Г. А. Газиева*, П. А. Полубояров, Ю. В. Нелюбина^а, М. И. Стручкова, А. Н. Кравченко

СИНТЕЗ ИМИДАЗО[4,5-е][1,3]ТИАЗОЛО[3,2-b][1,2,4]ТРИАЗИНОВ

Алкилированием пергидроимидазо[4,5-*e*][1,2,4]триазин-3-тионов бромуксусной кислотой синтезированы неизвестные ранее имидазо[4,5-*e*][1,3]тиазоло[3,2-*b*][1,2,4]-триазины, строение которых подтверждено РСА.

Ключевые слова: бромуксусная кислота, имидазо[4,5-*e*][1,3]тиазоло[3,2-*b*]-[1,2,4]триазины, пергидроимидазо[4,5-*e*][1,2,4]триазин-3-тионы, алкилирование.

Производные 1,2,4-триазина проявляют широкий спектр биологической активности. Азануклеозиды, содержащие 1,2,4-триазиновый цикл, например 6-азацитозин и 6-азаурацил, оказывают противовирусное [1, 2] и противоопухолевое действие [3, 4]. Известный препарат азарибин (триацетил-6-азауридин) используют для лечения вирусных, грибковых заболеваний и псориаза [5]. Описаны конденсированные 1,2,4-триазины с антипролиферативной [6–8], противогрибковой и анальгетической активностью [9–12]. Тиазоло[3,2-*b*]- или тиазоло[2,3-*c*][1,2,4]триазины обладают антидепрессивными [13], анти-ВИЧ и противораковыми свойствами [14].

Одним из методов получения тиазоло[3,2-*b*]- или тиазоло[2,3-*c*][1,2,4]триазинов является конденсация тетрагидро[1,2,4]триазин-3(2*H*)-тионов с галогенуксусными кислотами или их эфирами при кипячении в этаноле [13]. Эта же реакция в присутствии NaOAc, NaOH или KOH приводит к продуктам *S*-алкилирования триазинтионов – (1,2,4-триазин-3-илсульфанил)уксусным кислотам, которые циклизуют в тиазолотриазины действием водной щёлочи, кислот или уксусного ангидрида [14–17].

В настоящей работе с целью синтеза новых имидазо[4,5-*e*][1,3]тиазоло-[3,2-*b*][1,2,4]триазинов изучено алкилирование пергидроимидазо[4,5-*e*]-[1,2,4]триазин-3-тионов галогенуксусными кислотами.

Ранее мы синтезировали тиазолотриазин **1a** алкилированием триазинтиона **2a** бромуксусной кислотой в кипящей уксусной кислоте в присутствии NaOAc [17]. Однако при использовании производных триазинтионов **2b**, с в этих

1b, **2a**,**b**, **3a** R = Me, **1c**, **2c**, **3b** R = Et, **2a** R¹ = Ph, **2b**,**c** R¹ = H

