Д. А. Руденко, П. А. Слепухин^а, В. И. Карманов⁶, С. Н. Шуров^{*}, М. И. Вахрин, Ю. А. Щуров

СИНТЕЗ 5-ЗАМЕЩЁННЫХ 8,8-ДИМЕТИЛ-8,9-ДИГИДРО-3*H*,7*H*-[1,2]ОКСАЗИНО-[5,4,3-*de*]ХИНОЛИН-3-ОНОВ

Показано, что в результате реакции 2-замещённых 7,7-диметил-5-оксо-5,6,7,8-тетрагидрохинолин-4-карбоновых кислот с гидроксиламином образуются 5-замещённые 8,8-диметил-8,9-дигидро-3*H*,7*H*-[1,2]оксазино[5,4,3-*de*]хинолин-3-оны. Строение 5-фенилпроизводного установлено методом PCA. На основании неэмпирических квантовохимических расчётов предложен возможный механизм реакции.

Ключевые слова: гидроксиламин, 7,7-диметил-5-оксо-5,6,7,8-тетрагидрохинолин-4-карбоновые кислоты, 8,8-диметил-8,9-дигидро-3*H*,7*H*-[1,2]оксазино[5,4,3-*de*]хинолин-3-оны, квантово-химический расчёт.

Одним из способов построения 1,2-оксазинового цикла является взаимодействие 1,4-дикарбонильных соединений с гидроксиламином. Однако замыкание цикла в подобных реакциях наблюдается не всегда, поэтому первоначально образующиеся оксимы приходится дополнительно циклизовать [1–3]. В случаях, когда 1,4-дикарбонильный фрагмент является частью циклической системы, реакция с гидроксиламином позволяет синтезировать 1,2-оксазинсодержащие гетероциклы [4].

2-Замещённые 7,7-диметил-5-оксо-5,6,7,8-тетрагидрохинолин-4-карбоновые кислоты **1а–g**, получаемые взаимодействием 3-амино-5,5-диметилциклогекс-2-енона с ацил(ароил)пировиноградными кислотами [5], представляют собой 1,4-дикарбонильные соединения, которые могут являться исходными реагентами в синтезе трициклических гетероциклов.

Установлено, что взаимодействие кислот **1а–g** с гидроксиламином, выделяющимся *in situ* из гидрохлорида, приводит к образованию 5-замещённых 8,8-диметил-8,9-дигидро-3*H*,7*H*-[1,2]оксазино[5,4,3-*de*]хинолин-3-онов **6а–g**.

Соединения **6а**–**g** представляют собой бесцветные кристаллические вещества, растворимые в горячих ДМФА и ДМСО и плохо растворимые в обычных органических растворителях и воде. Выходы, температуры плавления и данные элементного анализа синтезированных соединений **6а**–**g** представлены в табл. 1.

Образование продуктов реакции **6**a–g можно объяснить, допустив атаку кетонного карбонила кислоты **1**a–g атомом азота гидроксиламина и перенос протона от атома азота к карбонильному атому кислорода (интермедиаты **2**a–g). Далее в интермедиатах **2**a–g атом кислорода гидроксиаминогруппы атакует углерод карбоксильной группы, что приводит к интермедиатам **4**a–g. Последний отщепляет последовательно две молекулы воды, давая интермедиаты **5**a–g, и далее – продукты реакции **6**a–g.

С целью выяснения принципиальной возможности реализации предложенной схемы были проведены расчёты полных энергий, электронных и геометрических характеристик интермедиатов **2b**, **5b**, а также интермедиатов **7b–9b** неэмпирическим методом ССП МО ЛКАО в базисе 6-31G(d).

a R = t-Bu, **b** R = Ph, **c** R = 4-MeC₆H₄, **d** R = 4-MeOC₆H₄, **e** R = 4-EtOC₆H₄, **f** R = 4-BrC₆H₄, **g** R = 4-ClC₆H₄

Согласно расчётам в интермедиате **2b** расстояние между реакционными центрами $l_{0...c}$ составляет 3.319 Å, а значения по Лёвдину зарядов атома кислорода и углерода карбоксильной группы равны соответственно –0.458 и 0.296 а. е., что не препятствует их сближению и образованию связи О–С. Данный интермедиат, возможно, стабилизируется внутримолекулярной водородной связью C(5)–O–H…O–CO–C(4), о чём свидетельствует рассчитанное межатомное расстояние $l_{\rm H…O}$ равное 2.094 Å.

