Д. А. Руденко, С. Н. Шуров^{*}, М. И. Вахрин, В. И. Карманов^a, Ю. А. Щуров

ВЗАИМОДЕЙСТВИЕ 2-ЗАМЕЩЁННЫХ 7,7-ДИМЕТИЛ-5-ОКСО-5,6,7,8-ТЕТРАГИДРОХИНОЛИН-4-КАРБОНОВЫХ КИСЛОТ С ГИДРАЗИНОМ. СИНТЕЗ 5-ЗАМЕЩЁННЫХ 8,8-ДИМЕТИЛ-3,7,8,9-ТЕТРАГИДРО-2*H*-ПИРИДО[4,3,2-*de*]ЦИННОЛИН-3-ОНОВ

Изучено взаимодействие 2-замещённых 7,7-диметил-5-оксо-5,6,7,8-тетрагидрохинолин-4-карбоновых кислот с гидразином. Показано, что в результате реакции с хорошими выходами образуются 5-замещённые 8,8-диметил-3,7,8,9-тетрагидро-2*H*-пиридо[4,3,2-*de*]циннолин-3-оны. Обсуждается возможный механизм реакции с привлечением неэмпирических квантово-химических расчётов.

Ключевые слова: гидразин, 7,7-диметил-5-оксо-5,6,7,8-тетрагидрохинолин-4-карбоновые кислоты, 8,8-диметил-3,7,8,9-тетрагидро-2*H*-пиридо[4,3,2-*de*]циннолин-3-оны.

Взаимодействие 1,4-дикарбонильных соединений с гидразинами является удобным способом построения пиридазинового цикла [1]. Если дикарбонильный фрагмент является частью циклической системы, как, например, в алкил 5-оксо-5,6,7,8-тетрагидрохинолин-4-карбоксилатах, то в результате реакций с гидразинами могут быть получены конденсированные гетероциклические соединения, содержащие ядро пиридазина [2].

Установлено, что при кипячении эквимолярных количеств 2-замещённых 7,7-диметил-5-оксо-5,6,7,8-тетрагидрохинолин-4-карбоновых кислот **1а–g** [3] с гидразином в этаноле образуются соответствующие 5-алкил(арил)-8,8-диметил-3,7,8,9-тетрагидро-2*H*-пиридо[4,3,2-*de*]циннолин-3-оны **7а–g**. Полученные соединения представляют собой бесцветные или слабоокрашенные кристаллические вещества с высокими температурами плавления, растворимые в горячих ДМФА и ДМСО и плохо растворимые в ацетонитриле, этиловом спирте, ацетоне и воде.

Выходы, температуры плавления и результаты элементного анализа 2*H*-пиридо[4,3,2-*de*]циннолин-3-онов **7а–** д представлены в табл. 1. Строение синтезированных производных установлено по данным ИК, ЯМР ¹Н и ¹³С спектров (табл. 2, 3). Отнесение сигналов в спектрах ЯМР ¹Н и ¹³С проведено на основании гетероядерных 2D экспериментов ¹H–¹³C gHSQC и gHMBC.

В частности, в спектрах 2D gHMBC атомы C-3 проявляют кросс-пики с протонами пиридинового ядра, а атомы C-5 дают кросс-пики с протонами заместителей R. В свою очередь атомы C-9b взаимодействуют с протонами H-4, H-7 и H-9, а атомы C-9a – с протонами H-4 и H-7. Отнесение сигналов атомов C-7 и C-9 проводили на основании спектров 2D gHSQC по прямым константам спин-спинового взаимодействия связанных атомов водорода и углерода.

а R = t-Bu, b R = Ph, c R = 4-MeC₆H₄, d R = 4-MeOC₆H₄, e R = 4-BrC₆H₄, f R = 2,4,5-Me₃C₆H₂, g R = 1-нафтил

Возможная схема образования циннолинов 7a-g предполагает атаку кетонной карбонильной группы кислот 1a-g атомом азота гидразина и циклизацию образующихся интермедиатов 2a-g за счёт взаимодействия первичной аминогруппы и атома углерода карбоксила (интермедиаты 4a-g). Трициклические интермедиаты 4a-g далее дегидратируются, давая продукты реакции 7a-g.

Таблица 1

Соеди- нение	Брутто- формула] B	Найдено, % ычислено, 9	Т. пл., °С	Выход, %	
	+ • P ··· J ····	С	Н	Ν		
7a	$C_{16}H_{21}N_{3}O$	<u>70.49</u> 70.82	<u>7.75</u> 7.80	<u>15.39</u> 15.48	212–213	74
7b	$C_{18}H_{17}N_{3}O$	<u>74.08</u> 74.21	<u>5.73</u> 5.88	<u>14.24</u> 14.42	282–284	71
7c	$C_{19}H_{19}N_{3}O$	<u>74.61</u> 74.73	<u>6.20</u> 6.27	<u>13.57</u> 13.76	280-281	99
7d	$C_{19}H_{19}N_3O_2$	<u>70.97</u> 71.01	<u>5.85</u> 5.96	<u>12.90</u> 13.07	261–262	94
7e	C ₁₈ H ₁₆ BrN ₃ O	<u>58.40</u> 58.39	<u>4.17</u> 4.36	<u>11.43</u> 11.35	316–318	90
7f	$C_{21}H_{23}N_{3}O$	<u>75.67</u> 75.65	<u>6.93</u> 6.95	<u>12.54</u> 12.60	231–232	92
7g	$C_{22}H_{19}N_{3}O$	<u>77.29</u> 77.40	<u>5.51</u> 5.61	<u>12.18</u> 12.31	233–234	84

