Е. В. Соловьева, А. В. Чернышев*, Н. А. Волошин^а, А. В. Метелица, В. И. Минкин^а

ФОТО- И ТЕРМОХРОМНЫЕ СПИРАНЫ

38*. НОВЫЕ (1-АЛКИЛ-4,5-ДИФЕНИЛ)ИМИДАЗОЛИЛ-ЗАМЕЩЁННЫЕ СПИРОБЕНЗОПИРАНЫ

Формилированием 2-дифенилимидазолилзамещённого фенола получен 3-дифенилимидазолилзамещённый 2-гидроксибензальдегид, на основе которого синтезированы новые фотохромные спироиндолинбензопираны, содержащие 4,5-дифенилимидазольную группу в положении 8 бензопиранового фрагмента. Полученные соединения обладают фотохромными свойствами в растворе.

Ключевые слова: мероцианины, спиропираны, триарилимидазол, фотохромизм.

Спиропираны являются широко известным классом органических фотохромов. Возможность направленного изменения спектрально-кинетических характеристик соединений в широком интервале при варьировании химической структуры является важным фактором, стимулирующим интерес исследователей к этим производным [1–4]. Функционализация молекул спиропиранов за счёт введения заместителей различной природы открывает также возможность получения широкого ряда полифункциональных фотохромных молекулярных систем, проявляющих переключаемые с помощью света магнитные [5], флуоресцентные [6–9] и хелатирующие [9–13] свойства.

Одним из способов такой модификации является введение в молекулу спиропирана в *орто*-положение к хроменовому атому кислорода гетероциклических заместителей, что приводит к модификации спектральных [14–16] и комплексообразующих [13, 16, 17] свойств исходных соединений.

Являясь продолжением этих исследований, настоящая работа посвящена синтезу и изучению фотохромных свойств ряда спиробензопиранов, содержащих 1-бензил-4,5-дифенилимидазольную группу в положении 8 бензопиранового фрагмента.

1,2,4,5-Тетразамещённые имидазолы обычно получают четырёхкомпонентной циклоконденсацией 1,2-дикетона с альдегидом, первичным амином и ацетатом аммония [18]. 3-(1-Бензил-4,5-дифенилимидазолил)содержащий 2гидроксибензальдегид 2 был получен циклоконденсацией 5-бромсалицилового альдегида, бензила, ацетата аммония и бензиламина с последующим формилированием по Даффу образующегося имидазолилзамещённого фенола 1. Спиробензопираны 4а–d образовались в результате конденсации солей 3*H*-индолия 3а–d с 2-гидроксибензальдегидом 2 в присутствии триэтиламина.

Строение полученных соединений 1, 2, 4а–d установлено спектроскопией $\text{ЯМР}^{1}\text{H}$ и подтверждено данными элементного анализа. Так, спектры $\text{ЯМP}^{1}\text{H}$ спиропиранов 4а–d содержат два сигнала магнитно-неэквивалентных геминальных метильных групп, сигналы *N*-алкильных заместителей индолинового

^{*} Сообщение 37 см. [1].

3, **4** a R = H, b R = Br, c R = Cl, d R = OMe; **3** a,b,d X = I, c X = ClO_4

и имидазольного фрагментов и метоксигруппы (спиропиран 4d), лежащие в сильном поле, а также несколько групп взаимосвязанных сигналов в слабопольной области спектра, относящихся к индолиновому, пирановому и имидазольному фрагментам. Сигналы протонов фенильных колец образуют сложную картину мультиплетов. Прохиральность протонов метиленовой группы *N*-бензильного заместителя имидазольного фрагмента спиропиранов 4а–d приводит к диастереотопному расщеплению сигналов протонов, проявляющихся в виде двух дублетов при 4.22–4.25 и 4.73–4.74 м. д. соответственно.

Все перечисленные выше данные спектроскопии ЯМР ¹Н однозначно подтверждают строение полученных спиропиранов. Отсутствие сигналов протонов индолинового и бензопиранового фрагментов в областях спектра, характерных для открытой мероцианиновой формы **MC** [19–21], свидетельствует, что полученные соединения в растворе CDCl₃ находятся в спироциклической форме **SP**.

