = 7.0)	3.41 (2H, кв, <i>J</i> = 6.6, NC <u>H</u> ₂ CH ₃); 1.16 (3H, т, <i>J</i> = 7.2, CH ₂ C <u>H</u> ₃)
2d	17.37	10.32 (т, <i>J</i> = 5.4)	8.10 (<i>J</i> = 8.0)	7.38 (<i>J</i> = 6.7)	7.82–7.76 (2Н, м)	4.55 (<i>J</i> = 6.9)	2.94 (<i>J</i> = 6.9)	6.01–5.87 (1H, м, CH ₂ C <u>H</u> =); 5.22 (1H, д. к, <i>J</i> = 17.0, <i>J</i> = 1.6, <i>транс</i> -CH=C <u>H</u> H); 5.15 (1H, д. к, <i>J</i> = 10.1, <i>J</i> = 1.6, <i>цис</i> -CH=CH <u>H</u>); 4.02 (2H, т, <i>J</i> = 5.4, NCH ₂)
2e	17.61	10.22 (T, $J = 5.3$)	8.09 (<i>J</i> = 8.0)	7.37 $(J = 6.6)$	7.81–7.75 (2Н, м)	4.54 (<i>J</i> = 6.8)	2.93 (<i>J</i> = 6.8)	3.35 (2H, к, <i>J</i> = 6.6, NCH ₂); 1.62–1.51 (2H, м, NCH ₂ C <u>H₂</u>); 0.91 (3H, т, <i>J</i> = 7.5, CH ₃)
2f	17.57	10.13 (д, <i>J</i> = 7.6)	8.10 (<i>J</i> = 8.0)	7.37 (<i>J</i> = 6.6)	7.82–7.74 (2Н, м)	4.53 (<i>J</i> = 6.9)	2.93 (<i>J</i> = 6.9)	4.18–4.02 (1Н, м, С <u>Н</u> (СН ₃) ₂); 1.22 (6Н, д, <i>J</i> = 6.6, СН(С <u>Н</u> ₃) ₂)
2g	17.59	10.20 (T, J = 5.6)	8.09 (<i>J</i> = 8.0)	7.37 (<i>J</i> = 6.7)	7.81–7.75 (2Н, м)	4.53 (<i>J</i> = 6.9)	2.92 (<i>J</i> = 6.9)	3.37 (2H, к, <i>J</i> = 6.5, NCH ₂); 1.52 (2H, кв, <i>J</i> = 7.0, C <u>H</u> ₂ CH ₂ CH ₃); 1.39–1.30 (2H, м, C <u>H</u> ₂ CH ₃); 0.89 (3H, т, <i>J</i> = 7.2, CH ₃)
2h	17.59	10.31 (T, J = 5.7)	8.10 (<i>J</i> = 7.9)	7.38 (<i>J</i> = 6.6)	7.82–7.76 (2Н, м)	4.55 (<i>J</i> = 6.9)	2.93 (<i>J</i> = 6.9)	3.22 (2H, т, <i>J</i> = 6.3, NCH ₂); 1.96–1.76 (1H, м, C <u>H</u> (CH ₃) ₂); 0.92 (6H, д, <i>J</i> = 6.7, CH(C <u>H₃</u>) ₂)
2i	17.60	10.16 (д, <i>J</i> = 7.8)	8.10 (<i>J</i> = 7.9)	7.37 (<i>J</i> = 6.6)	7.82–7.76 (2Н, м)	4.54 (<i>J</i> = 6.9)	2.93 (<i>J</i> = 6.9)	4.01–3.88 (1H, м, NCH); 1.56 (2H, кв, <i>J</i> = 7.0, C <u>H</u> ₂ CH ₃); 1.19 (3H, д, <i>J</i> = 6.6, NCHC <u>H</u> ₃); 0.89 (3H, т, <i>J</i> = 7.3, CH ₂ C <u>H</u> ₃)
2j	17.60	10.20 (T, $J = 5.8$)	8.09 (<i>J</i> = 7.9)	7.36 (<i>J</i> = 6.6)	7.81–7.76 (2Н, м)	4.53 (<i>J</i> = 6.9)	2.93 (<i>J</i> = 6.9)	3.36 (2H, к, <i>J</i> = 6.3, NCH ₂); 1.55 (2H, кв, <i>J</i> = 6.5, NCH ₂ C <u>H₂</u>); 1.34–1.23 (4H, м, (C <u>H₂)₂CH₃</u>); 0.86 (3H, т, <i>J</i> = 6.7, CH ₃)
2k	17.57	10.17 (T, $J = 5.5$)	8.07 (<i>J</i> = 8.0)	7.35 (<i>J</i> = 6.7)	7.80–7.72 (2Н, м)	4.52 (<i>J</i> = 6.8)	2.92 (<i>J</i> = 6.8)	3.38 (2H, к, <i>J</i> = 6.6, NCH ₂); 1.67–1.54 (1H, м, C <u>H</u> (CH ₃) ₂); 1.45 (2H, к, <i>J</i> = 6.7, NCH ₂ C <u>H₂</u>); 0.90 (6H, д, <i>J</i> = 6.5, CH(C <u>H₃</u>) ₂)
21	17.60	10.19 (T, J = 5.6)	8.09 (<i>J</i> = 8.0)	7.36 (<i>J</i> = 6.6)	7.80–7.75 (2Н, м)	4.53 (<i>J</i> = 6.9)	2.92 (<i>J</i> = 6.9)	3.37 (2H, к, <i>J</i> = 6.5, NCH ₂); 1.54 (2H, кв, <i>J</i> = 6.6, NCH ₂ C <u>H₂</u>); 1.35–1.22 (6H, м, (C <u>H₂</u>) ₃ CH ₃); 0.85 (3H, т, <i>J</i> = 6.7, CH ₃)