Соеди-	Брутто-		Найдено, % Вышислено, % Т. пл., °С Вых			Выход,	
нение	формула	С	Н	N	S	(с разл.)	%
1b	$C_8H_{11}N_5O_2S$	<u>39.91</u>	<u>4.73</u>	<u>29.09</u>	<u>13.21</u>	238-240	60 (65)*
1c	$C_{10}H_{15}N_5O_2S$	39.83 <u>44.65</u>	4.60 <u>5.64</u>	29.03 <u>26.11</u>	<u>13.29</u> <u>11.82</u>	98–100	63 (68)*
4	C ₃ H ₅ N ₃ OS	44.60 <u>27.41</u>	5.61 <u>3.79</u>	26.00 <u>32.07</u>	11.91 <u>24.32</u>	315-317	14
5	C ₃ H ₆ BrN ₃ OS	27.47 <u>17.27</u>	3.84 <u>3.01</u>	32.04 <u>20.10</u>	24.45 <u>15.01</u>	272_275	9
6a	C ₈ H ₁₂ BrN ₅ O ₂ S	16.99 <u>29.94</u>	2.85 <u>3.82</u>	19.81 <u>21.81</u>	15.12 <u>9.79</u>	212-213	59
6b	$\mathrm{C_{10}H_{16}BrN_5O_2S}$	29.82 <u>34.38</u>	3.75 <u>4.71</u>	21.74 20.09	9.95 <u>9.02</u>	188_190	71
7a	$C_8H_{13}N_5O_3S$	34.29 <u>36.99</u>	4.60 <u>5.13</u>	20.00 <u>27.08</u>	9.15 <u>12.26</u>	178-180	50
9a	C ₈ H ₁₂ BrN ₅ OS ₂	37.06 <u>28.54</u>	5.05 <u>3.65</u>	27.01 <u>20.79</u>	12.37 <u>18.83</u>	224 226	69
9b	C ₁₀ H ₁₆ BrN ₅ OS ₂	28.41 <u>32.84</u>	3.58 <u>4.51</u>	20.70 <u>19.23</u>	18.96 <u>17.42</u>	192 195	74
10a	$C_8H_{13}N_5O_2S_2$	32.79 <u>34.76</u>	4.40 <u>4.78</u>	19.12 25.34	17.51 23.11	205 207	74
11a	C ₈ H ₁₁ N ₅ OS ₂	34.90 37.41	4.76	25.43 27.32	23.29 24.84	205-207	12
116	C H N OS	37.34	4.31	27.21	24.92	237–239	71
110	$C_{10} I_{15} I_{5} O S_{2}$	42.09	5.30	24.54	22.47	235–237	66
lle	$C_{10}H_{13}N_5O_2S_2$	$\frac{40.21}{40.12}$	$\frac{4.42}{4.38}$	$\frac{23.44}{23.39}$	$\frac{21.31}{21.42}$	195–197	56

Физико-химические характеристики синтезированных соединений

* Выход указан для соединений, полученных методом Б, в скобках – методом В.

условиях реакция протекает неселективно и конденсированные трициклические соединения **1b**, **c** образуются с выходами не более 10–15%. При этом среди продуктов реакции обнаружены также гидантоины **3a**, **b**, 3-амино-2-иминотиазолидин-4-он **4** и его гидробромид **5**.

Гидантоины **За,b** идентифицированы по спектрам ЯМР ¹Н [18, 19] упаренных досуха реакционных смесей, а соединения **4** и **5** выделены с выходами 14 и 9% соответственно (табл. 1).

Исследование влияния растворителя и температуры на направление реакции триазинтионов **2b**,**c** с бромуксусной кислотой показало, что гидробромиды целевых тиазоло[3,2-*b*]триазинов **6a**,**b** образуются с выходами 59– 71% в уксусной кислоте при более низкой температуре (50–60 °C). Реакция протекает региоспецифично, в спектрах ЯМР ¹Н упаренных досуха реакционных смесей сигналов тиазоло[2,3-*c*][1,2,4]триазинов не обнаружено. Основания **1b**,**c** получены с выходами 60–63% действием водного раствора NaHCO₃ на гидробромиды **6a**,**b**.

6 a R = Me, **b** R = Et

Нагревание соединений **2b**,**c** с бромуксусной кислотой и небольшим избытком NaOAc в кипящем этаноле приводит к имидазотриазинтионам **1b**,**c** с выходами 65–68%. При использовании в качестве алкилирующего реагента менее активной хлоруксусной кислоты образуется соединение **7a**.

Строение гидробромидов **5** и **6b** подтверждено РСА (рисунок). Геометрические параметры гетероциклов в кристаллах обоих соединений попадают в диапазон значений, характерных для гетероциклов данного типа (см., например [17, 20, 21]). Тиазолидиновый цикл плоский, выход атомов из среднеквадратичной плоскости не превышает 0.01(1) Å. В случае соединения **5** дополнительный вклад в стабилизацию такой конформации может вносить внутримолекулярная водородная связь N(5)–H···N(3) (расстояние N···N 2.763(4) Å, угол N–H···N 100(1)°). Конформация имидазолидинового и триазинового циклов в соединении **6b** – "твист" с выходом атомов C(1) (0.24(1) Å), C(3) (–0.14(1) Å) и C(1) (0.16(1) Å), N(3) (–0.34(1) Å) соответственно. Последний атом в триазиновом фрагменте заметно пирамидализован: сумма валентных углов при нём составляет 334.3(3)°. Для сравнения: это же значение в случае атома N(5) равно 359.7(4)°.