Исследуемые соединения в растворе толуола также находятся полностью в спироциклической форме **SP**. Спектры поглощения спироциклических форм характеризуются двумя диффузными полосами без отчётливых максимумов в области 289–296 и 336–344 нм с молярными коэффициентами экстинкции 20800–24050 и 7100–8630 л·моль⁻¹·см⁻¹ соответственно (таблица). Заместители в индолиновой части молекулы не влияют на интенсивность полос погло-

Рис. 1. Спектры поглощения соединения **4b** в толуоле ($c \ 1.54 \cdot 10^{-4}$ M) при облучении светом $\lambda \ 365$ нм, *T* 293 K, интервал между спектрами 2 с

щения, но приводят к незначительному батохромному сдвигу длинноволнового компонента полосы. Облучение бесцветных растворов спиропиранов УФ светом с длиной волны 365 нм вызывает их окрашивание, связанное с протеканием фотохимической реакции раскрытия цикла и образования мероцианиновых форм. В спектрах поглощения это проявляется в виде характерного для мероцианинов [2] поглощения в области 500–700 нм с максимумами полос при 625–634 нм (рис. 1, таблица).

После прекращения облучения происходит спонтанное обесцвечивание растворов вследствие протекания обратной термической реакции рециклизации мероцианиновых форм в исходную спироциклическую. Кинетические кривые темнового релаксационного процесса удовлетворительно описываются моноэкспоненциальной функцией (рис. 2). Время жизни окрашенных изомеров при T 293 К лежит в диапазоне 0.9–27.0 с и существенно зависит от заместителей в положении 5 индолинового фрагмента молекулы. Так, в ряду незамещённое соединение **4a**, галогензамещённые производные **4b**, с наблюдается возрастание константы скорости термической реакции рециклизации, в то время как введение метоксигруппы (соединение **4d**) повышает кинетическую

Соеди- нение	λ_{\max}^{abs} (SP), нм ($\epsilon \cdot 10^{-3}$, $\pi \cdot$ моль ⁻¹ · см ⁻¹)	$\lambda_{\max}^{abs}(\mathbf{MC}),$ HM	$k_{\rm MC-SP},$ c^{-1}	<i>Е</i> _а , кДж∙моль ^{−1}
4 a	292 (24.05) пл. 336 (8.63) пл.	625	0.1032	72.2
4b	296 (20.80) пл. 338 (7.10) пл.	627	0.3592	89.1
4c	289 (23.57) пл. 339 (7.46) пл.	628	0.3329	80.6
4d	293 (22.62) пл. 344 (8.01) пл.	634	0.0365	79.6

Спектральные и кинетические характеристики спиропиранов 4а-d в толуоле, Т 293 К

Рис. 2. Зависимость оптической плотности (A) в максимуме длинноволновой полосы поглощения мероцианиновой формы соединения 4d от времени термической релаксации (точки – эксперимент, сплошная линия – аппроксимация моноэкспоненциальной функцией), T 278 K, растворитель толуол. На вставке – зависимость логарифма константы скорости термической реакции рециклизации от обратной температуры

стабильность мероцианинового изомера по сравнению с незамещённым спиропираном 4а почти на порядок (таблица). Из температурных зависимостей констант скорости термического обесцвечивания (рис. 2, вставка) были определены энергии активации реакции рециклизации, значения которых лежат в области 72.2–80.6 кДж·моль⁻¹. В отличие от ранее изученных бензотиазолилзамещённых спиробензопиранов [17], исследуемые соединения характеризуются бо́льшими значениями константы скорости термической реакции.

Таким образом, получены новые спиробензопираниндолины, содержащие 1-бензил-4,5-дифенилимидазольную группу в положении 8 бензопиранового фрагмента и проявляющие фотохромные свойства в растворах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н зарегистрированы на спектрометре Varian Unity-300 (300 МГц) в CDCl₃, внутренний стандарт – остаточные сигналы растворителя (δ 7.26 м. д.). Электронные спектры поглощения и кинетические кривые термических реакций рециклизации исследуемых соединений записаны на спектрофотометре Agilent 8453 с приставкой для термостатирования образцов. Фотолиз растворов осуществлён системой Newport на основе ртутной лампы (200 Вт) с набором интерференционных светофильтров. Элементный анализ проведён на CHN-анализаторе KOVO. Температуры плавления определены на нагревательном столике Boetius. Для приготовления растворов использовали толуол (Aldrich) спектральной степени чистоты. Соединения **3а–d** получены по описанным ранее методам [22].

