С. Н. Сираканян*, В. Г. Карцев^а, А. А. Овакимян, А. С. Норавян, А. А. Шахатуни

НОВЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СИСТЕМЫ НА ОСНОВЕ 5,6,7,8-ТЕТРАГИДРОИЗОХИНОЛИНОВ

Разработаны методы синтеза новых 8-аминозамещённых 5-пропил(*изо*-бутил)-1,2,3,4-тетрагидропиримидо[4',5':4,5]фуро[2,3-*c*]изохинолинов из 3-оксопроизводных 5,6,7,8-тетрагидроизохинолинов. На основе 8-гидразинопроизводных получены изомерные триазолы, конденсированные по ребру [*c*] пиримидинового кольца. Осуществлена перегруппировка Димрота в кислой среде.

Ключевые слова: 5,6,7,8-тетрагидроизохинолин, фуро[3,2-*d*]пиримидины, аминирование, конденсация, перегруппировка Димрота, хлорирование, циклизация.

В последние годы значительно возрос интерес к конденсированным фуро[3,2-*d*]пиримидинам, что обусловлено выявлением в этих рядах биологически высокоактивных соединений. Об этом свидетельствуют многочисленные публикации, в основе которых лежат результаты биологических исследований синтезированных, в том числе и в нашей лаборатории, соединений [1–4]. Ранее мы сообщали о синтезе конденсированных фуро[3,2-*d*]пиримидинов на основе пирано[3,4-*c*]пиридинов [5] и циклопента[*c*]пиридинов [6].

Настоящая работа является продолжением наших исследований в этой области и посвящена синтезу конденсированных производных фуро[3,2-*d*]-пиримидинов на основе 5,6,7,8-тетрагидроизохинолинов.

В качестве исходных соединений были использованы 3-оксопроизводные 5,6,7,8-тетрагидроизохинолинов **1a**,**b** [7], образующие при взаимодействии с этиловым эфиром хлоруксусной кислоты соответствующие *O*-алкилированные производные **2a**,**b**, последующая циклизация которых действием этилата

1–5 a R = Pr, **b** R = *i*-Bu; **6a–l** R = *n*-Pr, **7a–l** R = *i*-Bu, **6**, **7 a** R¹ = H, R² = NH₂; **b** R¹ = H, R² = (CH₂)₂OH; **c** R¹ = H, R² = CH₂CH(Me)OH; **d** R¹ = H, R² = (CH₂)₂OMe; **e** R¹ = H, R² = (CH₂)₂NMe₂; **f** R¹ = H, R² = 2-морфолиноэтил; **g** R¹ = H, R² = 2-фурилметил; **h** R¹ = H, R² = 4-пиридилметил; **i** R¹ = H, R² = 3-пиридилметил; **j** R¹+R² = (CH₂)₂NMe(CH₂)₂; **k** R¹+R² = (CH₂)₂O(CH₂)₂; **l** R¹+R² = (CH₂)₂NCO₂Et(CH₂)₂

натрия и конденсация с формамидом приводят к конденсированным фуро[3,2-*d*]пиримидин-8-онам **4a,b**. Последние под действием хлорокиси фосфора превращаются в соответствующие хлорпроизводные **5a,b**. Дальнейшая реакция хлоридов **5a,b** с различными аминами приводит к искомым 8-аминопроизводным **6**, **7 a**–**l**, аналоги которых, как уже было сказано выше, проявляют высокую биологическую активность.

Именно поэтому как с биологической, так и с химической точки зрения было интересно перейти к новым пентациклическим системам, замыкая пятое кольцо по ребру [c] пиримидинового кольца. Для достижения этой цели были получены соответствующие 8-гидразинопроизводные **6a** и **7a**, которые под действием ортомуравьиного эфира были превращены в триазоло[3",4":6',1']-пиримидо[4',5':4,5]фуро[2,3-c]изохинолины **8a,b**, а под действием муравьиной кислоты – в изомерные триазоло[5",1":6',1']пиримидо[4',5':4,5]фуро[2,3-c]изохинолины **9a,b**. Ранее, осуществляя перегруппировку Димрота в основной среде [8], нам удалось перейти от одного изомера к другому. В настоящей работе мы эту перегруппировку провели в кислой среде. Эти изомерные триазолы **8a,b** и **9a,b** значительно отличаются температурами плавления и сигналами СН-протонов триазоловых циклов (табл. 1, 2). Так, если сигналы триазольного протона в спектрах соединений **8a,b** они перемещаются в области 9.47 и 9.48 м. д., то в случае изомерных триазолов **9a,b** они перемещаются в более сильное поле – 8.54 и 8.55 м. д. соответственно.

