А. А. Дудинов, Л. И. Беленький, В. Н. Нестеров, М. М. Краюшкин

СИНТЕЗ ГЕТЕРОЦИКЛОВ НА ОСНОВЕ ПРОДУКТОВ ПРИСОЕДИНЕНИЯ ПОЛИГАЛОГЕНАЛКАНОВ К НЕПРЕДЕЛЬНЫМ СИСТЕМАМ

8*. СИНТЕЗ ИЗ 3-ТИОЦИАНАТО-5,5,5-ТРИХЛОРПЕНТАНОНА-2 НЕКОТОРЫХ ПРОИЗВОДНЫХ ТИАЗОЛА, ИХ МОЛЕКУЛЯРНАЯ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА

Из 3-тиоцианато-5,5,5-трихлорпентанона-2 синтезированы 4-метил-5-(2,2,2трихлорэтил)замещенные тиазол-2-тион и хлорид 2-амино-3-гидрокситиазолия, строение которых доказано спектральными методами и с помощью РСА.

В одной из наших работ [2] показана возможность синтеза замещенных тиазолов на основе продукта гомолитического присоединения ССІ4 к метилвинилкетону — 3,5,5,5-тетрахлорпентанона-2 — и легко получаемого из него обменом атома СІ в α -положении на группу SCN 3-тиоцианато-5,5,5трихлорпентанона-2 (I). В частности, из роданокетона I по методу Черняка [3] в мягких условиях и с хорошими выходами синтезированы соответствующие 4-метил-5-(2,2,2-трихлорэтил)замещенные 2-фениламинотиазол, 2-тиазолон и 2-хлортиазол. В настоящей работе исходя из роданокетона I нами синтезированы 4,5-дизамещенные тион II и хлорид 2-амино-3-гидрокситиазолия III. Кроме того, по методу, предложенному для подобных соединений в работе [4], тион II был превращен через соответствующий анион в производное тиольной формы IV.

Для получения тиона II использована реакция роданокетона I с тиомочевиной в присутствии соляной кислоты. Подобное превращение, описанное в работах [5, 6], проходит, вероятно, через соответствующую изотиурониевую соль (см. [3]). Потенциально способное к таутомерии соединение II существует исключительно в тионной форме. Так, спектры ЯМР ¹Н и ¹³С в ДМСО-D₆ хорошо согласуются с данными для модельного соединения — 5-метилтиазол-2(3H)-тиона [7]. ИК спектр (в таблетках КВг) содержит полосы 1480, 1260, 1080 и 895, соответствующие группе С=S тиазол-2-тионов [8].

* Сообщение 7 см. [1].

Угол	ω, град.	Уюл	ω, град.	
$C_{(2)} - S_{(1)} - C_{(5)}$	92,4(1)	$S_{(1)}-C_{(5)}-C_{(6)}$	121,6(2)	
C(2)-N(3)-C(4)	116,8(2)	$C_{(4)} - C_{(5)} - C_{(6)}$	127,9(3)	
$S_{(1)} - C_{(2)} - S_{(2)}$	125,0(2)	$C_{(5)}-C_{(6)}-C_{(7)}$	115,8(3)	
$S_{(1)}-C_{(2)}-N_{(3)}$	108,3(2)	$Cl_{(1)}-C_{(7)}-Cl_{(2)}$	109,3(2)	
$S_{(2)}-C_{(2)}-N_{(3)}$	126,7(2)	$Cl_{(1)}-C_{(7)}-Cl_{(3)}$	109,1(2)	
$N_{(3)}-C_{(4)}-C_{(5)}$	112,2(2)	$Cl_{(2)}-C_{(7)}-Cl_{(3)}$	107,6(2)	
$N_{(3)}-C_{(4)}-C_{(8)}$	118,6(3)	$Cl_{(1)}-C_{(7)}-C_{(6)}$	108,3(2)	
C(5)-C(4)-C(8)	129,2(3)	$Cl_{(2)}-C_{(7)}-C_{(6)}$	111,4(2)	
$S_{(1)}-C_{(5)}-C_{(4)}$	110,3(2)	$CI_{(3)} - C_{(7)} - C_{(6)}$	111,2(2)	

Валентные	углы	ω	В	молекуле	соединения	1
-----------	------	---	---	----------	------------	---

Строение соединения II изучено также методом РСА. На рис. 1 показан общий вид молекулы с указанием длин связей, валентные углы приведены в табл. 1. Данные РСА свидетельствуют о тионной структуре, причем длина экзоциклической связи С=S практически совпадает со значением, известным для 4-замещенных тиазол-2-тионов [9, 10], а также закрепленных 3-алкилтиазол-2-тионов [11]. Плоское строение гетероцикла (плоскость выполняется с точностью ±0,001 Å) обеспечивает возможность сопряжения между его фрагментами. Это подтверждается выравниванием длин связей в цикле, которые близки к установленным для тиазола [12] и замещенных тиазолов [13, 14], а также к стандартным значениям длин соответствующих связей [15].

