The nitration and bromination of 2-(pentafluorosulfanyl)-1,3-benzothiazole and 2-(trifluoromethyl)-1,3-benzothiazole

Olexandr I. Guzyr¹*, Lyudmila M. Potikha^{1,2}, Svitlana V. Shishkina³, Volodymyr N. Fetyukhin⁴, Yuriy G. Shermolovich¹

¹ Institute of Organic Chemistry, National Academy of Sciences of Ukraine,
⁵ Akademika Kukharya St., Kyiv 02660, Ukraine; e-mail: oguzyr@ioch.kiev.ua

² Kyiv Taras Shevchenko National University, 64 Volodymyrska St., Kyiv 01033, Ukraine; e-mail: potikha.l.m@gmail.com

 ³ State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine,
60 Nauky Ave., Kharkiv 61001, Ukraine; e-mail: sveta12.20@gmail.com

⁴ Life Chemicals Inc., IA Dixie Ave., Niagara-on-the-Lake, LOS, 1J0, ON Canada; e-mail: vladimir.fetyukhin@lifechemicals.com

SUPPLEMENTARY INFORMATION

General Information

¹H, ¹³C, ¹⁹F, NMR spectra were acquired on a Varian VXR-300, Varian VXR-400, and Bruker Avance-500 spectrometers in CDCl₃, using the residual solvent signals as internal standards (7.26 ppm for ¹H nuclei and 77.16 ppm for ¹³C nuclei; C_6F_6 : –162.9 ppm relative to CFCl₃ for ¹⁹F nuclei. GC/MS spectra were recorded on a Hewlett-Packard 5890/5972 system with 70 eV in the EI ionization mode. LC/MS spectra were registered on an Agilent 1100 Series system equipped with an Agilent LC/MSD SL Diode Array Mass Selective Detector, electrospray ionization. Elemental analysis was performed in the analytical laboratory of the Institute of Organic Chemistry of the National Academy of Sciences of Ukraine. Elemental analysis data were obtained by the express gravimetric method (C, H), Schöniger ignition method (S), and Pregl–Dumas method (N). Melting points were determined on a Thyle apparatus.

¹H NMR, ¹⁹F NMR, ¹³C NMR, and MS data