8, **9 a** R = *n*-Pr, **b** R = *i*-Bu

Предположительный механизм этой перегруппировки в кислой среде опубликован в работе [9] и может быть представлен следующей схемой:

Таким образом, в ходе исследований были получены потенциальные биологически активные аминопроизводные конденсированных фуропиримидинов, что показывает перспективность исследований в этой области гетероциклической химии, а синтез двух новых гетероциклических систем открывает новые возможности для её развития.

Таблица 1

Физико-химические з	карактеристики і	полученных соединений	

Соеди-	Брутто-		<u>Найдено, %</u> Вычислено, %	Т. пл °С	Выход, %	
нение	формула	С	Н	Ν	, -	(метод)
1	2	3	4	5	6	7
2a	C ₁₇ H ₂₂ N ₂ O ₃	<u>67.48</u> 67.53	<u>7.21</u> 7.33	<u>9.09</u> 9.26	71–73	73
2b	$C_{18}H_{24}N_2O_3$	<u>68.41</u> 68.33	<u>7.71</u> 7.65	<u>8.93</u> 8.85	49–51	72
3 a	$C_{17}H_{22}N_2O_3$	<u>67.47</u> 67.53	<u>7.22</u> 7.33	<u>9.09</u> 9.26	124–126	86
3b	$C_{18}H_{24}N_2O_3$ $\frac{68.41}{68.21}$		$\begin{array}{c ccccc} \underline{41} \\ \underline{33} \\ \hline 7.65 \\ \hline 8.92 \\ 8.85 \\ \hline \end{array}$		135–138	87
4a	$C_{16}H_{17}N_3O_2$	$\begin{array}{c c} 60.55 & 7.05 \\ \underline{67.94} & \underline{6.12} \\ 67.83 & 6.05 \\ \end{array}$		$\frac{14.95}{14.83}$	>350	84
4b	$C_{17}H_{19}N_3O_2$	$\begin{array}{c c} 68.61 \\ 68.67 \\ 6.38 \\ 6.44 \\ \hline \end{array}$		$\frac{14.02}{14.13}$	328-330	85
5a	C ₁₆ H ₁₆ ClN ₃ O	<u>63.58</u> 63.68	<u>5.21</u> 5.34	$\frac{13.87}{13.92}$	136–138	82
5b	C ₁₇ H ₁₈ ClN ₃ O	<u>64.74</u> 64.66	<u>5.86</u> 5.75	<u>13.42</u> 13.31	130–132	80
6a	$C_{16}H_{19}N_5O$	<u>64.57</u> 64.63	<u>6.38</u> 6.44	<u>23.58</u> 23.55	191–193	75
6b	$C_{18}H_{22}N_4O_2$	<u>66.31</u> 66.24	<u>6.68</u> 6.79	<u>17.05</u> 17.16	231–233	82
6c	$C_{19}H_{24}N_4O_2$	<u>67.14</u> 67.04	<u>7.03</u> 7.11	<u>16.32</u> 16.46	193–196	76
6d	$C_{19}H_{24}N_4O_2$	<u>67.15</u> 67.04	<u>7.02</u> 7.11	<u>16.33</u> 16.46	118-120	88
6e	$C_{20}H_{27}N_5O$	<u>68.05</u> 67.96	<u>7.76</u> 7.70	<u>19.78</u> 19.81	123–125	85
6f	$C_{22}H_{29}N_5O_2$	<u>66.91</u> 66.81	<u>7.46</u> 7.39	<u>17.85</u> 17.71	124–128	77
6g	$C_{21}H_{22}N_4O_2$	<u>69.69</u> 69.59	<u>6.27</u> 6.12	<u>15.34</u> 15.46	133–137	93
6h	C ₂₂ H ₂₃ N ₅ O	<u>70.85</u> 70.76	<u>6.31</u> 6.21	<u>18.84</u> 18.75	201–203	82
6i	$C_{22}H_{23}N_5O$	$\frac{70.84}{70.76}$	<u>6.30</u> 6.21	<u>18.84</u> 18.75	192–194	87
6j	C ₂₁ H ₂₇ N ₅ O	<u>68.92</u> 69.01	<u>7.32</u> 7.45	<u>19.06</u> 19.16	170–171	88
6k	$C_{20}H_{24}N_4O_2$	<u>68.05</u> 68.16	<u>6.75</u> 6.86	<u>15.81</u> 15.90	223–224	91
61	$C_{23}H_{29}N_5O_3$	<u>65.14</u> 65.23	<u>6.81</u> 6.90	<u>16.49</u> 16.54	177–179	81
7a	C ₁₇ H ₂₁ N ₅ O	<u>65.43</u> 65.57	<u>6.89</u> 6.80	<u>22.36</u> 22.49	198–200	76
7b	$C_{19}H_{24}N_4O_2$	<u>67.14</u> 67.04	<u>7.02</u> 7.11	<u>16.31</u> 16.46	216–218	85
7c	$C_{20}H_{26}N_4O_2$	<u>67.85</u> 67.77	<u>7.26</u> 7.39	<u>15.92</u> 15.81	187–189	91
7d	$C_{20}H_{26}N_4O_2$	<u>67.82</u> 67.77	<u>7.43</u> 7.39	<u>15.76</u> 15.81	139–141	91
7e	$C_{21}H_{29}N_5O$	<u>68.53</u> 68.64	<u>8.02</u> 7.95	<u>18.95</u> 19.06	122–124	77

