Е. В. Громачевская^{*}, Е. А. Кайгородова^a, К. С. Пушкарева⁶, Г. Д. Крапивин

ИССЛЕДОВАНИЯ В ОБЛАСТИ ХИНАЗОЛИНОВ 5*. СИНТЕЗ ПРОИЗВОДНЫХ 3,4-ДИГИДРОХИНАЗОЛИНОВ С ФУНКЦИОНАЛЬНЫМИ ЗАМЕСТИТЕЛЯМИ В ПОЛОЖЕНИИ 2 И РЕАКЦИИ ИХ АЛКИЛИРОВАНИЯ

Получен новый ряд 2-замещённых 4,4-дифенил-3,4-дигидрохиназолинов реакцией *о*-аминофенилдифенилкарбинола (АФК) с нитрилами различного строения. Взаимодействие АФК с замещёнными 5-бром-3-циано-2(1*H*)-пиридонами приводит к образованию производных двух продуктов: 3,4-дигидрохиназолинов и 4*H*-3,1-бензоксазинов. Алкилирование 3,4-дигидрохиназолинов диметилсульфатом осуществляется как *N*,*N*-диметилирование. Структура полученных при этом продуктов определяется природой заместителя у атома C-2 гетероцикла.

Ключевые слова: диметилсульфат, 4,4-дифенил-3,4-дигидрохиназолины, алкилирование, масс-спектрометрическая фрагментация.

Известно [2, 3], что *о*-аминофенилдифенилкарбинол (АФК, 1) в реакции с нитрилами образует 2,4,4-тризамещённые 3,4(1,4)-дигидрохиназолины, существующие в растворе в виде двух таутомерных 1*H*- и 3*H*-форм. Более того, хиназолины, имеющие активную метиленовую группу непосредственно связанную с хиназолиновым циклом, способны к существованию в растворе в четырёх таутомерных формах **A**–**D** с миграцией кратной связи в экзоциклическое положение [2].

Эфиры циануксусной кислоты при введении в реакцию с АФК 1 образуют алкил-2-(4,4-дифенил-3,4-дигидрохиназолин-2(1*H*)-илиден)ацетаты 2a,b в виде двух геометрических изомеров (формы B и C), стабилизированных внутримолекулярными водородными связями [2].

^{*} Сообщение 4 см. [1].

Изучение химических свойств подобных соединений показало [1–3] необычное протекание реакции алкилирования и ацилирования. Так, метилирование диметилсульфатом (мягкий электрофил) происходит как N- и C-диметилирование [2] с миграцией кратной связи внутрь гетероциклического кольца. Ацилирование [1] галогенангидридами карбоновых кислот (жёсткий электрофил) происходит не по атомам азота, а как C-ацилирование в α-положение к гетероциклу, приводя к равновесной смеси π-диастереомеров **3**.

В продолжение изучения реакций АФК 1 с нитрилами в кислой среде [2, 3] в настоящей работе мы изучили его взаимодействие с расширенным рядом нитрилов 4а–j, содержащих различные функциональные группы, а также исследовали процесс алкилирования полученных продуктов.

Карбинол 1 в присутствии $HClO_4$ переходит в стабильный триарилкабениевый катион [2], который в реакции с нитрилами 4a-i образует перхлораты 3,4-дигидрохиназолиния 5a-i по механизму 1,4-диполярного циклоприсоединения [4].

1604

Ранее [2, 3, 5] нами было установлено, что АФК **1** в кислой среде при комнатной температуре образует соли 9-фенилакридиния. Поэтому для подавления побочной реакции образования перхлората 9-фенилакридиния в синтезе перхлоратов 3,4-дигидрохиназолиния мы модернизировали ранее предложенную методику [2], проводя синтез перхлоратов **5а**–**i**,**k**,**l** при дефиците HClO₄. Реакцию проводили в кипящем нитрометане при эквимолярных соотношениях исходных реагентов и 70% HClO₄, постепенно добавляя кислоту в реакционную смесь.

3,5-Диметил-4-формил-1*H*-пиррол-2-карбонитрил (**4j**) в указанных выше условиях (растворитель нитрометан, эквимолярные количества реагентов и хлорной кислоты) в реакцию с карбинолом **1** не вступает. Этот нитрил реагирует с АФК **1** в уксусной кислоте как альдегид [10], давая дигидробензоксазин **7**.

В разработанных нами условиях установлено необычное протекание реакций соединения 1 с замещёнными 5-бром-3-циано-2(1H)-пиридонами 4k,l, приводящее к перхлоратам 3,4-дигидрохиназолиния 5k,l и 4H-3,1-бензоксазиния 8k,l. Возможно, в данном случае помимо образования перхлоратов 5k,l происходит частичный гидролиз нитрильной группы пиридонов 4k,l до карбоксильной с последующим ацилированием аминогруппы AФK 1 и гетероциклизацией в перхлораты 8k,l [6]. Однако прямых доказательств выдвинутой версии у нас пока нет.