Физико-химические характеристики синтезированных соединений 7а-д

С целью выявления тонких особенностей взаимодействия кислот 1а-д с гидразином были проведены неэмпирические квантово-химические расчёты полных энергий (Etot), длин связей, зарядов атомов и порядков связей в интермедиатах 2b, 4b-6b, активированном комплексе 3b и циннолине 7b неэмпирическим методом ССП МО ЛКАО в базисе 6-31G(d). Согласно расчётам, в интермедиате 2b расстояние между реакционными центрами (l_{N...с}) – атомом азота аминогруппы и атомом углерода карбоксильной группы – составляет 2.711 Å, а расстояние между атомом водорода группы NH₂ и карбонильным атомом кислорода карбоксила (*l*_{H...0}) равно 2.779 Å. Уменьшение межатомного расстояния $l_{\rm N...C}$ сопровождается увеличением длины связи N-H и уменьшением соответствующего межатомного расстояния $l_{\text{H}...\text{O}}$. В активированном комплексе **3b** расстояние $l_{\text{N}...\text{C}}$ сокращается до 1.538 Å, длина связи N-H с 1.002 (интермедиат 2b) увеличивается до 1.231 Å, а межатомное расстояние l_H...o составляет 1.311 Å. Дальнейшее сближение атомов азота и углерода приводит к разрыву связи N-H, т. е. переносу протона от атома азота к атому кислорода с образованием стабильного интермедиата 4b. Последующее превращение интермедиата 4b в продукт реакции 7b может протекать двумя путями: через интермедиаты 5b или 6b. Как следует из расчётов, интермедиат 5b имеет меньшую полную энергию $(E_{\text{tot}} = -1005.7685 \text{ a. e.})$ по сравнению с интермедиатом **6b** $(E_{\text{tot}} = -1005.7585 \text{ a. e.})$, поэтому образование интермедиата 5b представляется более вероятным. Следовательно, проведённые квантово-химические расчёты не противоречат предложенной схеме реакции.

Таблица 2

Соеди-	ИК спектр,	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)							
нение v, см ⁻¹		2-NH	H-4	7-CH ₂	8-CH3	9-CH ₂	R		
7a	3156 (N–H), 1666 (C=O), 1596 (C=C, C=N)	12.46	7.84	2.97	1.04	2.69	1.39 (9H, c, C(CH ₃) ₃)		
7b	3152 (N–H), 1668 (C=O), 1592 (C=C, C=N)	12.60	8.34	3.05	1.11	2.76	7.51–7.57 (3Н, м, Н Рh); 8.21–8.23 (2Н, м, Н Рh)		
7c	3156 (N–H), 1668 C=O), 1596 (C=C, C=N)	12.52	8.26	3.03	1.06	2.72	2.38 (3H, c, 4'-CH ₃); 7.34 (2H, д, <i>J</i> = 8.4, H Ar); 8.09 (2H, д, <i>J</i> = 8.4, H Ar)		
7d	3153 (N–H), 1666 (C=O), 1589 (C=C, C=N)	12.49	8.22	3.01	1.06	2.71	3.85 (3H, с, OCH ₃); 7.07 (2H, д, <i>J</i> = 9.0, H Ar); 8.16 (2H, д, <i>J</i> = 9.0, H Ar)		
7e	3156 (N–H), 1668 (C=O), 1590 (C=C, C=N)	12.57	8.35	3.07	1.07	2.76	7.73 (2H, д, <i>J</i> = 8.4, H Ar); 8.18 (2H, д, <i>J</i> = 8.4, H Ar)		
7f	3162 (N–H), 1657 (C=O), 1587 (C=C, C=N)	12.56	7.89	3.00	1.06	2.72	2.25 (6H, c, 4',5'-CH ₃); 2.31 (3H, c, 2'-CH ₃); 7.07 (1H, c, H-3'); 7.29 (1H, c, H-6')		
7g	3147 (N–H), 1654 (C=O), 1589 (C=C, C=N)	12.63	8.06	3.07	1.11	2.78	7.74–7.50 (4Н, м, Н Аг); 8.11–8.01 (3Н, м, Н Аг)		