Окончание таблицы 1

1	2	3	4	5	6	7
7f	C ₂₃ H ₃₁ N ₅ O ₂	<u>67.57</u> 67.46	<u>7.77</u> 7.63	$\frac{17.07}{17.10}$	73–75	87
7g	$C_{22}H_{24}N_4O_2$	<u>70.25</u> 70.19	<u>6.55</u> 6.43	<u>14.74</u> 14.88	156–158	90
7h	C ₂₃ H ₂₅ N ₅ O	<u>71.38</u> 71.29	<u>6.57</u> 6.50	<u>18.16</u> 18.07	203–205	86
7i	C ₂₃ H ₂₅ N ₅ O	<u>71.37</u> 71.29	<u>6.57</u> 6.50	<u>18.15</u> 18.07	202–204	86
7j	$C_{22}H_{29}N_5O$	<u>69.77</u> 69.63	<u>7.76</u> 7.70	<u>18.52</u> 18.45	153–155	92
7k	$C_{21}H_{26}N_4O_2$	<u>68.98</u> 68.83	<u>7.24</u> 7.15	<u>15.37</u> 15.29	201–203	84
71	$C_{24}H_{31}N_5O_3$	<u>65.97</u> 65.88	<u>7.25</u> 7.14	<u>16.13</u> 16.01	189–191	88
8a	$C_{17}H_{17}N_5O$	<u>66.51</u> 66.43	<u>5.68</u> 5.58	<u>22.88</u> 22.79	262–264	82
8b	$C_{18}H_{19}N_5O$	<u>67.35</u> 67.27	<u>6.07</u> 5.96	<u>21.84</u> 21.79	286–287	83
9a	$C_{17}H_{17}N_5O$	<u>66.52</u> 66.43	<u>5.69</u> 5.57	<u>22.87</u> 22.79	176–178	79 (A) 70 (B)
9b	$C_{18}H_{19}N_5O$	<u>67.35</u> 67.27	<u>6.08</u> 5.96	<u>21.84</u> 21.79	182–184	76 (A) 68 (B)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на спектрометре UR 20 в вазелиновом масле. Спектры ЯМР ¹Н записаны на приборе Varian Mercury-300 VX (300 МГц) в ДМСО- d_6 –CCl₄, 1:3, внутренний стандарт ТМС. Элементный анализ проведён на приборе Elemental Analyzer Euro EA 3000. Температуры плавления определены на микронагревательном столике Boetius. Контроль за ходом реакций и чистотой полученных соединений осуществляли с помощью TCX на пластинах Silufol UV-254.

Этил-2-(1-пропил(изо-бутил)-4-циано-5,6,7,8-тетрагидро-3-изохинолинилокси)ацетаты 2а,b (общая методика). К суспензии 0.1 моль соединения 1а,b и 15.00 г (0.11 моль) К₂СО₃ в 150 мл абс. ДМФА при перемешивании по каплям добавляют 13.48 г (0.11 моль) этилового эфира хлоруксусной кислоты. Реакционную смесь выдерживают в течение 2 ч при 75–80 °С, затем охлаждают до комнатной температуры и выливают в холодную воду. Образовавшиеся кристаллы отфильтровывают, промывают водой, сушат и перекристаллизовывают из EtOH.