Перхлораты **5a**–**h**,**k**,**l**, **8k**,**l** и соответствующие им основания – 3,4-дигидрохиназолины **6a**–**h**,**k**,**l** и 4*H*-3,1-бензоксазины **9k**,**l** – получены впервые, характеристики их представлены в табл. 1–3. Физико-химические свойства известных перхлората 2-метил-4,4-дифенил-3,4-дигидрохиназолиния (5i) и хиназолина **6i** приведены в работе [2].

Строение соединений **6а–h,k,l** и **9k,l** подтверждается наличием в их ИК спектрах полос поглощения валентных колебаний связей N–H (3150–3420 см⁻¹), C=N (1580–1620) и C=O (1610–1690 см⁻¹), а для соединения **6d** – первичной аминогруппы (3470, 3380, 1590 см⁻¹).

В спектрах ЯМР ¹Н дигидрохиназолинов **6а–с,g,h,k** зафиксировано присутствие сигнала протона вторичной аминогруппы гетероцикла в виде двух синглетов (общей интенсивностью 1Н), что доказывает существование в растворах (ДМСО-d₆) таутомерного равновесия между 1*H*- и 3*H*-формами изучаемых структур.

Таблица 1

	Физико-химич	еские ха	рактери	стики си	интезиро	ванных соеди	нений	
Соели-	Брутто-		Найде	ено, %				Выхол
нение	формула		Вычисл	тено, %		Т. пл., °С	$R_{\rm f}^*$	м %
	<i>q</i> opiny <i>i</i> na	С	Н	N	Hal			,,,
5a	$C_{31}H_{31}ClN_2O_6$	<u>66.05</u> 66.13	<u>5.72</u> 5.55	<u>4.82</u> 4.98	<u>6.54</u> 6.30	228-230	-	75
5b	C ₂₃ H ₂₃ ClN ₂ O ₅	<u>62.48</u> 62.37	<u>5.31</u> 5.23	<u>6.45</u> 6.32	$\frac{8.25}{8.00}$	189–190	_	70
5c	C31H33ClN2O4	<u>69.67</u> 69.85	<u>6.36</u> 6.24	<u>5.18</u> 5.26	<u>6.42</u> 6.65	>250	-	72
5d	C27H22ClN3O6	<u>62.61</u> 62.37	<u>4.57</u> 4.26	<u>8.38</u> 8.09	<u>7.01</u> 6.82	>200	-	55
5e	C ₂₆ H ₂₀ BrClN ₂ O ₄	<u>57.51</u> 57.85	<u>3.85</u> 3.73	<u>5.31</u> 5.19	<u>21.52</u> 21.37	>220 (с разл.)	-	65
5f	C28H26ClN3O4	<u>66.42</u> 66.73	<u>5.31</u> 5.20	<u>8.15</u> 8.34	<u>7.20</u> 7.03	210–213	-	73
5g	C ₂₇ H ₂₂ ClN ₂ O ₄	<u>63.40</u> 63.66	<u>4.75</u> 4.35	<u>5.68</u> 5.50	<u>13.41</u> 13.92	193–195	-	71
5h	C ₃₀ H ₂₂ ClN ₃ O ₇	<u>63.59</u> 63.00	$\frac{4.01}{3.88}$	<u>7.52</u> 7.35	<u>6.10</u> 6.20	>210	-	65
5k	C ₂₇ H ₂₃ BrClN ₃ O ₅	<u>55.62</u> 55.45	<u>3.81</u> 3.96	<u>7.41</u> 7.18	<u>19.55</u> 19.74	>220	-	53
51	C ₂₈ H ₂₅ BrClN ₃ O ₆	<u>54.45</u> 54.70	<u>4.21</u> 4.10	<u>6.95</u> 6.83	<u>18.55</u> 18.76	>250	-	15
6a	$C_{31}H_{30}N_2O_2$	<u>80.28</u> 80.49	<u>6.31</u> 6.54	<u>6.25</u> 6.06	-	132–134	0.19	72
6b	$C_{23}H_{22}N_2O$	<u>80.55</u> 80.67	<u>6.32</u> 6.48	<u>8.45</u> 8.18	-	139–140	0.38	75
6c	$C_{31}H_{32}N_2$	<u>85.82</u> 86.07	<u>7.32</u> 7.46	<u>6.65</u> 6.48	-	216–218	0.22	70
6d	$C_{27}H_{21}N_3O_2$	<u>77.02</u> 77.31	<u>5.32</u> 5.05	$\frac{10.25}{10.02}$	-	253–256	0.50	65
6e	$C_{26}H_{19}BrN_2$	$\frac{71.15}{71.08}$	$\frac{4.50}{4.36}$	<u>6.15</u> 6.38	$\frac{18.45}{18.19}$	123–126	0.75	80
6f	$C_{28}H_{25}N_3$	<u>83.08</u> 83.34	<u>6.51</u> 6.24	$\frac{10.15}{10.41}$	-	198–200	0.22	75
6g	$C_{27}H_{21}ClN_2$	<u>79.55</u> 79.30	<u>5.01</u> 5.18	<u>6.67</u> 6.85	<u>8.51</u> 8.67	151–153	0.85	93
6h	$C_{30}H_{21}N_{3}O_{3}$	<u>76.68</u> 76.42	$\frac{4.31}{4.49}$	<u>9.08</u> 8.91	-	134–136	0.43	50
6k	C ₂₇ H ₂₂ BrN ₃ O	<u>66.59</u> 66.95	<u>4.35</u> 4 58	<u>8.42</u> 8.67	$\frac{16.84}{16.50}$	232–233	0.06	85
61	$C_{28}H_{24}BrN_3O_2$	<u>65.21</u> 65.38	$\frac{4.82}{4.70}$	<u>8.03</u> 8.17	<u>15.38</u> 15.53	240-242	0.13	70
7	C ₂₇ H ₂₃ N ₃ O	<u>80.24</u> 79.97	<u>5.35</u> 5.72	$\frac{10.52}{10.36}$	-	179–181	0.85	60
8k	C27H22BrClN2O6	<u>55.61</u> 55.36	<u>3.62</u> 3.79	<u>4.93</u> 4 78	<u>19.54</u> 19.69	>150 (с разд.)	-	38
81	$C_{28}H_{24}BrClN_2O_7$	<u>54.75</u> 54.61	<u>3.79</u> 3.93	<u>4.46</u> 4 55	<u>18.93</u> 18.73	>250	-	75
9k	$C_{27}H_{21}BrN_2O_2$	<u>66.96</u> 66.81	<u>4.18</u> 4.36	<u>5.52</u> 5.77	$\frac{16.71}{16.46}$	238–240	0.51	80
91	$C_{28}H_{23}BrN_2O_3$	<u>65.38</u> 65.25	<u>4.35</u> 4 50	<u>5.62</u> 5.44	<u>15.75</u> 15.50	241–243	0.17	73
10a	$C_{33}H_{34}N_2O_2$	<u>81.10</u> 80.78	<u>6.72</u>	<u>5.85</u> 5.71	-	146–149	0.65	45
13f	$C_{21}H_{22}N_2$	<u>83.67</u> 83.40	<u>7.05</u> 7.33	<u>9.51</u> 9.26	_	140–141	0.50	60