Таблица 1

Соеди-	Брутто-	F	<u>Найдено, %</u> Зычислено, %	Т. пл., °С	Выход, %		
нение	формула	С	Н	Ν	,		
6a	$C_{16}H_{20}N_2O_2$	<u>70.31</u> 70.56	$\frac{7.17}{7.40}$	$\frac{10.05}{10.29}$	128–129	96	
6b	$C_{18}H_{16}N_2O_2$	<u>73.95</u> 73.96	<u>5.43</u> 5.52	<u>9.61</u> 9.58	162–163	81	
6c	$C_{19}H_{18}N_2O_2$	<u>74.22</u> 74.49	<u>5.87</u> 5.92	<u>9.00</u> 9.14	215-216	86	
6d	$C_{19}H_{18}N_2O_3$	<u>70.55</u> 70.79	<u>5.69</u> 5.63	<u>8.64</u> 8.69	216-217	90	
6e	$C_{20}H_{20}N_2O_3$	<u>71.54</u> 71.41	<u>5.99</u> 5.99	<u>8.30</u> 8.33	179–180	70	
6f	$C_{18}H_{15}BrN_2O_2$	<u>58.37</u> 58.24	<u>3.95</u> 4.07	<u>7.75</u> 7.55	220-221	80	
6g	$C_{18}H_{15}ClN_2O_2$	<u>66.11</u> 66.16	$\frac{4.53}{4.63}$	$\frac{8.40}{8.57}$	226–227	88	

Физико-химические характеристики синтезированных соединений ба-д

Моделирование нуклеофильной атаки атома углерода карбоксильной группы позволило обнаружить активированный комплекс **3b**, соответствующий переходному состоянию данной реакции. Точке максимума на потенциальной кривой соответствует межатомное расстояние $l_{0...C}$ равное 1.708 Å, при этом связь C=O удлиняется до 1.289 Å. Рассчитанная длина связи l_{O-H} оказалась равной 1.004 Å, а межатомное расстояние $l_{H...O=C}$ сократилось до 1.241 Å. Заряд атома кислорода практически не меняется (q(O) = -0.461 а. е.), а заряд атома углерода возрастает до 0.371 а. е.

Таким образом, сближение реакционных центров сопровождается переносом протона от атома кислорода гидроксиаминогруппы к карбонильному атому кислорода. Дальнейшее уменьшение расстояния $l_{O...C}$ приводит к образованию интермедиата **4b**, в котором длина связи N–<u>O–C</u> становится равной 1.400 Å. Длины вновь сформированных связей С–О и O–H оказались равными 1.374 и 0.952 Å соответственно.

Наиболее вероятное направление дегидратации интермедиата **4b** – образование интермедиата **5b**, который, как показывают расчёты, оказывается стабильнее альтернативного интермедиата **9b** на 13.9 кДж/моль.

Оксимы **7b** и **8b**, образование которых могло бы быть следствием дегидратации ключевого интермедиата **2b**, в реакционной смеси обнаружены не были.

Строение продуктов реакции **6а–** установлено по данным ИК, ЯМР ¹Н и ¹³С спектральных исследований (табл. 2, 3). Отнесение сигналов в спектрах ЯМР ¹Н и ¹³С проведено на основании гетероядерных 2D экспериментов ¹H–¹³C gHSQC и gHMBC. Например, для соединения **6а** из двух ЯМР ¹³С сигналов 174.3 и 163.1 м. д. слабопольный сигнал относится к атому C-5 как к аналогу α -углеродного атома в молекуле пиридина. В то же время указанный сигнал проявляет кросс-пик в спектре 2D gHMBC с протонами *трет*-бутильного заместителя. Соответствующие сигналы атомов углерода метиленовых групп отнесены по спектрам 2D gHSQC за счёт прямых констант спин-спинового взаимодействия подобно другим связанным с атомами водорода атомам углерода.