Соединение 2a. ИК спектр, v, см⁻¹: 1750 (C=O), 2216 (C=N). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 0.95 (3H, т, ³*J* = 7.4, CH₂CH₂CH₂CH₃); 1.27 (3H, т, ³*J* = 7.1, OCH₂CH₃); 1.61– 1.74 (2H, секстет, ³*J* = 7.4, CH₂CH₂CH₃); 1.77–1.87 (4H, м, 6,7-CH₂); 2.56–2.65 (4H, м, CH₂CH₂CH₃, 8-CH₂); 2.84–2.91 (2H, м, 5-CH₂); 4.16 (2H, к, ³*J* = 7.1, OCH₂CH₃); 4.88 (2H, с, OCH₂COOEt).

Соединение 2b. ИК спектр, v, см⁻¹: 1750 (С=О), 2216 (С=N). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 0.91 (6H, д, ³*J* = 6.6, CH(C<u>H</u>₃)₂); 1.27 (3H, т, ³*J* = 7.1, OCH₂C<u>H</u>₃); 1.77– 1.86 (4H, м, 6,7-CH₂); 2.03–2.22 (1H, м, C<u>H</u>(CH₃)₂); 2.50 (2H, д, ³*J* = 7.0, C<u>H</u>₂CHMe₂); 2.58–2.65 (2H, м, 8-CH₂); 2.86–2.93 (2H, м, 5-CH₂); 4.15 (2H, к, ³*J* = 7.1, OC<u>H</u>₂CH₃); 4.88 (2H, с, OC<u>H</u>₂COOEt).

Этиловые эфиры 1-амино-5-пропил(изо-бутил)-6,7,8,9-тетрагидрофуро[2,3-с]изохинолин-2-карбоновой кислоты 3а,b (общая методика). К раствору EtONa, полученному из 2.53 г (0.11 моль) натрия и 300 мл абс. EtOH, прибавляют 0.10 моль соединения 2a,b. Смесь кипятят 10–15 мин, охлаждают и выливают на лёд. Образовавшиеся кристаллы отфильтровывают, промывают водой, сушат и перекристаллизовывают из EtOH.

Таблица 2

Химические сдвиги, б, м. д. (Ј, Гц) Соеди $n-C_{3}H_{7} / i-C_{4}H_{9}$ Циклогексеновый фрагмент H-10 нение NH (1H) R ArCH₂ $CH(CH_3)_2$ CH₃ CH₂CH₃ H-4 H-1 H-2.3 (1H. c) (2H)* (2Н, м) (3H)** (1Н, м) (4Н, м) (2Н, м) (2Н, м) 2.77 1.74 - 1.861 04 1.83 - 1.972.75-2.81 3.32-3.38 7.97 _ 12.8 (уш. с) 4a _ 4b 2.68 2.18-2.36 0.99 1.84 - 1.972.76-2.82 3.34-3.44 7.99 12.78 (уш. с) 1.77-1.89 1.88-2.01 2.80 - 2.863.39-3.45 5a 2.83 1.06 8.85 _ 2.21 - 2.391.88 - 2.002.78 - 2.843.37-3.43 5b 2.72 1.00 8.85 1.75 - 1.861.03 1.85-1.98 2.73 - 2.813.37-3.43 8.39 8.93 (vш. c) 4.28 (2H. уш. с. NH₂) 2.77 6a _ 6b 2.78 1.74 - 1.87_ 1.03 1.86-2.00 2.75-2.82 3.38-3.44 8.33 7.47 3.59–3.69 (4H, м, NCH₂CH₂O); 4.44 (1H, уш с, OH) (уш. т, J = 5.2)2.75-2.82 1.74-1.87 1.86-1.99 3.39-3.44 8.33 7.39 1.17 (3H, д, *J* = 6.3, CH₃); 3.37 (1H, д. д. д. *J* = 13.3, *J* = 7.4, 6c 2.78 _ 1.03 (д. д, J = 6.2, *J* = 5.0) и 3.64 (1Н, д. д. д. *J* = 13.3, *J* = 6.2, *J* = 4.0, NCH₂); J = 5.0) 3.85–3.97 (1H, м, CHCH₃); 4.53 (1H, уш. д, J = 5.5, OH) 2.75 - 2.803.37-3.43 6d 2.76 1.74 - 1.86_ 1.03 1.85-1.98 8.33 7.57 3.34 (3H, c, OCH₃); 3.58 (2H, T, J = 5.8, CH₂OMe); 3.68-(уш. т, J = 5.4) 3.75 (2H, м, NCH₂) 8.33 2.77 1.74-1.86 1.03 1.86-1.99 2.74 - 2.823.38-3.44 2.27 (6H, c, N(CH₃)₂); 2.55 (2H, T, J = 6.6, CH₂NMe₂); 6e _ 7.31 (уш. т, *J* = 5.5) 3.60–3.67 (2H, м, HNCH₂) 6f 2.77 1.74-1.87 1.03 1.86-1.98 2.74 - 2.823.38-3.44 8.32 7.47 2.46-2.54 (4H, м, N(CH₂)₂); 3.58-3.63 (4H, м, (CH₂)₂O); _ (yiii. T, J = 5.4) 2.61 (2H, T, J = 6.6, CH₂N); 3.62–3.71 (2H, M, HNCH₂) 1.74-1.87 1.03 1.86-1.99 2.75-2.83 3.38-3.45 8.38 4.75 (2Н, д, J = 6.0, NHCH₂); 6.26 (1Н, д. д, J = 3.2, 6g 2.78 8.16 _ (уш. т. J = 6.0) J = 0.9, H-3 Fur); 6.28 (1H, д. д. J = 3.2, J = 1.8, H-4 Fur); 7.37 (1H, μ , J = 1.8, J = 0.9, H-5 Fur) 2.79 1.75 - 1.871.86-1.99 2.75 - 2.833.38-3.45 8.46 4.76 (2H, д, J = 6.2, NHCH₂); 7.30–7.34 (2H, м, 6h 1.04 8.33 _ (уш. т, J = 6.2) | H-3,5 Py); 8.40–8.44 (2H, м, H-2,6 Py) 4.77 (2H, д, J = 6.1, NHCH₂); 7.22 (1H, д. д. J = 7.8, J = 4.8, 1.86-1.98 2.74 - 2.833.37-3.44 8.42 6i 2.77 1.74 - 1.86_ 1.03 8.36 (уш. т. J = 6.1) H-5 Py); 7.77 (1H, д. д. д. J = 7.8, J = 2.0, J = 1.6, H-4 Py); 8.37–8.40 (1H, м, H-6 Py); 8.60 (1H, д, J=2.0, H-2 Py) 6j 2.77 1.75 - 1.871.03 1.85 - 1.972.74–2.82 3.37–3.45 8.36 2.29 (3H, с, NCH₃); 2.48–2.55 (4H, м, (CH₂)₂NMe); _ _ 4.04–4.10 (4H, м, N(CH₂)₂)