Начальный распад молекулярных ионов $[M]^+$ дигидрохиназолинов **6a**–**d**,**k**,**l** соответствует общей схеме, предложенной нами ранее [3], и характеризуется отрывом фенильного радикала с образованием катиона Φ_1 . Последний распадается по двум конкурирующим направлениям: элиминированием молекул нитрилов (ретродиеновый распад) и диазиринов RCN₂H, образуя соответствующие чётноэлектронные частицы Φ_2 и Φ_3 (табл. 3). Катионы типа Φ_1 – Φ_3 являются характеристическими при фрагментации $[M]^+$ 3,4-дигидрохиназолинов [3]. На схеме ниже представлен также имеющий максимальную интенсивность катион Φ_4 , образующийся в результате отрыва метильного радикала от метоксиметильного заместителя соединения **6**l.

Первичным актом фрагментации иона $[M]^+$ бензоксазинов **9k,l** является разрушение гетероцикла (что характерно для распада иона $[M]^+$ производных 4*H*-3,1-бензоксазинов [7–9]) и образование катиона Φ_5 , который затем элиминирует атом водорода или фенильный радикал, давая катионы Φ_6 или Φ_7 .

Представляло интерес провести реакции алкилирования и ацилирования с рядом полученных дигидрохиназолинов, начатые в работах [1, 2], с целью определения направленности реакций и возможной фиксации одной из таутомерных форм (**A**, **D**).

Метилирование соединений **6**a,**b**,**f**,**i** избытком диметилсульфата в водной среде в присутствии NaHCO₃ с последующей обработкой водным раствором NaOH [11, с. 463] приводит к продуктам *N*,*N*-диметилирования **10–13** разной структуры.