Рис. 1. Общий вид молекулы II с длинами связей

В кристалле межмолекулярные водородные связи $N_{(3)}$ — $H_{(3)}$... $S_{(2)}$ (-x-1, 1 -y, -z) [$N_{(3)}$... $S_{(2)}$ 3,31(3), $N_{(3)}$ — $H_{(3)}$ 0,86(3), $H_{(3)}$... $S_{(2)}$ 2,46(3) Å, угол $N_{(3)}$ — $H_{(3)}$... $S_{(2)}$ 171(2)°] объединяют молекулы II в центросимметричные димеры (рис. 2). Анализ упаковки молекул в кристалле показал наличие межмолекулярного невалентного контакта $Cl_{(3)}$... $S_{(1)}$ (x, 1,5 -y, z -0,5) 3,500(4) Å, сравнимого с суммой ван-дер-ваальсовых радиусов атомов Cl и S, равной 3,53 Å [16].

Известно превращение α-роданокетонов реакцией с гидроксиламином, приводящее к 2-аминотиазол-3-оксидам или гидрохлоридам последних — 2-амино-3-гидрокситиазолийхлоридам [17]. Именно таким способом мы получили из кетона I соединение III.

Угол	ω, град.	Угол	ω, град.	
$C_{(2)} - S_{(1)} - C_{(5)}$	90,8(1)	S(1)C(5)C(4)	111,5(2)	
$O_{(1)}-N_{(3)}-C_{(2)}$	119,9(2)	S(1)-C(5)-C(6)	120,4(2)	
O(1)-N(3)-C(4)	122,5(2)	$C_{(4)} - C_{(5)} - C_{(6)}$	128,0(2)	
$C_{(2)}-N_{(3)}-C_{(4)}$	117,3(2)	$C_{(5)}-C_{(6)}-C_{(7)}$	115,7(2)	
$S_{(1)}-C_{(2)}-N_{(3)}$	109,5(1)	$Cl_{(1)}-C_{(7)}-Cl_{(2)}$	109,1(1)	
$S_{(1)}-C_{(2)}-N_{(9)}$	126,7(2)	Cl(1)-C(7)-Cl(3)	108,7(1)	
N(3)-C(2)-N(9)	123,8(2)	$Cl_{(2)}-C_{(7)}-Cl_{(3)}$	107,7(1)	
$N_{(3)}-C_{(4)}-C_{(5)}$	110,9(2)	$Cl_{(1)}-C_{(7)}-C_{(6)}$	108,2(2)	
$N_{(3)}-C_{(4)}-C_{(8)}$	118,6(2)	$Cl_{(2)}-C_{(7)}-C_{(6)}$	111,3(1)	
$C_{(5)}-C_{(4)}-C_{(8)}$	130,5(2)	Cl(3)_C(7)_C(6)	112,0(1)	

Валентные углы ω в катионе соли III

Рис. 2. Проекция *bc* кристаллической структуры II (штриховыми линиями показаны межмолекулярные водородные связи N—H...S)

Учитывая практическое отсутствие экспериментальных данных, позволяющих судить о локализации заряда в катионах типа III, мы изучили спектры ЯМР ¹³С соли III и впервые для О-протонированных N-оксидов ряда тиазола провели рентгеноструктурное исследование этой соли. Получены также ее ИК и ПМР спектры (последние находятся в согласии со спектрами ПМР родственных соединений, приведенными в работах [18, 19]). В ИК спектре соли III имеются интенсивная полоса при 1620 см⁻¹, принадлежащая связи C=N, а также широкие полосы в области 2500...3300 см⁻¹, относящиеся к валентным колебаниям связей N—H и O—H.

Поскольку данные РСА для солей 2-амино-3-гидрокситиазолия в литературе отсутствуют, соль III будет сопоставляться ниже с солями 2-аминотиазолия, имеющими атом водорода в положении 3, а также с нейтральными производными аминотиазола, тиазол-2-имина, тиазол-2-она и тиазол-2-тиона. Общий вид молекулы соли III по данным РСА с длинами связей в катионе показан на рис. 3, валентные углы приведены в табл. 2.