В кристаллах соединений **5** и **6b** молекулы объединяются водородными связями N–H[…]Br в цепи и центросимметричные димеры соответственно (расстояние N[…]Br составляет 3.340(3)–3.648(3) и 3.185(4)–3.346(5) Å, угол N–H[…]Br – 155(1)–176(1) и 139(1)–175(1)°). В первом случае наличие двух

Общий вид гидробромидов **5** (*a*) и **6b** (*b*) в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

NH₂-групп также способствует образованию N–H···O водородных связей (расстояние N···O 3.018(3) Å, угол N–H···O 112(1)°), которые приводят к "сдвоению" указанных выше N–H···Br-связанных цепей. Также стоит отметить достаточно прочные взаимодействия $n(Br) \rightarrow \sigma^*(C-S)$ в обеих структурах (расстояние S···Br 3.481(3) Å в гидробромиде **5** и 3.453(4)–3.594(4) Å в гидробромиде **6b**, угол C–S···Br 175.7(1)° в структуре **5** и 158.0(2)–172.4(2) Å в соединении **6b**) и S(1)···O(1) в кристалле гидробромида **5** (расстояние S...O 2.914(3) Å, угол C–S···O 161.1(1)°). Формирование трёхмерного каркаса завершают более слабые контакты C–H...O и C–H···Br, а также Br···π в кристалле соединения **5** и C–H···π, O···π и H····H в кристалле гидробромида **6b**.

Имидазотриазиндитионы **8а,b** реагируют с бромуксусной кислотой в уксусной кислоте с образованием гидробромидов **9а,b** (табл. 1). При проведении реакции в кипящем этаноле соединение **8а** алкилируется только по атому серы и превращается в кислоту **10а**. Имидазотиазолотриазины **11а,b** получены из гидробромидов **9а,b** действием водного раствора NaHCO₃, а ацетилпроизводное **11с** – из кислоты **10а** нагреванием в уксусном ангидриде. Выходы соединений **9а,b**, **10а** и **11а–с** составляют 69–74, 72 и 56–71% соответственно.

8, **9**, **11 a** R = Me, **b** R = Et; **11c** R = Me; **11a**, **b** R¹ = H, **c** R¹ = Ac

Состав соединений **1b,c**, **4**, **5**, **6a,b**, **9a,b**, **10a**, **11a,b** подтверждён данными элементного анализа, а структура – ЯМР ¹Н и ¹³С и масс-спектроскопией (табл. 1, 2). В масс-спектрах соединений **1b,c**, **4**, **11a–c** присутствуют интенсивные пики молекулярных ионов, в спектрах солей **5**, **6a,b**, **9a,b** – пики [M–HBr]⁺, в спектрах кислот **7a** и **10a** – пики [M–H₂O]⁺.

Таким образом, региоспецифическим алкилированием пергидроимидазо-[4,5-*e*][1,2,4]триазин-3-тионов бромуксусной кислотой синтезированы новые имидазо[4,5-*e*][1,3]тиазоло[3,2-*b*][1,2,4]триазины.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С зарегистрированы на спектрометре Bruker AM-300 (300 и 75 МГц соответственно) в ДМСО- d_6 , внутренний стандарт ТМС. Масс-спектры записаны на приборе Kratos MS-30 (ЭУ, 70 эВ). Элементный анализ выполнен на приборах Perkin Elmer 2400 CHN Analyzer и EuroVector Euro EA Elemental Analyzer. Температуры плавления определены на приборе Sanyo Gallenkamp.