Так, 2-(3',4'-диэтоксибензил)-4,4-дифенил-3,4-дигидрохиназолин (**6a**) образует продукт диметилирования с сохранением хиназолинового цикла – 2-(3,4-диэтоксибензилиден)-1,3-диметил-4,4-дифенил-1,2,3,4-тетрагидрохиназолин (**10a**). Согласно спектру ЯМР ¹Н, это соединение в растворе CF₃COOH существует в виде двух геометрических изомеров в соотношении 1:1. Об этом свидетельствует наличие в спектре четырех синглетных сигналов двух групп N–CH₃ (1.95, 2.92, 3.30, 3.90 м. д.) и двух синглетов метинового протона (5.60 и 5.85 м. д.) с суммарной интенсивностью 6H и 1H соответственно. В ИК спектре отсутствуют валентные колебания NH-групп (табл. 3). Такое протекание реакции определяется, во-первых, наличием активного экзоциклического метиленового звена, во-вторых, образованием сопряжённого *N*,*N*-дизамещённого стирильного фрагмента в конечном продукте **10a**. Аналогичный продукт – 1,3-диметил-2-(4-нитробензилиден)-4,4-дифенил-1,2,3,4-тетрагидрохиназолин – получен ранее [2] при метилировании диметилсульфатом 2-(4-нитробензил)-4,4-дифенил-3,4-дигидрохиназолина.

Таблица 2

	-		
Coommonia		ν, cm ⁻¹	
Соединение	NH + NH	ClO ₄ ⁻	Другие
5a	3300, 3210, 1630	1130, 1120, 1030	-
5b	3300, 3230, 1640	1140, 1100, 1630	-
5c	3300, 3200, 1620	1130, 1090, 1025	-
5d	3350, 3190, 1630	1100, 1060, 1020	3280 (NH ₃ ⁺)
5e	3170, 1620	1100, 1050, 1020	-
5f	3180, 1580	1120, 1050,	2300 (NH ⁺)
5g	3180, 1620	1130, 1090, 1010	-
5h	3150, 1630	1110, 1050	1370, 1520 (NO ₂)
5k	3250, 3170, 1640	1100, 1090, 1010	1635 (C=O)
51	3200, 3150, 1630	1100, 1075, 1010	1620 (C=O)
8k	2480, 1665, (NH ⁺)	1020, 1090, 1010	1630 (C=O)
81	2700, 1645 (NH ⁺)	1105, 1081, 1030	1640 (C=O)

ИК спектры солей 5a-h,k,l, 8k,l

3,4-Дигидрохиназолины **6i**,**f**, не содержащие активное метиленовое звено при атоме C-2 гетероцикла, метилируются с раскрытием гетероцикла.

При метилировании 2-метил-4,4-дифенил-3,4-дигидрохиназолина (6i) получен продукт диметилирования 11i. В спектре ЯМР ¹H (ДМСО-d₆) этого соединения имеются два уширенных синглета протона NH и сигналы трёх метильных групп, каждая из которых проявляется в виде двух синглетов. Такой вид спектра позволяет предположить наличие в растворе динамического равновесия между двумя структурными изомерами: *N*-метил-*N*-{2-[(метиламино)(дифенил)метил]фенил}ацетамидом (11i) и *N*-метил-*N*-{2-[(метиламино)фенил](дифенил)метил}ацетамидом (12i), осуществляемое путем миграции ацетильной группы между атомами N-1 и N-3 через тетрагидрохиназолиновую форму A' [13]. Сравнением интегральной интенсивности сигналов протонов метильных групп в спектре ЯМР ¹H установлено соотношение изомеров 11i и 12i равное 3:2.

В кристаллическом состоянии, очевидно, существует только одна из двух открытых форм (**11i** или **12i**), поскольку в ИК спектре кристаллов наблюдается только одна полоса поглощения C=O (амид 1, при 1635 см⁻¹) и одна узкая полоса валентных колебаний NH (3300 см⁻¹) [12].

Взаимодействие 2-(4-диметиламинофенил)-4,4-дифенил-3,4-дигидрохиназолина (**6f**) с диметилсульфатом, согласно элементному анализу и спектральным данным (табл. 1, 3), проходит с деструкцией дигидрохиназолинового кольца и завершается образованием *N*-метил-2-[(метиламино)(дифенил)метил]анилина (**13f**). Отсутствие в ИК спектре диамина **13f** валентных колебаний группы C=O свидетельствует о том, что в процессе разложения избытка диметилсульфата водным раствором щёлочи, происходит не только раскрытие гетероцикла, но и гидролиз амидной группы.

Метилирование 2(2-метоксиэтил)-4,4-дифенил-3,4-дигидрохиназолина (**6b**) в условиях [11] приводит к смеси олигомеров неустановленного строения.

В масс-спектрах продуктов метилирования **10–13** содержатся пики однозарядных молекулярных ионов $[M]^+$ (табл. 3). Начальной фрагментацией ионов $[M]^+$ соединений **10а**, **13f** является экструзия молекулы имина CH₂=NH, приводящая к ионам Φ_1 , что существенно отличается от первичного масс-распада $[M]^+$ дигидрохиназолинов **6а–d**.