834

Рис. 3. Общий вид соли III с длинами связей в катионе

Все атомы гетероцикла катиона III лежат в одной плоскости (с точностью $\pm 0,003$ Å), что благоприятно для сопряжения. Судя по длинам связей С₍₂₎—N₍₃₎, С₍₂₎—N₍₉₎ и С₍₂₎—S₍₁₎, положительный заряд делокализован по атомам этих связей, что можно описать с использованием резонансных форм катиона IIIа—в.

В катионе III экзоциклическая связь C₍₂₎—N₍₉₎ 1,313(3) Å близка по длине к соответствующей связи в трихлорацетате 2-аминотиазолия [20] и заметно короче не только одинарных связей С—N в 2-аминотиазолах, но и двойной связи C=N в 2-фенилсульфонилимино-3-тиазолине [21], что можно объяснить вкладом резонансной структуры III6. Длина связи C₍₂₎—S₍₁₎ в

Рис. 4. Проекция ас кристаллической структуры III (штриховыми линиями показаны межмолекулярные водородные связи О—Н...Сl и N—H...Cl)

Таблица 3

Атом	x	y	<i>z</i>
Clas	4047(2)	8660(1)	-757(1)
	4947(2)	8684(1)	1101(1)
CI(2)	3018(2)	0004(1)	10(0(1)
Cl(3)	573(2)	8978(1)	-1040(1)
S(1)	310(1)	6498(1)	1199(1)
S(2)	-3502(1)	5475(1)	1667(1)
N(3)	-2573(4)	5890(2)	-282(2)
C(2)	-2071(4)	5915(2)	811(2)
C(4)	-1160(4)	6313(2)	-826(2)
C (5)	524(4)	6684(2)	-140(2)
C(6)	2441 (5)	7122(2)	-415(3)
C (7)	2721 (5)	8299(2)	-284(3)
C(8)	-1665(6)	6311(3)	-2045(3)
H(3)	-368(5)	557(3)	-59(3)
H(61)	377(5)	680(2)	2(2)
H(62)	238(5)	699(3)	-116(3)
H(81)	-273(8)	564(4)	-237(4)
H(82)	-42(7)	645(4)	-241 (3)
H(83)	-286(9)	677(4)	-235(4)

Координаты атомов (×10⁴; для H — ×10³) в молекуле соединения II

Таблица 4

Координаты атомов (×10⁴; для H — ×10³) в структуре соли Ш

Атом	x	y	Z	
Cl(1)	9024(1)	757(1)	6040(1)	
CI(2)	8947(1)	2498(1)	4019(1)	
Cl(3)	10069(1)	3611(1)	6146(1)	
Cl(4)	5532(1)	11014(1)	3578(1)	
S(1)	6274(1)	4779(1)	4035(1)	
O(1)	6980(2)	8287(2)	5638(2)	
N(3)	6804(2)	6886(2)	5301(2)	
N(9)	5612(2)	7548(2)	3619(2)	
C(2)	6192(2)	6587(2)	4288(2)	
C(4)	7341(2)	5745(2)	5934(2)	
C(5)	7144(2)	4511(2)	5368(2)	
C(6)	7496(2)	3040(2)	5768(2)	
C(7)	8812(2)	2515(2)	5505(2)	
C(8)	7993(2)	6035(3)	7076(2)	
H(10)	623(3)	851(3)	586(2)	
H(61)	750(2)	300(2)	660(2)	
H(62)	692(2)	238(3)	549(2)	
H(81)	883(2)	636(3)	702(2)	
H(82)	751 (3)	673(4)	748(3)	
H(83)	810(3)	521(4)	754(3)	
H(91)	527(3)	729(3)	296(2)	
H(92)	570(3)	845(3)	382(2)	

катионе III 1,726(2) Å практически совпадает с таковой в трихлорацетате 2-аминотиазолия и меньше соответствующих величин в упомянутом имине или изученном нами тионе II, а также в различных тиазолах [12—15], что можно рассматривать как проявление вклада резонансной формы IIIв. Следует отметить, что длина связи $C_{(5)}$ — $S_{(1)}$ 1,768(2) Å заметно превосходит значения, известные для этой связи как в тиазолах [12—15], так и в их солях [13, 20—24]; это можно объяснить ослаблением передачи сопряжения по этой связи.