5,7-Диалкил-3-тиоксопергидроимидазо[4,5-*e*][1,2,4]триазин-6-оны(тионы) **2b,c** (**8a**,**b**) синтезированы по методикам [22, 23].

Таблица 2

Спектральные характеристики синтезированных соединений

Соеди- нение	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)	Спектр ЯМР ¹³ С, б, м. д.	Масс-спектр, m/z ($I_{\text{отн}}$, %)
1	2	3	4
1b	2.56 (3H, c, NCH ₃); 2.73 (3H, c, NCH ₃); 3.92 (1H, \exists , $J = 17.1$) ii 3.98 (1H, \exists , $J = 17.1$, SCH ₂); 4.63 (1H, \exists , $J = 5.9$, CH); 4.73 (1H, \exists , $J = 5.9$, CH); 6.71 (1H, ym. c, NH)	26.9 (NCH ₃); 27.8 (NCH ₃); 29.1 (SCH ₂); 64.8 (CH); 65.8 (CH); 152.1 (C=N); 158.8 (C=O); 166.8 (C=O)	241 [M] ⁺ (100)
1c	0.94 (3H, T, $J = 7.0$, CH ₂ CH ₃); 1.11 (3H, T, $J = 7.0$, CH ₂ CH ₃); 3.04–3.11 (3H, M) H 3.25–3.32 (1H, M, 2NCH ₂); 3.91 (1H, J, $J = 17.0$) H 4.00 (1H, J , $J = 17.0$, SCH ₂); 4.78 (2H, YIII. c, 2CH); 6.64 (1H, c, NH)	12.7 (CH ₃); 13.3 (CH ₃); 28.9 (SCH ₂); 34.2 (NCH ₂); 35.0 (NCH ₂); 62.6 (CH); 63.9 (CH); 152.0 (C=N); 157.8 (C=O); 166.7 (C=O)	269 [M] ⁺ (100)
4	3.92 (2H, c, CH ₂); 8.06 (1H, c, NH); 11.74 (2H, c, NH ₂)	32.0 (CH ₂); 157.7 (C=N); 172.3 (C=O)	131 [M] ⁺ (100)
5	4.27 (2H, c, CH ₂); 5.75 (2H, уш. c, NH ₂); 10.95 (2H, уш. c, N ⁺ H ₂)	31.9 (CH ₂); 170.2; 174.7	131 [M–HBr] ⁺ (55)
6a	2.58 (6H, c, 2NCH ₃); 4.11 (1H, д, $J = 17.5$) и 4.16 (1H, д, $J = 17.5$, SCH ₂); 4.96 (1H, д, $J = 6.3$, CH); 5.11 (1H, д, $J = 6.3$, CH); 7.59 (2H, уш. c, NH, N ⁺ H)	27.3 (NCH ₃); 27.7 (NCH ₃); 31.3 (SCH ₂); 63.8 (CH); 66.0 (CH); 147.9 (C=N); 157.8 (C=O); 167.1 (C=O)	241 [M–HBr] ⁺ (100)
6b	0.95 (3H, T, $J = 7.0$, CH ₂ CH ₃); 1.11 (3H, T, $J = 7.0$, CH ₂ CH ₃); 3.05–3.16 (3H, M) M 3.30–3.42 (1H, M, 2NCH ₂); 4.05 (1H, J, J = 17.5) M 4.15 (1H, $J, J = 17.5$, SCH ₂); 5.01–5.05 (2H, M, 2CH); 6.79 (2H, ym. c, NH, N ⁺ H)	12.6 (CH ₃); 13.4 (CH ₃); 30.7 (SCH ₂); 34.7 (NCH ₂); 35.2 (NCH ₂); 62.0 (CH); 64.3 (CH); 147.0 (C=N); 157.2 (C=O); 167.1 (C=O)	269 [M–HBr] ⁺ (91)