1609

				Таблица 3
			Спектральные характеристики соединений ба–h,k,l, 7, 9k,l, 10a,	13f
Соеди-	ИК спектр,		Спектр ЯМР ¹ Н	
нение	v, cm ⁻¹	Растворитель	Химические сдвиги, δ, м. д. (J, Гц)	MACC-CHERTP ', m/z (LOTH) '9)
6a	3320 (NH), 1620 (C=N)	(CD ₃) ₂ CO	1.20 (3H, r , $J = 6.5$, OCH ₂ CH ₃); 1.25 (3H, r , $J = 6.5$, OCH ₂ CH ₃); 3.44 (2H, c, CH ₂ Ar); 3.75 (2H, κ , $J = 6.5$, 2OCH ₂ CH ₃); 6.55–6.80 (8H, M, H-5 6 7 8 H Ar NH) (80–7 15 (10H M H Ph)	462 [M] ⁺ (13), 385 (100), 341 (18), 271 (10), 220 (4), 205 (11), 180 (8), 165 (35), 123 (21), 91 (5), 77 (25)
		ДМСО-d ₆	23.80–4.00 (4H, m, 2OCH ₂ CH ₃); 5.50 (1H, c) n 3.55 (1H, c, CH ₂ Ar); 3.80–4.00 (4H, m, 2OCH ₂ CH ₃); 6.54 (1H, μ, J = 8.0, H-8); 6.70–6.90 (3H, m, H-5,6,7); 7.00–7.30 (13H, m, H Ar, H Ph); 8.05 (0.5H, yur. c) n 9.45 (0.5H vur. c NH)	
6b	3180 (NH), 1620 (C=N)	(CD ₃) ₂ CO	2.48 (2H, π , $J = 8.2$, α -CH ₂); 3.16 (3H, c, OCH ₃); 3.50 (2H, π , $J = 8.2$, β -CH ₂); 5.85 (1H, yur. c, NH); 6.45–6.75 (4H, m, H-5,6,7,8); 6.85–7.15 (10H, m, H Ph)	342 [M] ⁺ (10), 265 (100), 233 (67), 219 (5), 205 (6), 180 (5), 165 (4), 155 (21), 152 (6), 77 (23)
		ДМСО-d ₆	2.45–2.65 (2H, m, α -CH ₂); 3.19 (1.5H, c) n 3.22 (1.5H, c, CH ₃); 3.55–3.70 (2H, m, β -CH ₂); 6.53 (1H, μ , $J = 8.0$, H-8); 6.80–7.40 (13H, m, H-5.6.7, H Ph): 8.55 (0.5H, vun. c) n 9.50 (0.5H, vun. c. NH)	
90	3250 (NH), 1610 (C=N)	CF ₃ COOH	0.90–1.12 (12H, m, 6CH ₂); 1.40 (3H, c, 3CH); 2.00 (2H, c, C <u>H</u> ₂ Ad); 6.55–6.75 (14H, m, H-5,6,7,8, H Ar); 7.95 (1H, yur. c, NH)	432 [M] ⁺ (16), 355 (100), 297 (10), 221 (15), 220 (25), 219 (10), 180 (12), 165 (10), 135 (28), 93 (23),
		ДМСО-d ₆	1.40–1.65 (12H, m, 6CH ₃); 1.80–1.90 (3H, m, 3CH); 2.08 (2H, c, CH ₂ Ad); 6.50 (1H, μ , $J = 7.5$, H-8); 6.85 (0.5H, yuu. c) n 9.20 (0.5H, yuu. c, NH); 7.00–7.40 (13H, m, H-5.6.7, H Ph)	77 (22)
6 d	3470, 3380, 1590 (NH ₂), 3290 (NH), 1620 (C=N)	дмсо-4	5.91 (2H, c, OCH ₂ O); 6.35 (1H, c, H-3'); 6.55 (1H, μ , $J = 7.5$, H-8); 6.98 (1H, μ , μ , $J = 7.2$, $J = 7.5$, H-7); 7.10–7.40 (16H, m, H-5,6,6', H Ph, NH ₂ , NH)	419 [M] ⁺ (32), 342 (100), 284 (25), 210 (8), 180 (12), 171 (30), 165 (7), 142 (15), 104 (8), 77 (31)
6e	3150 (NH), 1610 (C=N)	ДМСО-d ₆	6.60 (1H, μ , $J = 7.5$, H-8); 7.10–7.45 (14H, M , H-5,6,7, H Ph, NH); 7.77 (2H, μ , $J = 8.4$, H Ar); 7.96 (2H, μ , $J = 8.4$, H Ar)	I
6f	3390 (NH), 1600 (C=N)	ДМСО-d ₆	2.98 (6H, c, N(CH ₃) ₂); 6.52 (1H, $_{,\rm H}$, $J = 7.5$, H-8); 6.76 (2H, $_{\rm H}$, $J = 8.7$, H Ar); 6.98 (1H, $_{\rm H}$, $J = 6.6$, $J = 7.5$, H-7); 7.12–7.38 (13H, M, H-5,6, H Ph, NH); 7.95 (2H, $_{\rm H}$, $J = 8.7$, H Ar)	I