2-(1-Бензил-4,5-дифенил-1*H***-имидазол-2-ил)-4-бромфенол (1)**. Смесь 6.0 г (30 ммоль) 5-бромсалицилового альдегида, 6.3 г (30 ммоль) бензила, 4.89 мл (45 ммоль) бензиламина, 4.8 г (60 ммоль) NH₄OAc и 90 мл AcOH кипятят в течение 12 ч. Реакционную смесь выливают в 500 мл H₂O, нейтрализуют конц. водным NH₃ до рН 6–7, осадок отфильтровывают, промывают водой, сушат и перекристаллизовывают из смеси EtOAc-2-PrOH, 1:1. Выход 7.95 г (54%). Бледно-серые кристаллы.

Т. пл. 159–160 °С. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 5.27 (2H, с, NCH₂Ph); 6.98 (1H, д, *J* = 8.8, H-6); 7.18–7.25 (3H, м, H Ph); 7.27–7.38 (8H, м, H-5, H Ph); 7.40–7.44 (2H, м, H Ph); 7.46–7.50 (3H, м, H Ph); 7.57 (1H, д, *J* = 2.4, H-3); 9.32 (1H, уш. с, OH). Найдено, %: С 69.95; H 4.52; N 5.75. С₂₈H₂₁BrN₂O. Вычислено, %: С 69.86; H 4.40; N 5.82.

3-(1-Бензил-4,5-дифенил-1*H***-имидазол-2-ил)-5-бром-2-гидроксибензальдегид (2).** Смесь 4.82 г (10 ммоль) фенола **1**, 5.6 г (40 ммоль) гексаметилентетрамина и 30 мл трифторуксусной кислоты кипятят в инертной атмосфере в течение 12 ч, охлаждают и прибавляют смесь 14 мл конц. HCl и 28 мл H₂O. Реакционную смесь выливают в 130 мл H₂O, нейтрализуют конц. водным NH₃ до pH 6–7, осадок отфильтровывают, промывают водой, сушат, очищают колоночной хроматографией на Al₂O₃ (элюент CHCl₃) и перекристаллизовывают из смеси PhMe–2-PrOH, 1:1. Выход 1.78 г (35%). Лимонно-жёлтые кристаллы. Т. пл. 233–235 °C. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 5.24 (2H, с, NCH₂Ph); 6.95–6.98 (2H, м, H Ph); 7.18–7.24 (3H, м, H Ph); 7.27–7.51 (10H, м, H Ph); 7.68 (1H, д, *J* = 2.5, H-4); 7.81 (1H, д, *J* = 2.5, H-6); 10.43 (1H, с, CHO). Найдено, %: C 68.31; H 4.02; N 5.45. C₂₉H₂₁BrN₂O₂. Вычислено, %: C 68.38; H 4.16; N 5.50.

8-(1-Бензил-4,5-дифенил-1*H*-имидазол-2-ил)-6-бром-1',3',3'-триметилспиро-[2*H*-1-бензопиран-2,2'-индолины] 4а–d (общая методика). Смесь 1 ммоль соли 3*H*-индолия 3а–d, 1 ммоль альдегида 2 и 0.14 мл (1 ммоль) Et₃N в 10 мл PhMe и 4 мл 2-PrOH кипятят в течение 12 ч, растворитель упаривают, остаток очищают колоночной хроматографией на Al₂O₃ (элюент PhH) и перекристаллизовывают.

8-(1-Бензил-4,5-дифенил-1*H***-имидазол-2-ил)-6-бром-1',3',3'-триметилспиро-[2***H***-1-бензопиран-2,2'-индолин] (4а). Выход 0.27 г (41%). Бледно-розовые кристаллы. Т. пл. 122–124 °C (гексан). Спектр ЯМР ¹Н, δ, м. д. (***J***, Гц): 1.15 (6H, с, C(CH₃)₂); 2.78 (3H, с, 1'-CH₃); 4.22 (1H, д,** *J* **= 15.8) и 4.74 (1H, д,** *J* **= 15.8, NCH₂Ph); 5.78 (1H, д,** *J* **= 10.3, H-3); 6.36–6.39 (2H, м, H Ph); 6.50–6.54 (3H, м, H-7', H Ph); 6.87 (1H, д,** *J* **= 10.3, H-4); 6.91–7.19 (10H, м, H-5,4',5',6', H Ph); 7.23–7.30 (3H, м, H Ph); 7.41–7.44 (2H, м, H Ph); 7.68 (1H, д,** *J* **= 2.4, H-7). Найдено, %: С 73.95; H 5.10; N 6.22. C₄₁H₃₄BrN₃O. Вычислено, %: С 74.09; H 5.16; N 6.32.**