7a	2.55 (3H, c, NCH ₃); 2.61 (3H, c, NCH ₃); 3.58 (1H, д, <i>J</i> = 15.9) и 3.65 (1H, д, <i>J</i> = 15.9, SCH ₂); 4.67 (1H, д, <i>J</i> = 7.8, CH); 4.82 (1H, д, <i>J</i> = 7.8, CH); 6.89 (1H, уш. c, NH); 7.63 (1H, уш. c, NH); 12.76 (1H, уш. c, COOH)	26.8 (NCH ₃); 27.2 (NCH ₃); 32.4 (SCH ₂); 65.3 (CH); 68.2 (CH); 146.0 (C=N); 158.2 (C=O); 170.2 (COOH)	241 [M–H ₂ O] ⁺ (84)
9a	2.88 (3H, c, NCH ₃); 3.08 (3H, c, NCH ₃); 3.99 (1H, д, <i>J</i> = 17.3) и 4.06 (1H, д, <i>J</i> = 17.3, SCH ₂); 5.09 (2H, уш. c, 2CH); 6.98 (2H, уш. c, NH, N ⁺ H)	31.0 (SCH ₂); 31.3 (NCH ₃); 31.6 (NCH ₃); 65.1 (CH); 68.7 (CH); 164.1 (C=N); 167.0 (C=O); 182.6 (C=S)	257 [M–HBr] ⁺ (100)
9b	0.99 (3H, T, $J = 6.9$, CH ₂ CH ₃); 1.16 (3H, T, $J = 6.9$, CH ₂ CH ₃); 3.31–3.58 (3H, M) H 3.81–3.91 (1H, M, 2NCH ₂); 3.98 (1H, J = 17.2) H 4.06 (1H, $J = 17.2$, SCH ₂); 5.13 (1H, $J = 7.0$, CH); 5.21 (1H, $J = 7.0$, CH); 8.90 (1H, c, NH, N ⁺ H)	11.8 (CH ₃); 12.9 (CH ₃); 30.1 (SCH ₂); 38.1 (NCH ₂); 38.5 (NCH ₂); 63.7 (CH); 66.9 (CH); 159.0 (C=N); 166.8 (C=O); 181.0 (C=S)	285 [M–HBr] ⁺ (65)
10a	2.87 (3H, c, NCH ₃); 2.93 (3H, c, NCH ₃); 3.57 (1H, д, <i>J</i> = 16.1) и 3.66 (1H, д, <i>J</i> = 16.1, SCH ₂); 5.02 (1H, д, <i>J</i> = 8.6, CH); 5.05 (1H, д, <i>J</i> = 8.6, CH); 7.13 (H, c, NH); 7.69 (1H, уш. c, NH); 12.74 (1H, уш. c, COOH)	31.3 (NCH ₃); 32.3 (SCH ₂); 68.0 (CH); 71.9 (CH); 146.6 (C=N); 170.0 (COOH); 181.1 (C=S)	275 [M] ⁺ (19), 257 [M–H ₂ O] ⁺ (100)
11a	2.89 (3H, c, NCH ₃); 3.07 (3H, c, NCH ₃); 3.91 (1H, д, <i>J</i> = 17.0) и 4.00 (1H, д, <i>J</i> = 17.0, SCH ₂); 4.79 (2H, уш. c, 2CH); 6.84 (1H, уш. c, NH)	28.9 (SCH ₂); 30.8 (NCH ₃); 31.1 (NCH ₃); 66.6 (CH); 68.0 (CH); 153.4 (C=N); 166.6 (C=O); 182.6 (C=S)	257 [M] ⁺ (100)