ИК и ЯМР ¹Н спектры соединений 7а-g

Таблица З

Спектры ЯМР ¹³С соединений 7а–g

Соединение	Химические сдвиги, б, м. д.											
	C-3	C-3a	C-4	C-5	C-6a	C-7	C-8	8-CH ₃	C-9	C-9a	C-9b	R
7a	158.8	132.6	110.1	170.4	158.4	45.5	31.8	27.4	41.9	144.0	117.7	29.6 (C(<u>C</u> H ₃) ₃); 37.6 (<u>C</u> (CH ₃) ₃)
7b	158.6	133.2	111.4	156.8	159.6	45.5	31.8	27.4	41.8	143.9	118.8	126.8 (C-2',6'); 128.7 (C-3',5'); 129.6 (C-4'); 137.5 (C-1')
7 c	158.7	133.2	110.9	156.8	159.6	45.5	31.9	27.4	41.8	143.9	118.5	20.6 (4'-CH ₃); 126.8 (C-2',6'); 129.4 (C-3,5); 134.8 (C-1'); 139.5 (C-4')
7d	158.7	133.2	110.3	156.6	159.5	45.5	31.8	27.4	41.9	143.9	118.1	55.2 (4-OCH ₃); 114.2 (C-3',5'); 128.4 (C-2',6'); 130.0 (C-1'); 160.8 (C-4')
7e	158.5	133.3	111.6	155.5	159.7	45.4	31.8	27.3	41.8	143.8	119.0	123.3 (C-4'); 128.8 (C-2',6'); 131.6 (C-3',5'); 136.7 (C-1')
7f	158.6	132.5	115.0	160.1	158.9	45.4	31.8	27.4	41.9	143.9	117.9	19.4 (2'-CH ₃); 18.4 (4'-CH ₃); 18.7 (5'-CH ₃); 130.7 (C-6'); 132.0 (C-3'); 132.6 (C-1'); 133.5 (C-2'); 136.3 (C-4'); 136.7 (C-5')
7g	159.2	132.8	116.3	158.6	159.5	45.4	31.9	27.5	41.9	144.0	118.6	124.9; 125.2; 125.9; 126.5; 127.9; 128.2; 129.2; 130.3; 133.4; 137.0

Таким образом, изученная реакция представляет собой удобный и эффективный способ получения аннелированных трёхчленных гетероцилических соединений, содержащих пиридазиновый фрагмент, на основе взаимодействия 2-замещённых 7,7-диметил-5-оксо-5,6,7,8-тетрагидрохинолин-4-карбоновых кислот с гидразином.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на спектрометре Bruker IFS 66ps в суспензии вазелинового масла. Спектры ЯМР ¹Н и ¹³С записаны на приборе Varian Mercury 300 plus (300 и 75 МГц соответственно) в растворах ДМСО-d₆, внутренний стандарт ГМДС (δ 0.059 м. д.). Элементный анализ выполнен на приборе CHNS-932 LECO Corporation. Температуры плавления определены на приборе ПТП. Индивидуальность синтезированных соединений подтверждена данными ВЭЖХ (хроматограф Agilent 1260, колонка Zorbax Eclipse XDB-C18, 250 × 4.6 мм, размер частиц 5 мкм, градиентное элюирование 50–100% MeCN в воде в течение 20 мин, скорость 1 мл/с, температура 30 °С, детектирование при 254 и 300 нм).

Квантово-химические расчёты выполнены с помощью пакета программ Firefly [4] на персональном компьютере Toshiba Portege M400.

5-Замещённые 8,8-диметил-3,7,8,9-тетрагидро-2*Н***-пиридо[4,3,2-***de***]циннолин-3-оны 7а–**g (общая методика). Смесь 6 ммоль соответствующей хинолинкарбоновой кислоты **1а–**g и 0.6 г (12 ммоль) 64% гидразингидрата кипятят в 30 мл ЕtOH в течение 2 ч, реакционную смесь охлаждают, образовавшийся осадок отфильтровывают. Промывают на фильтре горячим EtOH.

СПИСОК ЛИТЕРАТУРЫ

- 1. Дж. Джоуль, К. Миллс, *Химия гетероциклических соединений*, Мир, Москва, 2009, с. 284.
- T. Mulamba, R. El Boukili-Garré, D. Séraphin, E. Noé, C. Charlet-Fagnère, J. Hénin, J. Laronze, J. Sapi, R. Barret, J.-Y. Laronze, J. Lévy, *Heterocycles*, 41, 29 (1995).
- С. Н. Шуров, Д. А. Руденко, А. С. Шуров, Ю. А. Щуров, О. В. Винокурова, М. П. Колобова, Л. А. Шурова, в кн. Инновационный потенциал естественных наук. Тр. междунар. науч. конф., Изд-во Перм. ун-та, Пермь, 2006, т. 1, с. 236.
- A. A. Granovsky, *Firefly version 7.1.G.* URL: http://classic.chem.msu.su/gran/firefly/ index.html (дата обращения: 29.02.2012).

Пермский государственный национальный исследовательский университет, ул. Букирева, 15, Пермь 614990, Россия e-mail: seshurov@yandex.ru Поступило 16.09.2011 После доработки 25.06.2012

^а Институт технической химии УрО РАН, ул. Академика Королева, 3, Пермь 614013, Россия e-mail: karmanovvi@rambler.ru