Таблица 2

Соеди-	ИК спектр, v, см ⁻¹		Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)									
нение	C=C, C=N	C=O	8-(CH ₃) ₂ (6H, c)	7-CH ₂ (2H, c)	9-CH ₂ (2H, c)	H-4 (1H, c)	R					
6a	1596	1742	1.08	2.98	2.75	7.87	1.39 (9H, c, C(CH ₃) ₃)					
6b	1591	1747	1.10	3.05	2.78	8.37	7.54–7.56 (3Н, м, Н Рh);					
6c	1588	1745	1.10	3.03	2.77	8.31	8.22–8.26 (2H, м, H Ph) 2.39 (3H, с, CH ₃); 7.36 (2H, д, J = 8.4, H Ar);					
6d	1584	1741	1.10	3.02	2.76	8.27	8.14 (2H, μ , $J = 8.4$, H Ar) 3.86 (3H, c, OCH ₃); 7.09 (2H, μ , $J = 8.9$, H Ar); 8.21 (2H, π , $J = 8.9$, H Ar);					
6e	1588	1742	1.10	3.02	2.76	8.26	$\begin{array}{l} 1.37 (2H, \mu, J = 8.9, H \text{ AI}) \\ 1.37 (3H, \tau, J = 6.9, \text{ OCH}_2\text{CH}_3); \\ 4.14 (2H, \kappa, J = 6.9, \text{ OCH}_2\text{CH}_3); \\ 7.07 (2H, \mu, J = 9.0, \text{ H Ar}); \\ 8.19 (2H, \mu, J = 9.0, \text{ H Ar}) \end{array}$					
6f	1585	1746	1.11	3.05	2.78	8.38	7.73 (2H, π , $J = 8.9$, H Ar); 8.19 (2H, π , $J = 8.9$, H Ar)					
6g	1588	1746	1.11	3.05	2.78	8.37	7.58 (2H, д, J = 8.8, H Ar); 8.25 (2H, д, J = 8.8, H Ar)					

ИК и ЯМР ¹Н спектры соединений 6а-g

Таблица З

		Химические сдвиги, б, м. д.														
Соеди- нени	C-5 C-6a	C-6a	C-3 C-	C-9a	C-3a	C-9b	C-4	C-7	C-9	C-8	8-(CH ₃) ₂ -	R				
		C-0a		C-Ja	C-5a							C-i	С-о	C- <i>m</i>	С-р	Другие
6a	174.3	163.1	158.7	153.9	128.1	114.7	112.3	44.8	39.3	32.3	27.4	-	-	-	-	38.4 (<u>C(CH₃)₃);</u> 29.7 (C(<u>CH₃)₃)</u>
6b	162.9	160.1	159.7	153.9	129.0	115.7	113.4	44.9	39.3	36.4	27.4	136.9	127.4	129.2	130.8	_
6c	162.6	160.2	159.4	153.6	129.0	115.1	112.6	44.8	39.2	32.0	27.2	134.1	129.5	127.0	140.4	20.7 (Ar <u>C</u> H ₃)
6d	162.7	159.9	159.4	153.6	128.5	114.6	112.0	44.8	39.2	32.0	27.2	129.3	128.8	114.4	161.4	55.3 (OCH ₃)
6e	162.7	160.0	159.4	153.6	128.5	114.6	112.0	44.8	39.2	32.0	27.2	129.2	128.8	114.8	160.7	63.3 (<u>C</u> H ₂ CH ₃); 14.6 (CH ₂ <u>C</u> H ₃)
6f	162.5	159.6	158.9	153.6	128.8	115.8	113.3	44.7	39.2	32.0	27.2	136.0	129.1	131.8	124.3	_
6g	162.3	159.4	158.8	153.4	128.5	115.6	113.1	44.7	39.1	31.8	27.0	135.3	128.8	128.7	135.5	-

Спектры ЯМР ¹³С соединений 6а-g

Молекулярная структура соединения **6b** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью (молекула EtOAc, входящая в состав кристалла, не показана)

Рентгеноструктурные исследования монокристалла соединения **6b** также подтвердили предлагаемую структуру продуктов рассматриваемой реакции (рисунок). Соединение кристаллизуется в центросимметричной пространственной группе триклинной сингонии. Бигетероциклический фрагмент плоский в пределах 0.04 Å, фенильный заместитель развёрнут относительно его плоскости под углом 7.2°. Распределение длин связей оксазинового цикла позволяет характеризовать его как систему сопряжённых кратных связей, а не систему ароматического кольца. В то же время длины связей пиридинового цикла в значительной степени выровнены. Молекулярная упаковка образована слоями молекул, плоскости бигетероциклических систем которых образуют угол 55.86° с плоскостью [1 0 0]. Ярко выраженные укороченные контакты в упаковке отсутствуют.

Таким образом, изученная реакция представляет собой удобный и эффективный способ получения аннелированных трёхчленных гетероциклических соединений, содержащих оксазиновый фрагмент. Проведённые квантовохимические расчёты не противоречат предложенной схеме реакции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на спектрометре IFS 66ps Bruker в суспензии вазелинового масла. Спектры ЯМР ¹Н и ¹³С записаны на приборе Varian Mercury 300 Plus (300 и 75 МГц соответственно) в ДМСО-d₆, внутренний стандарт ГМДС. Элементный анализ выполнен на приборе СНNS-932 LECO Corporation. Температуры плавления определены на приборе ПТП. Индивидуальность синтезированных соединений подтверждена данными ВЭЖХ (хроматограф Agilent 1260, элюент MeCN, детектирование при 254 и 300 нм). Квантово-химические расчёты выполнены с помощью пакета программ Firefly [6] на персональном компьютере Toshiba Portege M400.