* Сигналы протонов СООН-групп кислот 1b-1 имеют вид уширенных синглетов интенсивностью 1Н в области 12.63–12.41 м. д.

1937

Отталкивание между заместителем при атоме N(1) и соседними 2-карбонильной группой и атомом водорода в *пери*-положении бензольного ядра (внутримолекулярные укороченные контакты H(2)···C(10) 2.56 Å (2.87 Å), H(2)···H(10a) 2.11 Å (2.34 Å), H(10a)···C(2) 2.58 Å (2.87 Å), H(10b)···O(1) 2.30 Å (2.46 Å)) приводит к тому, что карбоксиметильный фрагмент располагается перпендикулярно плоскости бицикла (торсионный угол C(9)–N(1)–C(10)–C(11) составляет 92.8(2)°). Карбоксильная группа находится в *ар*-конформации относительно связи N(1)–C(10) и несколько развёрнута относительно связи C(10)–C(11) (торсионные углы N(1)–C(10)–C(11)–C(12) 179.9(2)°, C(10)–C(11)–C(12)–O(4) 10.6(3)°).

В кристалле молекулы 3-(3-бутилкарбамоил-4-гидрокси-2-оксо-1,2-дигидрохинолин-1-ил)пропановой кислоты (**1g**) образуют стопки вдоль кристаллографического направления (0 1 0). Эти стопки связаны между собой системой межмолекулярных водородных связей, в которую входят упомянутая выше связь O(5)–H(5O)···O(3)', а также связь C(2)–H(2)···O(4)' (-*x*, 1–*y*, 2–*z*) H···O' 2.37 Å, C–H···O' 160°.

Анальгетическую активность кислот **1b–l** и нитрилов **2a–l** изучали на общепринятой модели "уксуснокислых корчей" [10]. Скрининговые исследования проведены на белых мышах весом 18–23 г. Изучаемые вещества вводили в дозе 5 мг/кг перорально в виде тонкой водной суспензии, стабилизированной твином-80. В качестве референс-препарата использован Метамизол натрия [4] в его средней эффективной дозе (55 мг/кг). Полученные результаты (табл. 1) показывают, что обезболивающие свойства присущи подавляющему большинству синтезированных нами соединений. Вещества, превышающие по специфической активности Метамизол натрия, выявлены как среди кислот **1b–l**, так и среди их синтетических предшественников – нитрилов **2a–l**, причём последние в целом оказались несколько активное.