Спектры ЯМР ¹Н соединений 4a,b, 5a,b, 6a–l, 7a–l

1796

6k	2.78	1.75-1.87	-	1.04	1.86-1.99	2.74-2.82	3.39-3.45	8.45	-	3.79–3.84 (4H, M, (CH ₂) ₂ O); 4.02–4.09 (4H, M, N(CH ₂) ₂)
01	2.78	1./5-1.80	_	1.04	1.87-1.99	2.75-2.84	5.59-5.45	0.41	_	1.29 (5H, T, $J = 7.1$, OCH ₂ CH ₃), 5.59=5.00 (4H, м, (CH ₂) ₂ NCOOEt) и 4.06=4.11 (4H, м, N(CH ₂) ₂); 4.12 (2H, к, $J = 7.1$, OCH ₂ CH ₃)
7a	2.67	-	2.19-2.22	0.98	1.85-1.98	2.75-2.82	3.38-3.44	8.40	8.91 (уш. с)	3.85 (2H, уш. с, NH ₂)
7b	2.68	-	2.26-2.34	0.99	1.86–1.99	2.75-2.83	3.39-3.45	8.34	7.47	3.60–3.69 (4H, м, NCH ₂ CH ₂ O); 4.43 (1H, уш. с, OH)
									(уш. т, <i>J</i> = 5.1)	
7c	2.68	-	2.20-2.34	0.99	1.86–1.99	2.77–2.82	3.44-3.46	8.33	7.39	1.17 (3H, d , $J = 6.3$, CH ₃); 3.36 (1H, d , d , d ,
									(д. д, $J = 6.4$,	J = 13.4, J = 7.4, J = 5.0) и 3.64 (1H, д. д. д. $J = 13.4, J = 13.4, J = 13.4$
									J = 5.0)	$J = 6.4, J = 4.0, \text{ NCH}_2$; 3.86–3.97 (1H, M, C <u>H</u> CH ₃); 4.52
7.1	200		2 17 2 25	0.00	1 05 1 00	2.75.2.80	2 27 2 42	0 22	7.50	(1H, YUL, C, OH) 2.24 (211 - OCH): 2.58 (211 - 1 - 5.8 CH OMa): 2.68
/ a	2.00	-	2.17-2.35	0.98	1.85-1.98	2.75-2.80	3.37-3.43	8.33	(1.30)	$3.54 (3H, C, OCH_3)$; $3.58 (2H, T, J = 5.8, CH_2OME)$; $3.08 - 3.75 (2H, M, NCH)$
76	2 67	_	2 17_2 33	0 99	1 85_1 98	2 75_2 82	3 38_3 44	8 34	(ym. 1, 3 - 3.3) 7 43	$2.75 (211, M, NCH_2)$ 2.36 (6H c N(CH_2)): 2.63-2.71 (2H M CH_2N(CH_2)):
10	2.07		2.17 2.55	0.77	1.05 1.90	2.75 2.02	5.50 5.11	0.51	(VIII. T. $J = 5.5$)	3.64-3.73 (2H, M, HNCH ₂)
76	2 (7		2 10 2 25	0.00	1.06 1.00	2.75.2.92	2 2 2 2 4 5	0.22	7.46	$\frac{1}{2} \frac{1}{2} \frac{1}$
/1	2.07	-	2.19-2.35	0.99	1.80-1.98	2.75-2.82	3.38-3.43	8.32	(1.40)	2.47-2.55 (4H, M, N(CH ₂) ₂); $5.58-5.05$ (4H, M, (CH ₂) ₂ O); 2.61 (2H \pm $I=6.6$ CH N); 2.62 2.71 (2H \pm HNCH)