Исходные кислоты 1а-д получены по методике [5].

5-Замещённые 8,8-диметил-8,9-дигидро-3*H***,7***H***-[1**,2]оксазино[5,4,3-*de*]хинолин-**3-оны ба**–g (общая методика). В ступке растирают 1.0 г (14.4 ммоль) H₂NOH·HCl с 1.18 г (14.4 ммоль) безводного NaOAc, переносят смесь в стеклянный стаканчик и кипятят в 10 мл EtOH в течение 1 мин. Раствор фильтруют горячим. К фильтрату добавляют 2.0 ммоль соответствующей кислоты **1а**–g, кипятят в течение 3 ч. Реакционную смесь охлаждают, образовавшийся осадок отфильтровывают. Промывают на фильтре горячим EtOH.

Рентгеноструктурное исследование соединения 6b. Кристалл выращен из ЕtOAc в форме сольвата (1:1), брутто-формула C₁₈H₁₆N₂O₂·C₄H₈O₂ (*M* 380.45). Кристаллы соединения 6b триклинные; пространственная группа P1; а 6.0405(6), b 11.8451(11), c 12.0501(12) Å; a 117.838(10), β 93.803(8), γ 95.908(8)°; V 751.92(13) Å³; $d_{\text{выч}}$ 1.291 г/см³; Z 2. Параметры ячейки и набор экспериментальных отражений измерены по стандартной процедуре [7] на автоматическом четырёхкружном дифрактометре с ССД-детектором Xcalibur 3 методом @/20-сканирования на монохроматизированном МоКα-излучении в интервале углов 3.35 < θ < 28.28. Всего измерено 5129 отражений, из них 3401 независимых (R_{int} 0.0204), 1605 с I > 2 σ (I). Завершённость эксперимента для угла в 25.50° 95.5%. Поправки на поглощение не вводили (µ 0.085 мм⁻¹). Структура определена прямым статистическим методом и уточнена полноматричным МНК по F^2 в анизотропном приближении для всех неводородных атомов. Атомы водорода помещены в геометрически рассчитанные положения и уточнены в изотропном приближении. Все расчёты проведены по комплексу программ SHELXTL [8]. Окончательные результаты уточнения: R_1 0.0428, wR_2 0.0929 для отражений с $I > 2\sigma(I)$, R_1 0.1049, wR_2 0.1036 для всех отражений, S 1.005. Максимальный и минимальный пики остаточной электронной плотности 0.189 и -0.174 е·Å-3. Результаты РСА депонированы в Кембриджском банке структурных данных (депонент ССDС 903807).

СПИСОК ЛИТЕРАТУРЫ

- 1. A. Maeder, Helv. Chim. Acta, 29, 120 (1946).
- M. Masaki, H. Matsucubo, K. Masuzawa, Y. Chigira, M. Ohta, J. Heterocycl. Chem., 2, 376 (1965).
- 3. B. Hardegger, S. Shatzmiller, Helv. Chim. Acta, 59, 2499 (1976).
- 4. C. P. Sakthidharan, N. Sampathkumar, Heterocycl. Lett., 1, 43 (2011).
- 5. Д. А. Руденко, С. Н. Шуров, М. И. Кодесс, М. А. Ежикова, А. Н. Васянин, *Журн. орган. химии*, **48**, 803 (2012).
- A. A. Granovsky, Firefly version 7.1.G, http://classic.chem.msu.su/gran/firefly/index.html (дата обращения: 07.02.2012).
- 7. CrysAlis Pro, Version 171.33.66, Oxford Diffraction Ltd.
- 8. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., A64, 112 (2008).

Пермский государственный национальный исследовательский университет, ул. Букирева, 15, Пермь 614990, Россия e-mail: seshurov@yandex.ru Поступило 8.02.2012

^а Институт органического синтеза УрО РАН, ул. С. Ковалевской, 22 / Академическая, 20, Екатеринбург 620041, Россия e-mail: slepukhin@ios.uran.ru

⁶ Институт технической химии УрО РАН, ул. Академика Королева, 3, Пермь 614013, Россия e-mail:karmanovvi@rambler.ru