6g	3400 (NH), 1620 (C=N)	ДМСО-d ₆	4.82 (2H, c, CH ₂ Cl); 6.57 (1H, π , $J = 6.0$, H-8); 7.01 (1H, π , $J = 6.0$, $J = 6.0$, $J = 6.0$, H-7); 7.10–7.45 (12H, M, H-5,6, H Ph); 7.55 (2H, π , $J = 9.0$, H Ar); 8.05 (2H, π , $J = 9.0$, H Ar); 9.20 (0.5H, yur. c) n 10.00 (0.5H, yur. c, NH)	I
6h	3340 (NH), 1590 (C=N), 1350, 1500	ДМСО-d ₆	6.73 (IH, μ , $J = 7.7$, H-8); 7.06 (IH, μ , Λ , $J = 7.7$, $J = 8.2$, H-7); 7.20–4 7.39 (12H, m, H-5,6, H Ph); 7.82 (1H, μ , $J = 8.7$, H-4 Fur); 7.89 (2H, 3 μ , $J = 8.7$, H Ar); 8.29 (1H, μ , $J = 8.7$, H-3 Fur); 8.33 (2H, μ , $J = 8.7$, 1	471 [M ⁺] (7), 441 (1 349 (8), 348 (27), 32 112 (12), 101 (16)
6k	(NO ₂) 3370, 3250 (NH), 1610 (C=O), 1580 (C=N)	ДМСО-d ₆	H Ar); 9.00 (0.5H, yur. c) n 10.05 (0.5H, yur. c, NH) 1.74 (3H, c, CH ₃); 2.34 (3H, c, CH ₃); 6.58 (1H, $_{\rm H}$, $J = 9.0$, H-8); 6.85– 7.00 (2H, m, H-5,7); 7.05–7.40 (12H, m, H-6, H Ph, CONH); 9.80 (0.5H, yur. c) n 11.90 (0.5H, yur. c, NH)	483 [M] ⁺ (4), 406 (1) 219 (10), 194 (9), 18 110 (7), 77 (5)
61	(C=N) 3360, 3270 (NH), 1625 (C=O), 1600 (C=N)	ДМСО-d ₆	2.35 (3H, c, CH ₃); 2.75 (3H, c, OCH ₃); 3.87 (2H, c, C <u>H</u> ₅ OCH ₃); 6.58 (1H, μ , $J = 7.8$, H-8); 7.01 (1H, μ , $J = 7.2$, $J = 7.8$, H-7); 7.06 (1H, (1, μ), $J = 7.5$, H-5); 7.03–7.37 (13H, m, H-6, H Ph, 2NH)	513 [M] ⁺ (45), 498 ((35), 326 (15), 258 (9 77 (5)
٢	3490 (NH _{бенз}), 3400 (NH _{mp}), 2190 (C≡N)	ДМСО-d ₆	2.09 (3H, c, CH ₃); 2.12 (3H, c, CH ₃); 5.36 (1H, c, 2-CH); 6.52 (1H, $_{\rm H}$, $_{\rm H}$, $_{J}$ = 8.0, J = 8.0, H-7); 6.55 (1H, c, 1-NH); 6.57 (1H, $_{\rm H}$, J = 8.0, H-8.0, H-8); 6.67 (1H, $_{\rm H}$, J = 7.2, H-5); 6.99 (1H, $_{\rm H}$, $_{\rm H}$, J = 7.2, J = 8.0, H-6); 7.15, 7.35 (10H, $_{\rm H}$, H, H), 11.85 (1H, c, NH PVr)	
<u>9</u> k	3420 (NH), 1680 (C=O), 1620 (C=N)	ДМСО-d ₆	7.40 (13H, M, H-5,6,7, H Ph); 12.24 (1H, yu. c, CONH) 2 $\frac{1}{6}$	484 [M] ⁺ (3), 258 (90), 200 (22), 197 (18), 181 (22) 91 (6) 77 (50)
16	3400 (NH), 1690 (C=O), 1610 (C=N)	ДМСО-d ₆	2.37 (3H, c, CH ₃); 2.73 (3H, c, OCH ₃); 4.04(2H, c, C <u>H</u> ₂ OCH ₃); 6.86 $\frac{5}{5}$ (1H, μ , $J = 6.0$, H-8); 7.05–7.45 (13H, m, H-5,6,7, H Ph); 12.35 (1H, 2 vm c, CONH)	514 [M] ⁺ (4), 259 (35), 226 (40), 202 (20), 181 (
10a	1625 (C=C)	CF ₃ COOH	1.05 (3H, r, $J = 7.5$, OCH ₂ CH ₃); 1.15 (3H, r, $J = 7.5$, OCH ₂ CH ₃); 1.95 (4, 1.5H, c), 2.92 (1.5H, c), 3.30 (1.5H, c) a.3.90 (1.5H, c, 2NCH ₃); 2.3.7-3.70 (4H, m, 2OCH ₂ CH ₃); 5.60 (0.5H, c) a 5.85 (0.5H, c) (6.5H,	490 [M] ⁺ (20), 461 (18) 270 (10), 251 (23), 235 (41), 134 (47), 91 (11),
13f	3350 (NH)	ДМСО-d ₆	0.85–7.30 (14H, m, H-5,6,7,8, H Ph)	302 [M] ⁺ (10), 273 (17) 255 (18), 225 (7), 196 ((12), 179 (20), 165 (25)