Влияние кислот **1b–l** и нитрилов **2а–l** на мочевыделительную функцию почек изучено на белых беспородных крысах по стандартной методике [11] при пероральном способе введения и в сравнении с известным диуретиком Гидрохлортиазидом [4]. Представленные в табл. 1 экспериментальные данные свидетельствуют о том, что в дозе 10 мг/кг все без исключения соединения проявляют диуретический эффект, в ряде случаев (кислоты **1d**,**k**, нитрилы **2a**,**d**,**j**,**k**) даже более сильный, чем Гидрохлортиазид в своей эффективной дозе 40 мг/кг. Интересно, что мочегонные свойства исследованных веществ в основном определяются строением 3-алкилкарбамоильного фрагмента и в гораздо меньшей мере зависят от того, какая группа – карбоксильная или нитрильная – находится в 1-*N*-этильном заместителе.

Таким образом, в процессе настоящего исследования осуществлён синтез серии новых 3-(3-R-карбамоил-4-гидрокси-2-оксо-1,2-дигидрохинолин-1-ил)пропаннитрилов. Показано, что для превращения этих соединений в соответствующие хинолинилпропановые кислоты в большинстве случаев пригоден обычный щелочной гидролиз. Фармакологический скрининг выявил важные структурно-биологические закономерности, представляющие интерес для дальнейшего целенаправленного поиска среди 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоксамидов перспективных анальгетиков и диуретиков.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н записаны на спектрометре Varian Mercury VX-200 (200 МГц) в ДМСО- d_6 , внутренний стандарт ТМС. Элементный анализ проведён на микроанализаторе EuroVector EA-3000. Температуры плавления определены в капилляре на цифровом анализаторе точки плавления SMP10 Stuart и не исправлены. Этиловый эфир 4-гидрокси-2-оксо-1-(2-цианоэтил)-1,2-дигидрохинолин-3-карбоновой кислоты (**3**) синтезирован конденсацией 3-анилинопропаннитрила с триэтилметантрикарбоксилатом [12]. Незамещённый амид **2a** и алкиламиды **2b–1** получены амидированием эфира **3** аммиаком и алкиламинами соответственно по описанным нами ранее методикам [7] и [13].

3-(3-Алкилкарбамоил-4-гидрокси-2-оксо-1,2-дигидрохинолин-1-ил)пропановые кислоты 1b–1 (общая методика). Смесь 0.01 моль соответствующего нитрила 2b–1 и 20 мл 20% водного раствора КОН кипятят в колбе с обратным холодильником до прекращения выделения аммиака (4 ч). Реакционную смесь охлаждают и фильтруют. Фильтрат подкисляют 18% HCl до pH 3. Выделившийся осадок хинолинилпропановой кислоты 1b–1 отфильтровывают, промывают водой, сушат.

3-(4-Гидрокси-2-оксо-1,2-дигидрохинолин-1-ил)пропановая кислота (4). Смесь 2.86 г (0.01 моль) этилового эфира 4-гидрокси-2-оксо-1-(2-цианоэтил)-1,2-дигидрохинолин-3-карбоновой кислоты (**3**) и 30 мл 20% водного раствора КОН кипятят в колбе с обратным холодильником в течение 20 ч. Далее реакционную смесь охлаждают и обрабатывают по методике предыдущего опыта. Выход 1.84 г (79%). Т. пл. 266–268 °C (ЕtOH). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 12.33 (1H, уш. с, COOH); 11.51 (1H, уш. с, OH); 7.88 (1H, д, *J* = 8.0, H-5); 7.61 (1H, т, *J* = 7.6, H-7); 7.50 (1H, д, *J* = 8.4, H-8); 7.21 (1H, т, *J* = 7.4, H-6); 5.85 (1H, с, H-3); 4.36 (2H, т, *J* = 7.8, NCH₂); 2.49 (2H, т, *J* = 7.8, NCH₂C<u>H₂</u>). Найдено, %: С 61.89; H 4.81; N 5.94. C₁₂H₁₁NO₄. Вычислено, %: С 61.80; H 4.75; N 6.01.

Спектр ЯМР ¹Н соединения **4** содержит сигналы побочного продукта – соединения **1a** (соотношение интенсивностей 4:1). Из-за наложения части сигналов описать отдельно спектр соединения **1a** не представляется возможным.