Окончание таблицы 2

1	2	3	4
11b	0.99 (3H, т, <i>J</i> = 7.0, CH ₂ C <u>H</u> ₃); 1.18 (3H,	11.8 (CH ₃); 13.0 (CH ₃); 29.5	285 [M] ⁺
	т, $J = 7.0$, CH ₂ C <u>H₃</u>); 3.25–3.59 (3H, м)	(SCH ₂); 38.0 (NCH ₂); 38.4	(100)
	и 3.79–3.88 (1Н, м, 2NCH ₂); 3.93 (1Н,	(NCH ₂); 64.0 (CH); 66.7 (CH);	
	д, J=16.9) и 4.03 (1Н, д, J=16.9,	147.8 (C=N); 166.8 (C=O);	
	SCH ₂); 5.01 (1H, д, <i>J</i> = 6.8, CH); 5.09	180.9 (C=S)	
	(1Н, д, J=6.8, СН); 6.96 (1Н, уш. с,		
	NH)		
11c	2.27 (3H, c, COCH ₃); 2.92 (3H, c,	21.1 (CH ₃); 29.2 (SCH ₂); 30.9	299 [M] ⁺
	NCH ₃); 3.08 (3H, с, NCH ₃); 4.13 (1H, д,	(NCH ₃); 31.4 (NCH ₃); 66.6	(91)
	<i>J</i> = 17.1) и 4.22 (1Н, д, <i>J</i> = 17.1, SCH ₂);	(CH); 68.6 (CH); 151.3 (C=N);	
	5.30 (1Н, д, J = 7.1, СН); 6.22 (1Н, д,	164.4 (C=O); 168.2 (C=O);	
	J = 7.1, CH	182.5 (C=S)	

Алкилирование имидазотриазинов 2b,с бромуксусной кислотой. А. К 7 ммоль имидазотриазина 2b,с, 0.93 г (7 ммоль) бромуксусной кислоты и 0.57 г (7 ммоль) NaOAc добавляют 15 мл ледяной AcOH и кипятят при перемешивании в течение 1 ч. Выпавший после охлаждения реакционной смеси осадок гидробромида 5 отфильтровывают и перекристаллизовывают из AcOH. Фильтрат оставляют на ночь при комнатной температуре, выпавший осадок смеси соединений 4 и 6a,b отфильтровывают и разделяют дробной кристаллизацией из метанола. Выходы гидробромидов 1,3-диалкил-3,3а,9,9а-тетрагидроимидазо[4,5-*e*][1,3]тиазоло[3,2-*b*][1,2,4]-триазин-2,7(1*H*,6*H*)-дионов 6a,b не превышают 10–15%.

Б. К 3 ммоль имидазотриазина 2b,с и 0.42 г (3 ммоль) бромуксусной кислоты добавляют 10 мл ледяной AcOH и перемешивают при 50–60 °C в течение 2 ч. Раствор

Таблица З

Параметр	5	6b
Брутто-формула	C ₃ H ₆ BrN ₃ OS	C ₁₀ H ₁₆ BrN ₅ O ₂ S
Молекулярная масса	212.08	350.25
Т, К	120	293
Кристаллическая система	Моноклинная	Моноклинная
Пространственная группа	$P2_{1}/n$	$P2_{1}/c$
Ζ	4	4
Параметры элементарной ячейки:		
a, Å	7.1996(8)	10.694(5)
b, Å	8.7790(10)	12.516(6)
<i>c</i> , Å	11.0130(13)	11.102(5)
α, град.	90.00	90.00
β, град.	101.027(2)	96.457(10)
ү, град.	90.00	90.00
$V, Å^3$	683.23(14)	1476.6(12)
$d_{\rm bbiy}$, $\Gamma \cdot {\rm cm}^{-3}$	2.062	1.576
μ , cm ⁻¹	62.42	29.31
<i>F</i> (000)	416	712
20 _{тах} , град.	58	52
Число измеренных отражений	7167	4194
Число независимых отражений	1797	2808
Число отражений с $I > 2\sigma(I)$	1470	1771
Количество уточняемых параметров	82	172
R1	0.0306	0.0478
wR2	0.0659	0.1221
GOOF	1.004	1.001
Остаточная электронная плотность, е - Å^-3 (d_{\min}/d_{\max}	() 1.087 / -0.434	0.539 / -0.558

Основные кристаллографические данные и параметры уточнения соединений 5 и 6b

оставляют на ночь при комнатной температуре, выпавший осадок гидробромида **6**а,**b** отфильтровывают, растворяют в 10–15 мл воды, прибавляют 10% водный раствор NaHCO₃ до pH 7–8 и перемешивают в течение 5 мин. Выпавший осадок тиазолотриазина **1b**,**c** отфильтровывают и сушат.