7σ	2.68	_	2 19_2 34	0 99	1 86-1 98	2 77_2 83	3 38-3 45	8 38	(ym. 1, <i>J</i> = 3.4) 8 15	$2.01(2H, H, J = 0.0, CH_2N), 5.02-5.71(2H, M, HNCH_2)$ 4 75 (2H T $I = 5.9$ NHCH_2): 6 25-6 29 (2H M H-3.4
'5	2.00		2.17 2.31	0.77	1.00 1.90	2.77 2.05	5.50 5.15	0.50	(VIII. T. $J = 5.9$)	Fur): 7.37 (1H, π , $J = 1.8$, $J = 0.9$, H-5 Fur)
7h	2 69	_	2 19_2 37	1.00	1 86_1 99	2 77_2 83	3 38_3 45	8 33	846	$4.76 (2H_{\pi} I = 6.2 \text{ NHCH}_{a}); 7.30-7.34 (2H_{\pi} H_{a}.35 \text{ Py});$
/ 11	2.07		2.17 2.57	1.00	1.00 1.77	2.77 2.05	5.56 5.45	0.55	(VIII T J = 6.2)	$(211, 4, 5)$ $(0.2, 1010 \underline{10}), 7.50$ $(211, M, 11-5, 5, 1, y), 840-844$ (2H M H-26 Pv)
7i	2.68	_	2.19-2.34	0.99	1.86-1.98	2.76-2.83	3.38-3.45	8.36	8.42	4.77 (2H, д, $J = 6.1$, NHCH ₂); 7.22 (1H, д. д. $J = 7.8$,
									(уш. т, <i>J</i> = 6.1)	$J = 4.8$, H-5 Py); 7.77 (1H, \exists . \exists . \exists . \exists , $J = 7.8$, $J = 2.0$,
									u ,	<i>J</i> = 1.6, H-4 Ру); 8.38 (1Н, д. д, <i>J</i> = 4.8, <i>J</i> = 1.6, H-6 Ру);
										8.60 (1H, д, <i>J</i> = 2.0, H-2 Ру)
7j	2.68	-	2.22-2.37	1.00	1.86-1.98	2.77-2.83	3.40-3.47	8.37	_	2.30 (3H, с, NCH ₃); 2.51–2.57 (4H, м, (С <u>H</u> ₂) ₂ NCH ₃);
	• • • •			1 0 0				0.40		4.05–4.11 (4H, м, N(CH ₂) ₂)
7k	2.68	—	2.20-2.38	1.00	1.87-1.99	2.77–2.83	3.40-3.47	8.40	—	3.78–3.84 (4H, M, (CH ₂) ₂ O); 4.03–4.09 (4H, M, N(CH ₂) ₂)
71	2.68	-	2.22-2.37	1.00	1.87–1.98	2.76-2.84	3.39-3.47	8.41	—	1.29 (3H, T, $J = 7.0$, OCH_2CH_3); $3.58-3.66$ (4H, M,
										$(\underline{H}_{2})_{2}$ NCOUEI); 4.00–4.11 (4H, M, N($\underline{H}_{2})_{2}$); 4.12 (2H,
										$K, J = 1.0, OC \underline{n}_2 C \underline{n}_3$

* Для соединений 4a, 5a, 6a–l – триплет, J = 7.5 Гц; для соединений 4b, 5b, 7a–l – дублет, J = 7.0 Гц.
** Для соединений 4a, 5a, 6a–l – триплет, J = 7.3 Гц; для соединений 4b, 5b, 7a–l – дублет, J = 6.6 Гц.