* Значения *m/z* ионов соединений **6k,l** и **9k,l** рассчитаны для лёгкого изотопа галогена (⁷⁹Br).

| 1611 Попытки провести реакции ацилирования дигидрохиназолинов **6а–g,i** галогенангидридами кислот или уксусным ангидридом оказались безуспешными – ацилирования этих соединений не происходит [11].

Таким образом, показано, что характер заместителя в положении 2 гетероцикла существенным образом влияет на направленность реакции метилирования 3,4-дигидрохиназолинов диметилсульфатом. В дальнейшем планируется использовать широкий ряд 2-алкил(арил, гетарил)-3,4-дигидрохиназолинов в реакциях алкилирования, продолжить изучение влияния как характера заместителя, так и алкилирующего агента на направленность реакции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе Specord IR-75 при комнатной температуре в вазелиновом масле. Спектры ЯMP ¹H зарегистрированы на спектрометре Bruker DRX-500 (500 МГц), спектры соединений **6а,b** в (CD₃)₂CO и **6c** в CF₃COOH – на приборе Tesla BS (60 МГц), внутренний стандарт TMC. Масс-спектры записаны на приборе Varian CH-6 с прямым вводом вещества в ионизационную камеру при температуре 50–180 °C и энергии ионизации электронов 70 эВ. Элементный анализ выполнен на C,H,N-анализаторе Hewlett-Packard HP-185B. Температуры плавления определены на нагревательном приборе Тиле. Контроль за ходом реакций осуществляли методом TCX (на пластинах Silufol UV-254, проявитель – пары иода).

Перхлорат 2-(3,4-диэтоксибензил)-4,4-дифенил-3,4-дигидрохиназолиния (5а). К кипящей смеси 0.51 г (2.5 ммоль) нитрила (3,4-диэтоксифенил)уксусной кислоты (4а) и 0.67 г (2.5 ммоль) АФК 1 в 5 мл MeNO₂ постепенно добавляют по каплям 0.25 мл (2.5 ммоль) 70% HClO₄. По истечении 60 мин реакционную смесь охлаждают (ледяная баня), образовавшуюся соль **5а** осаждают эфиром и отфильтровывают. Выход 1.06 г (75%). Бесцветные кристаллы.

Соли 5b-і получают аналогично.

Перхлораты 2-(5-бром-4,6-диметил-2-оксо-1,2-дигидропиридин-3-ил)-4,4-дифенил-3,4-дигидрохиназолиния (5k) и 2-(5-бром-4,6-диметил-2-оксо-1,2-дигидропиридин-3-ил)-4,4-дифенил-4*H*-3,1-бензоксазиния (8k) получают аналогично. При охлаждении (ледяная баня) из реакционной смеси выпадает перхлорат 8k. Перхлорат 5k осаждают эфиром.

Соли 51 и 81 получают и выделяют аналогично.

Основания **6а–i,k,l** и **9k,l** получают депротонированием соответствующих солей в 25% водном аммиаке [3] и перекристаллизацией из спирта. Полученные основания представляют собой бесцветные кристаллы.

2-[(2,4-Диметил-5-циано)пирр-3-ил]-4,4-дифенил-1,4-дигидро-2*H***-3,1-бензокса**зин (7). К охлажденному до 0 °С раствору 0.67 г (2.5 ммоль) АФК **1** в 5 мл ледяной АсОН прибавляют 0.37 г (2.5 ммоль) формилонитрила **4j**, затем смесь продолжают перемешивать при комнатной температуре в течение 1 ч. Образовавшийся осадок (бесцветные кристаллы) отфильтровывают, промывают раствором EtOH в воде (1:3).

2-(3,4-Диэтоксибензилиден)-1,3-диметил-4,4-дифенил-1,2,3,4-тетрагидрохиназолин (10а). К суспензии 2.65 г (31.55 ммоль) NaHCO₃ в 4 мл H₂O добавляют 1.03 г (2.22 ммоль) 2-(3,4-диэтоксибензил)-4,4-дифенил-3,4-дигидрохиназолина (**6a**), а затем 3.52 г (28.00 ммоль) диметилсульфата. Реакцию проводят при перемешивании на водяной бане при температуре 30–35 °C в течение 4 ч. По окончании реакции разлагают избыток диметилсульфата, поднимая температуру реакционной смеси до 50–55 °C и выдерживая в течение ~30 мин при этой температуре. Затем разлагают метилсульфатную соль нагреванием смеси с избытком 5% раствора NaOH на кипящей водяной бане. Реакционную смесь охлаждают, органическую часть экстрагируют CHCl₃. После отгонки растворителя остаток перекристаллизовывают из EtOH. Выход 0.49 г (45%). Бесцветные кристаллы.