В. Растворяют 3.0 ммоль имидазотриазина **2b,c**, 0.42 г (3.0 ммоль) бромуксусной кислоты и 0.26 г (3.2 ммоль) NaOAc в 10 мл EtOH и кипятят при перемешивании в течение 2 ч. Затем реакционную смесь оставляют при комнатной температуре, выпавший осадок соединения **1b,c** отфильтровывают и сушат.

[(5,7-Диметил-6-оксо-4,4а,5,6,7,7а-гексагидро-1*H*-имидазо[4,5-*e*][1,2,4]триазин-3-ил)сульфанил]уксусная кислота (7а). Суспензию 0.40 г (2 ммоль) имидазотриазина 2b, 0.19 г (2 ммоль) хлоруксусной кислоты и 0.17 г (2 ммоль) NaOAc в 10 мл ЕtOH кипятят при перемешивании в течение 2 ч. Растворитель отгоняют, остаток перекристаллизовывают из смеси ацетон–MeOH, 1:2. Выход 0.25 г (50%).

1,3-Диалкил-2-тиоксо-1,2,3,3а,9,9а-гексагидроимидазо[4,5-*e***][1,3]тиазоло[3,2-b**]-[**1,2,4]триазин-7(6***H***)-оны 11а,b и их гидробромиды 9а,b** получают аналогично соединениям **1b,c** и **6а,b** алкилированием имидазотриазинов **8а,b** бромуксусной кислотой по методу Б.

[(5,7-Диметил-6-тиоксо-4,4а,5,6,7,7а-гексагидро-1*H*-имидазо[4,5-*e*][1,2,4]триазин-3-ил)сульфанил]уксусная кислота (10а). Растворяют 0.65 г (3 ммоль) имидазотриазина 8а, 0.42 г (3 ммоль) бромуксусной кислоты и 0.25 г (3 ммоль) АсОNа в 10 мл ЕtOH и кипятят при перемешивании в течение 2 ч. Реакционную смесь оставляют при комнатной температуре, выпавший осадок кислоты 10а отфильтровывают и сушат.

9-Ацетил-1,3-диметил-2-тиоксо-1,2,3,3а,9,9а-гексагидроимидазо[4,5-е][1,3]тиазоло[3,2-b][1,2,4]триазин-7(6Н)-он (11с). Растворяют 0.55 г (2 ммоль) кислоты **10а** в 5 мл Ас₂О и перемешивают при 50 °С в течение 2.0–2.5 ч. Образовавшийся осадок отфильтровывают и перекристаллизовывают из EtOH.

Рентгенодифракционные исследования соединений 5 и 6b проводили на дифрактометре SMART 1000 CCD (МоК α -излучение, графитовый монохроматор, ω -сканирование). Структуры расшифрованы прямым методом и уточнены МНК в анизотропном полноматричном приближении по *F2hkl*. Атомы водорода NH-групп локализованы из разностных Фурье-синтезов электронной плотности. Позиции остальных атомов водорода рассчитаны геометрически. Все атомы водорода уточнены в изотопном приближении по модели "наездник". Все расчёты проведены по комплексу программ SHELXTL PLUS. Полная кристаллографическая информация по соединениям 5 и 6b депонирована в Кембриджском банке структурных данных (депоненты CCDC 906498 и CCDC 906499 соответственно).