8-(1-Бензил-4,5-дифенил-1*H***-имидазол-2-ил)-5',6-дибром-1',3',3'-триметилспиро-[2***H***-1-бензопиран-2,2'-индолин] (4b). Выход 0.37 г (50%). Бледно-серые кристаллы. Т. пл. 129–131 °С (гептан). Спектр ЯМР ¹Н, δ, м. д. (***J***, Гц): 1.15 (3H, с, 3'-CH₃); 1.16 (3H, с, 3'-CH₃); 2.73 (3H, с, 1'-CH₃); 4.25 (1H, д,** *J* **= 15.8) и 4.73 (1H, д,** *J* **= 15.8, NCH₂Ph); 5.76 (1H, д,** *J* **= 10.3, H-3); 6.36–6.40 (3H, м, H-7', H Ph); 6.57–6.60 (2H, м, H Ph); 6.89 (1H, д,** *J* **= 10.3, H-4); 6.96–7.22 (9H, м, H-5,4',6', H Ph); 7.26–7.31 (3H, м, H Ph); 7.41–7.45 (2H, м, H Ph); 7.69 (1H, д,** *J* **= 2.4, H-7). Найдено, %: С 66.35; H 4.58; N 5.47. С₄₁H₃₃Br₂N₃O. Вычислено, %: С 66.23; H 4.47; N 5.65.**

8-(1-Бензил-4,5-дифенил-1*H***-имидазол-2-ил)-6-бром-5'-хлор-1',3',3'-триметилспиро[2***H***-1-бензопиран-2,2'-индолин] (4c). Выход 0.30 г (43%). Бледно-серые кристаллы. Т. пл. 120–121 °С (гексан). Спектр ЯМР ¹Н, δ, м. д. (***J***, Гц): 1.15 (3H, с, 3'-CH₃); 1.16 (3H, с, 3'-CH₃); 2.73 (3H, с, 1'-CH₃); 4.24 (1H, д,** *J* **= 15.8) и 4.73 (1H, д,** *J* **= 15.8, NCH₂Ph); 5.76 (1H, д,** *J* **= 10.3, H-3); 6.37–6.40 (2H, м, H Ph); 6.41 (1H, д,** *J* **= 8.1, H-7'); 6.56–6.60 (2H, м, H Ph); 6.89 (1H, д,** *J* **= 10.3, H-4); 6.98–7.03 (3H, м, H Ph); 7.04 (1H, д,** *J* **= 2.1, H-4'); 7.06–7.16 (4H, м, H-5, H Ph); 7.20 (1H, д. д,** *J* **= 8.2,** *J* **= 2.1, H-6'); 7.25–7.30 (3H, м, H Ph); 7.41–7.45 (2H, м, H Ph); 7.69 (1H, д,** *J* **= 2.4, H-7). Найдено, %: С 70.62; H 4.90; N 5.85. С₄₁H₃₃BrClN₃O. Вычислено, %: С 70.44; H 4.76; N 6.01.**

8-(1-Бензил-4,5-дифенил-1*H***-имидазол-2-ил)-6-бром-5'-метокси-1',3',3'-триметилспиро[2***H***-1-бензопиран-2,2'-индолин] (4d). Выход 0.33 г (47%). Бледно-сиреневые кристаллы. Т. пл. 221–223 °С (гептан). Спектр ЯМР ¹Н, δ, м. д. (***J***, Гц): 1.14 (3H, с, 3'-CH₃); 1.16 (3H, с, 3'-CH₃); 2.71 (3H, с, 1'-CH₃); 3.80 (3H, с, OCH₃); 4.22 (1H, д,** *J* **= 15.8) и 4.74 (1H, д,** *J* **= 15.8, NCH₂Ph); 5.78 (1H, д,** *J* **= 10.3, H-3); 6.37–6.40 (2H, м, H Ph); 6.41 (1H, д,** *J* **= 8.2, H-7'); 6.57–6.60 (2H, м, H Ph); 6.71 (1H, д,** *J* **= 2.5, H-4'); 6.77 (1H, д. д,** *J* **= 8.2,** *J* **= 2.5, H-6'); 6.86 (1H, д,** *J* **= 10.3, H-4); 6.96–7.22 (9H, м, H Ph); 7.26 (1H, д,** *J* **= 2.4, H-5); 7.41–7.45 (2H, м, H Ph); 7.68 (1H, д,** *J* **= 2.4, H-7). Найдено, %: С 72.47; H 5.10; N 5.98. C₄₂H₃₆BrN₃O₂. Вычислено, %: С 72.62; H 5.22; N 6.05.** Работа выполнена при финансовой поддержке Министерства образования и науки РФ (ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009–2013 годы, госконтракт П2346), Российского фонда фундаментальных исследований (проект 09-03-93115) и Совета по грантам Президента РФ (грант НШ-927.2012.3).