1797

Соединение За. ИК спектр, v, см⁻¹: 1660 (C=O), 3370, 3500 (NH₂). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.00 (3H, т, ³*J* = 7.3, CH₂CH₂CH₂CH₃); 1.39 (3H, т, ³*J* = 7.1, OCH₂CH₃); 1.74 (2H, секстет, ³*J* = 7.4, CH₂CH₂CH₃); 1.79–1.89 (4H, м, 7,8-CH₂); 2.64–2.72 (4H, м, CH₂CH₂CH₃, 6-CH₂); 3.13–3.20 (2H, м, 9-CH₂); 4.32 (2H, к, ³*J* = 7.1, OCH₂CH₃); 5.67 (2H, уш. с, NH₂).

Соединение 3b. ИК спектр, v, см⁻¹: 1660 (C=O), 3370, 3500 (NH₂). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 0.97 (6H, д, ³*J* = 6.6, CH(C<u>H</u>₃)₂); 1.40 (3H, т, ³*J* = 7.1, OCH₂C<u>H</u>₃); 1.81– 1.90 (4H, м, 7,8-CH₂); 2.14–2.29 (1H, м, C<u>H</u>(CH₃)₂); 2.59 (2H, д, ³*J* = 7.0, C<u>H</u>₂CHMe₂); 2.67–2.75 (2H, м, 6-CH₂); 3.16–3.23 (2H, м, 9-CH₂); 4.32 (2H, к, ³*J* = 7.1, OC<u>H</u>₂CH₃); 5.67 (2H, уш. с, NH₂).

5-Пропил(*изо***-бутил)-1,2,3,4,8,9-гексагидропиримидо**[**4'**,**5'**:**4**,**5**]фуро[**2**,3-*c*]изохинолин-8-оны 4а,b (общая методика). Смесь 0.1 моль соединения 3а,b и 200 мл формамида кипятят в течение 4 ч. После охлаждения выделившиеся кристаллы отфильтровывают, промывают водой, сушат и перекристаллизовывают из ДМСО.

5-Пропил(изо-бутил)-8-хлор-1,2,3,4-тетрагидропиримидо[4',5':4,5]фуро[2,3-с]изохинолины 5а,b (общая методика). Смесь 0.1 моль соединения **4а,b** и 250 мл POCl₃ кипятят в течение 4 ч. Излишек POCl₃ отгоняют досуха, добавляют ледяную воду, выделившиеся кристаллы отфильтровывают, промывают водой, сушат и перекристаллизовывают из EtOH.

5-Пропил(*изо***-бутил)-8-R,R¹-амино-1,2,3,4-тетрагидропиримидо[4',5':4,5]фуро-**[**2,3-***с*]изохинолины 6,7 а–I (общая методика). Смесь 0.010 моль хлорида 5а,b и 0.022 моль соответствующего амина или 5.0 г (0.100 моль) гидразингидрата (в синтезе соединений 6а и 7а) в 50 мл абсолютного EtOH кипятят в течение 10 ч. Реакционную смесь охлаждают, добавляют 100 мл H₂O, выделившиеся кристаллы отфильтровывают, промывают водой, сушат и перекристаллизовывают из EtOH.

11-Пропил- и 11-изо-бутил-7,8,9,10-тетрагидро[1,2,4]триазоло[3",4":6',1']пиримидо[4',5':4,5]фуро[2,3-с]изохинолины 8а,b (общая методика). Смесь 0.01 моль соединения 6а или 7а и 50 мл HC(OEt)₃ кипятят в течение 1 ч. Реакционную смесь охлаждают, выделившиеся кристаллы отфильтровывают, промывают водой, сушат и перекристаллизовывают из смеси EtOH–CH₂Cl₂, 1:3.

Соединение 8а. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.07 (3H, т, ³*J* = 7.3, CH₂CH₂C<u>H₂C</u>; 1.77–1.90 (2H, м, CH₂C<u>H₂CH₃</u>); 1.89–2.01 (4H, м, 8,9-CH₂); 2.82 (2H, т, ³*J* = 7.5, C<u>H₂CH₂CH₃</u>); 2.78–2.89 (2H, м, 10-CH₂); 3.42–3.48 (2H, м, 7-CH₂); 9.47 (1H, с, H-3); 9.49 (1H, с, H-5).