СПИСОК ЛИТЕРАТУРЫ

- R. W. Sidwell, G. J. Dixon, S. M. Sellers, F. M. Schabel, Jr., *Appl. Microbiol.*, 16, 370 (1968).
- I. Alexeeva, L. Palchikovskaya, A. Shalamay, L. Nosach, V. Zhovnovataya, O. Povnitsa, N. Dyachenko, *Acta Biochim. Pol.*, 47, 95 (2000).
- 3. W. A. Creasey, M. E. Fink, R. E. Handschumacher, P. Calabresi, *Cancer Res.*, 23, 444 (1963).
- 4. T. R. Walters, R. J. A. Aur, K. Hernandes, T. Vietti, D. PinKel, Cancer, 29, 1057 (1972).
- 5. M. Negwer, in Organic Chemical Drugs and Their Synonyms (an International Survey), Akademie, Berlin, 1987, vol. 1, p. 352.
- J. T. Hunt, T. Mitt, R. Borzilleri, J. Gullo-Brown, J. Fargnoli, B. Fink, W.-C. Han, S. Mortillo, G. Vite, B. Wautlet, T. Wong, C. Yu, X. Zheng, R. Bhide, *J. Med. Chem.*, 47, 4054 (2004).
- P. Diana, P. Barraja, A. Lauria, A. Montalbano, A. M. Almerico, G. Dattolo, G. Cirrincione, *Eur. J. Med. Chem.*, 37, 267 (2002).
- 8. S. A. Patil, B. A. Otter, R. S. Klein, Tetrahedron Lett., 35, 5339 (1994).
- 9. S. Singh, K. Husain, F. Athar, A. Azam, Eur. J. Pharm. Sci., 25, 255 (2005).

- Y. Kurasawa, M. Kanoh, Y. Kamigaki, M. Okiyama, A. Takada, Y. Okamoto, J. Heterocycl. Chem., 25, 1015 (1988).
- 11. K. Sztanke, S. Fidecka, E. Kedzierska, Z. Karczmarzyk, K. Pihlaja, D. Matosiuk, *Eur. J. Med. Chem.*, **40**, 127 (2005).
- W. A. El-Sayed, I. F. Nassar, A. A.-H. Abdel-Rahman, J. Heterocycl. Chem., 48, 135 (2011).
- 13. D. L. Trepanier, P. E. Krieger, US Pat. Appl. 3641019; Chem. Abstr., 76, 127024 (1972).
- 14. R. M. Abdel-Rahman, M. Seada, M. Fawzy, I. El-Baz, Pharmazie, 49, 729 (1994).
- K. S. Dhaka, H. S. Chaudhary, K. S. Sharma, H. K. Pujari, *Indian J. Chem.*, Sect. B: Org. Chem. Incl. Med. Chem., 14B, 541 (1976).
- 16. S. Bala, M. L. Sachdeva, R. N. Handa, H. K. Pujari, Heterocycles, 14, 149 (1980).
- 17. S. V. Vasilevskii, P. A. Belyakov, G. A. Gazieva, Yu. V. Nelyubina, N. G. Kolotyrkina, A. N. Kravchenko, *Mendeleev Commun.*, **20**, 47 (2010).
- 18. H. Petersen, Synthesis, 273 (1973).
- A. S. Sigachev, A. N. Kravchenko, G. A. Gazieva, P. A. Belyakov, N. G. Kolotyrkina, O. V. Lebedev, N. N. Makhova, *J. Heterocycl. Chem.*, 43, 1295 (2006).
- P. J. Steel, J. A. M. Guard, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 50, 1721 (1994).
- A. N. Kravchenko, P. A. Poluboyarov, S. V. Vasilevskii, G. A. Gazieva, Yu. V. Nelyubina, *Mendeleev Commun.*, 22, 90 (2012).
- 22. А. С. Сигачев, А. Н. Кравченко, П. А. Беляков, О. В. Лебедев, Н. Н. Махова, Изв. АН, Сер. хим., 836 (2006).
- 23. G. A. Gazieva, S. V. Vasilevskii, P. A. Belyakov, Yu. V. Nelyubina, E. D. Lubuzh, A. N. Kravchenko, *Mendeleev Commun.*, **20**, 285 (2010).

Институт органической химии им. Н. Д. Зелинского РАН, Ленинский пр., 47, Москва 119991, Россия e-mail: gaz@ioc.ac.ru Поступило 6.03.2012

^а Институт элементоорганических соединений им. А. Н. Несмеянова РАН, ул. Вавилова, 28, Москва 119991, Россия e-mail: unelya@xrlab.ineos.ac.ru