СПИСОК ЛИТЕРАТУРЫ

- Н. А. Волошин, Е. В. Соловьева, С. О. Безуглый, А. В. Метелица, В. И. Минкин, *XГС*, 1460 (2012).
- R. C. Bertelson, Organic Photochromic and Thermochromic Compounds, J. C. Crano, R. J. Guglielmetti (Eds.), Plenum Press, New York, 1999, vol. 1, p. 11.
- 3. V. I. Minkin, Chem. Rev., 104, 2751 (2004).
- 4. Б. С. Лукьянов, М. Б. Лукьянова, *XTC*, 323 (2005). [*Chem. Heterocycl. Compd.*, **41**, 281 (2005).]
- 5. S. M. Aldoshin, J. Photochem. Photobiol., A, 200, 19 (2008).
- 6. J.-R. Chen, J.-B. Wong, P.-Y. Kuo, D.-Y. Yang, Org. Lett., 10, 4823 (2008).
- 7. M. Tomasulo, E. Deniz, R. J. Alvarado, F. M. Raymo, J. Phys. Chem. C, 112, 8038 (2008).
- B. Seefeldt, R. Kasper, M. Beining, J. Mattay, J. Arden-Jacob, N. Kemnitzer, K. H. Drexhage, M. Heilemann, M. Sauer, *Photochem. Photobiol. Sci.*, 9, 213 (2010).
- 9. S. A. Ahmed, M. Tanaka, H. Ando, K. Tawa, K. Kimura, Tetrahedron, 60, 6029 (2004).
- 10. M. Inouye, Coord. Chem. Rev., 148, 265 (1996).
- M. V. Alfimov, O. A. Fedorova, S. P. Gromov, J. Photochem. Photobiol., A, 158, 183 (2003).
- 12. S. Kume, H. Nishihara, Struct. Bonding, 123, 79 (2007).
- M. I. Zakharova, C. Coudret, V. Pimienta, J. C. Micheau, M. Sliwa, O. Poizat, G. Buntinx, S. Delbaere, G. Vermeersch, A. V. Metelitsa, N. Voloshin, V. I. Minkin, *Dyes Pigm.*, 89, 324 (2011).
- 14. Н. А. Волошин, А. В. Чернышев, А. В. Метелица, И. М. Раскита, Е. Н. Волошина, В. И. Минкин, *Изв. АН, Сер. хим.*, 693 (2005).
- 15. А. В. Чернышев, И. В. Дороган, Н. А. Волошин, А. В. Метелица, В. И. Минкин, *Изв. АН, Сер. хим.*, 447 (2011).
- 16. A. V. Chernyshev, N. A. Voloshin, I. M. Raskita, A. V. Metelitsa, V. I. Minkin, *J. Photochem. Photobiol.*, *A*, **184**, 289 (2006).
- M. I. Zakharova, C. Coudret, V. Pimienta, J. C. Micheau, S. Delbaere, G. Vermeersch, A. V. Metelitsa, N. Voloshin, V. I. Minkin, *Photochem. Photobiol. Sci.*, 9, 199 (2010).
- 18. S. Sarshar, D. Siev, A. M. M. Mjalli, Tetrahedron Lett., 37, 835 (1996).
- 19. J. Hobley, V. Malatesta, R. Millini, L. Montanari, W. O. N. Parker, *Phys. Chem. Chem. Phys.*, 1, 3259 (1999).
- 20. J. Hobley, V. Malatesta, W. Giroldini, W. Stringo, Phys. Chem. Chem. Phys., 2, 53 (2000).
- 21. J. Hobley, V. Malatesta, Phys. Chem. Chem. Phys., 2, 57 (2000).
- 22. Н. А. Волошин, А. В. Метелица, Ж. К. Мишо, Е. Н. Волошина, С. О. Безуглый, А. В. Вдовенко, Н. Е. Шелепин, В. И. Минкин, Изв. АН, Сер. хим., 1110 (2003).

Научно-исследовательский институт

физической и органической химии

Южного федерального университета,

пр. Стачки, 194/2, Ростов-на-Дону 344090, Россия e-mail: photo@ipoc.sfedu.ru

^а Южный научный центр РАН,

пр. Чехова, 41, Ростов-на-Дону 344006, Россия e-mail: ssc-ras@ssc-ras.ru Поступило 27.10.2011