Соединение 8b. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.01 (6H, д, ³*J* = 6.6, CH(C<u>H</u>₃)₂); 1.88–2.00 (4H, м, 8,9-CH₂); 2.23–2.38 (1H, м, C<u>H</u>(CH₃)₂); 2.72 (2H, д, ³*J* = 7.0, C<u>H</u>₂CHMe₂); 2.80–2.86 (2H, м, 10-CH₂); 3.43–3.49 (2H, м, 7-CH₂); 9.48 (1H, c, H-3); 9.50 (1H, c, H-5).

11-Пропил- и 11-(*изо*-бутил)-7,8,9,10-тетрагидро[1,2,4]триазоло[5'',1'':6',1']пиримидо[4',5':4,5]фуро[2,3-с]изохинолины 9а,b (общая методика). А. Смесь 0.01 моль соединения 6а или 7а и 50 мл НСООН кипятят 25 ч. Реакционную смесь охлаждают, добавляют 100 мл H₂O, выделившиеся кристаллы отфильтровывают, промывают водой, сушат и перекристаллизовывают из смеси EtOH–CH₂Cl₂, 1:3.

Б. Смесь 0.01 моль соединения **8а,b** и 50 мл НСООН кипятят в течение 5 ч. Продукт выделяют аналогично методу А.

Соединение 9a. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.07 (3H, т, ³*J* = 7.3, CH₂CH₂C<u>H₃</u>); 1.79–1.91 (2H, м, CH₂C<u>H₂CH₃</u>); 1.91–2.02 (4H, м, 8,9-CH₂); 2.84 (2H, т, ³*J* = 7.5, C<u>H₂CH₂CH₃</u>); 2.80–2.90 (2H, м, 10-CH₂); 3.47–3.53 (2H, м, 7-CH₂); 8.54 (1H, с, H-2); 9.62 (1H, с, H-5).

Соединение 9b. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.02 (6H, д, ³*J* = 6.6, CH(C<u>H</u>₃)₂); 1.91–2.02 (4H, м, 8,9-CH₂); 2.25–2.39 (1H, м, C<u>H</u>(CH₃)₂); 2.74 (2H, д, ³*J* = 7.0, C<u>H</u>₂CHMe₂); 2.82–2.89 (2H, м, 10-CH₂); 3.48–3.54 (2H, м, 7-CH₂); 8.55 (1H, c, H-2); 9.64 (1H, c, H-5).

СПИСОК ЛИТЕРАТУРЫ

- 1. L. M. Pages Santacana, J. Taltavull Moll, J. Gracia Ferrer, EP Pat. Appl. 1819712.
- M. Hayakawa, H. Kaizawa, H. Moritomo, T. Koizumi, T. Ohishi, M. Yamano, M. Okada, M. Ohta, S. Tsukamoto, F. I. Raynaud, P. Workman, M. D. Waterfield, P. Parker, *Bioorg. Med. Chem. Lett.*, 17, 2438, (2007).
- 3. C. Reichelt, A. Ludwig, A. Schulze, M. Daghish, S. Leistner, A. Krodel, J. Heinicke, US Pat. Appl. 20120094987.
- 4. J. Taltavull Moll, L. M. Pages Santacana, EP Pat. Appl. 1913003.
- 5. С. Н. Сираканян, Е. Г. Пароникян, М. С. Гукасян, А. С. Норавян, *XTC*, 912 (2010). [*Chem. Heterocycl. Compd.*, **46**, 736 (2010).]
- 6. С. Н. Сираканян, в кн. Современные аспекты химии гетероциклов, ICSPF, Москва, 2010, с. 343.
- 7. С. Н. Сираканян, Е. Г. Пароникян, А. С. Норавян, в кн. *Азотистые гетероциклы* и алкалоиды, Иридиум-Пресс, Москва, 2001, т. 1, с. 527.
- 8. С. Н. Сираканян, Н. Г. Аветисян, А. С. Норавян, XTC, 500 (2012). [Chem. Heterocycl. Compd., 48, 470 (2012).]
- 9. Е. В. Воробьев, Автореф. дис. канд. хим. наук, Ростов-на-Дону, 2006.

Институт тонкой органической химии им. А. Л. Мнджояна, Поступило 22.05.2012 научно-технологического центра органической и фармацевтической химии НАН Республики Армении, пр. Азатутян, 26, Ереван 0014, Армения e-mail: shnnr@mail.ru

^a InterBioScreen Ltd., а/я 218, Москва 119019, Россия e-mail: vkartsev@ibscreen.chg.ru