Аналогично получают соединение 13f.

Смесь *N*-метил-*N*-{2-[(метиламино)(дифенил)метил]фенил}ацетамида (11i) и *N*-метил-*N*-{2-[(метиламино)фенил](дифенил)метил}ацетамида (12i). Получают аналогично. Выход 0.50 г (65%). Бесцветные кристаллы. Т. пл. 139–141 °C (ЕtOH). $R_{\rm f}$ 0.45 (ацетон–бензол, 1:9). ИК спектр, v, см⁻¹: 3300 (NH), 1635 (С=О). Спектр ЯМР ¹H (ДМСО-d₆), δ , м. д.: 0.75 (1.8H, c, CH₃(2) (11i)); 1.60 (1.2H, c, CH₃(2) (12i)); 1.85 (1.2H, c, CH₃(3) (12i)); 1.90 (1.8H, c, CH₃(3) (11i)); 2.55 (1.2H, c, CH₃(1) (12i)); 2.65 (1.8H, c, CH₃(1) (11i)); 2.76 (0.6H, уш. с, NH (11i)); 3.20 (0.4H, уш. с, NH (12i)); 7.00–7.51 (14H, м, H Ar (11i+12i)). Масс-спектр, m/z ($I_{\rm отт}$, %): 344 [M]⁺ (25). Найдено, %: C 80.05; H 6.65; N 8.19. C₂₃H₂₄N₂O. Вычислено, %: C 80.23; H 6.97; N 8.14.

СПИСОК ЛИТЕРАТУРЫ

- 1. Е. В. Громачевская, Е. А. Кайгородова, В. Е. Заводник, Г. Д. Крапивин, *XГС*, 886 (2007). [*Chem. Heterocycl. Compd.*, **43**, 748 (2007).]
- Е. В. Громачевская, Г. Д. Крапивин, Ф. В. Квитковский, А. О. Шеин, В. Г. Кульневич, XГС, 640 (2001). [Chem. Heterocycl. Compd., 37, 588 (2001).]
- 3. Е. В. Громачевская, Е. А. Кайгородова, С. И. Фирганг, Г. Д. Крапивин, *XГС*, 1222 (2005). [*Chem. Heterocycl. Compd.*, **41**, 1045 (2005).]
- В. И Иванский, Химия гетероциклических соединений, Высш. школа, Москва, 1978, с. 16–28.
- В. Г. Кульневич, Е. В. Громачевская, Т. П. Косулина, ХГС, 953 (1984). [Chem. Heterocycl. Compd., 20, 776 (1984).]
- Е. В. Громачевская, Т. П. Косулина, А. Л. Чехун, В. Г. Кульневич, XTC, 542 (1993). [Chem. Heterocycl. Compd., 29, 465 (1993).]
- Е. В. Громачевская, Т. П. Косулина, В. Г. Кульневич, Ю. Ю. Самитов, А. И. Хаяров, В. Т. Дубоносов, *XГС*, 101 (1990). [*Chem. Heterocycl. Compd.*, 26, 86 (1990).]
- А. А. Полякова, Р. А. Хмельницкий, *Масс-спектрометрия в органической химии*, Химия, Москва, 1972, с. 327.
- Е. В. Громачевская, Т. П. Косулина, В. Г. Кульневич, ХГС, 537 (1993). [Chem. Heterocycl. Compd., 29, 460 (1993).]
- 10. Е. В. Громачевская, В. Г. Кульневич, Т. П. Косулина, В. С. Пустоваров, *XГС*, 842 (1988). [*Chem. Heterocycl. Compd.*, **24**, 692 (1988).]
- К. Вейганд, Методы эксперимента в органической химии, Химия, Москва, 1968, с. 944.
- 12. А. Кросс, Введение в практическую инфракрасную спектроскопию, Изд-во иностр. лит., Москва, 1961, с. 97.
- Ж. Матье, Р. Панико, Курс теоретических основ органической химии, Мир, Москва, 1975, с. 381.

Кубанский государственный технологический университет, ул. Московская, 2, Краснодар 350072, Россия e-mail: organics@Kubstu.ru

Поступило 14.12.2011

^а Кубанский государственный аграрный университет, ул. Калинина, 13, Краснодар 350044, Россия e-mail: e kaigorodova@mail.ru

⁶ Кубанский государственный университет, ул. Ставропольская, 149, Краснодар 350028, Россия e-mail: bukov@chem.kubsu.ru