Рентгеноструктурное исследование соединения 1g. Кристаллы 3-(3бутилкарбамоил-4-гидрокси-2-оксо-1,2-дигидрохинолин-1-ил)пропановой кислоты (1g) триклинные (EtOH), при -173 °С: а 7.548(2), b 9.168(2), с 11.646(3) Å; а 100.29(2), β 93.93(2), γ 90.93(2)°; V 790.7(3) Å³; M 332.35; Z 2; пространственная группа *P*1; *d*_{выч} 1.396 г/см³; µМоКа 0.104 мм⁻¹; *F*(000) 352. Параметры элементарной ячейки и интенсивности 5563 отражений (2746 независимых, R_{int} 0.075) измерены на дифрактометре Xcalibur-3 (МоКα-излучение, ССД-детектор, графитовый монохроматор, ω-сканирование, 2θ_{max} 50°). Структура расшифрована прямым методом по комплексу программ SHELXTL [14]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены изотропно. Структура уточнена по F² полноматричным МНК в анизотропном приближении для неводородных атомов до wR_2 0.195 по 2687 отражениям (R_1 0.075 по 1947 отражениям с $F > 4\sigma$ (F), S 1.045). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных (депонент ССDС 906838).

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, Н. Ю. Голик, И. Н. Черненок, С. В. Шишкина, В. А. Паршиков, *XTC*, 1780 (2012).
- 2. A. Kleemann, J. Engel, *Pharmaceutical Substances. Synthesis, Patents, Applications, Multimedia Viewer, Version 2.00, Georg Thieme Verlag, Stuttgart, 2001.*
- S. Budavari, M. O'Neil, A. Smith, *The Merck Index on CD-ROM. Version 12:3*, Merck & Co Inc, Whitehouse station, 2000. Published on CD-ROM by Chapman & Hall/CRC.

- 4. М. Д. Машковский, *Лекарственные средства*, РИА Новая волна: издатель Умеренков, Москва, 2009.
- 5. Я. А. Сигидин, Г. Я. Шварц, А. П. Арзамасцев, С. С. Либерман, Лекарственная терапия воспалительного процесса (экспериментальная и клиническая фармакология противовоспалительных препаратов), Медицина, Москва, 1988, с. 46.
- 6. И. В. Украинец, Л. В. Сидоренко, Е. Н. Свечникова, О. В. Шишкин, *XГС*, 1503 (2007). [*Chem. Heterocycl. Compd.*, **43**, 1275 (2007).]
- 7. И. В. Украинец, Л. В. Сидоренко, О. С. Головченко, *ХГС*, 1687 (2007). [*Chem. Heterocycl. Compd.*, **43**, 1434 (2007).]
- 8. H.-B. Burgi, J. D. Dunitz, *Structure Correlation*, VCH, Weinheim, 1994, vol. 2, p. 741.
- 9. Ю. В. Зефиров, Кристаллография, **42**, 936 (1997).
- М. А. Мохорт, Л. В. Яковлева, О. М. Шаповал, в кн. Доклінічні дослідження лікарських засобів: методичні рекомендації, під ред. О. В. Стефанова, Авіцена, Київ, 2001, с. 307.
- 11. Л. Н. Сернов, В. В. Гацура, Элементы экспериментальной фармакологии, Москва, 2000, с. 103.
- 12. И. В. Украинец, Н. Л. Березнякова, Л. А. Гриневич, В. Е. Кузьмин, А. Г. Артеменко, *XГС*, 868 (2010). [*Chem. Heterocycl. Compd.*, **46**, 699 (2010).]
- 13. И. В. Украинец, О. В. Бевз, Е. В. Моспанова, Л. В. Савченкова, С. И. Янкович, *XГС*, 339 (2012). [*Chem. Heterocycl. Compd.*, **48**, 320 (2012).]
- 14. G. M. Sheldrick, SHELXTL PLUS. PC Version. A system of computer programs for the determination of crystal structure from X-ray diffraction data. Rev. 5.1, 1998.

Национальный фармацевтический университет, ул. Пушкинская, 53, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 23.03.2012