В кристалле соли III катионы и анионы объединены в трехмерный каркас (рис. 4) водородными связями $O_{(1)}$ — $H_{(10)}$...Cl(4) (1 - x, 2 - y, 1 - z) [$O_{(1)}$...Cl(4) 2,951(2), $O_{(1)}$ — $H_{(10)}$ 0,88(2), $H_{(10)}$...Cl(4) 2,07(2) Å, угол $O_{(1)}$ — $H_{(10)}$...Cl(4) 178(2)°], $N_{(9)}$ — $H_{(91)}$...Cl(4) (1 - x, y - 0,5, 0,5 - z) [$N_{(9)}$...Cl(4) 3,117(2), $N_{(9)}$ — $H_{(91)}$ 0,86(2), $H_{(91)}$...Cl(4) 2,28(2) Å, угол $N_{(9)}$ — $H_{(91)}$...Cl(4) 165(2)°], $N_{(9)}$ — $H_{(92)}$...Cl(4) (x, y, z) [$N_{(9)}$...Cl(4) 3,252(2), $N_{(9)}$ — $H_{(92)}$...Cl(4) 2,43(2) Å, угол $N_{(9)}$ — $H_{(92)}$...Cl(4) 156(2)°].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н получены на радиоспектрометре Bruker AM-300 (300 МГц), спектры ЯМР 13 С — на приборе Bruker AC-200 (50 МГц). ИК спектры (в таблетках KBr) сняты на спектрометре Perkin-Elmer 577.

3-Тиоцианато-5,5,5-трихлорпентанон-2 (I) получен по методу, описанному в работе [2].

4-Метил-5-(2,2,2-трихлорэтил)тиазол-2(3Н)тион (II). Раствор 6,76 г (0,03 моль) кетона I и 4,57 г (0,06 моль) тиомочевины в смеси 60 мл воды, 24 мл этанола и 15 мл конц. соляной кислоты кипятят 8...10 ч, охлаждают и добавляют 10...15 мл холодной воды. Выпавший осадок отфильтровывают, промывают небольшим количеством водного спирта и высушивают. Получают 6,27 г (87%) тиона П, *т*_{пл} 211,5...213,0 °C (из водного спирта, разл.). Спектр ПМР (ДМСО-D6): 13,20 (1H, c, NH), 4,10 (2H, c, CH₂), 2,20 м. д. (3H, c, CH₃). Спектр ЯМР ¹³С (ДМСО-D6): 187,4 (CS), 139,6 (C₍₄₎), 114,7 (C₍₅₎), 98,8 (CCl₃), 49,8 (CH₂), 12,1 м. д. (CH₃). Найдено, %: С 27,62; H 2,35; CI 40,53; N 5,31; S 24,44. C6H6Cl3NS2. Вычислено, %: С 27,44; H 2,30; Cl 40,50; N 5,33; S 24,42.

4-Метил-5-(2,2,2-трихлорэтил)-2-(фениламинокарбонилметилтио)тиазол (IV). К раствору 1,32 г (5 ммоль) тиона II в 10 мл ДМФА при перемешивании и температуре ~20 °С медленно по каплям добавляют последовательно растворы 0,29 г КОН в 2,5 мл воды и 0,85 г (5 ммоль) анилида хлоруксусной кислоты в 3 мл ДМФА. Затем реакционную массу нагревают при перемешивании на кипящей водяной бане 0,5...1 ч, охлаждают и добавляют небольшое количество холодной воды. Выпавший осадок отфильтровывают и после перекристаллизации из водного спирта выделяют 1,53 г (77%) сульфида IV. T_{IIII} 139,0...140,5 °С (из водного спирта). Спектр IIMP (ДМСО-D6): 10,25 (1H, уш. с, NH), 7,57 (2H, д, *o*-H, *J* = 8 Гц), 7,31 (2H, т, *м*-H, *J* = 8 Гц), 7,07 (1H, т, *n*-H, *J* = 8 Гц), 4,27 и 4,19 (по 2H, с, две группы CH₂), 2,37 м. д. (3H, с, CH₃). Спектр ЯМР ¹³С (ДМСО-D6): 165,3 (C₍₂₎), 162,3 (CO), 152,7 (C₍₄₎), 138,6 (*unco*-C), 128,7 (*м*-C), 123,5 (*n*-C), 122,6 (C₍₅)), 119,1 (*o*-C), 99,1 (CCl₃), 50,1 (CH₂CCl₃), 38,1 (SCH₂), 15,6 м. д. (CH₃): Найдено, %: C 42,68; H 3,44; Cl 26,64; N 7,08; S 16,05. C₁₄H₁₃Cl₃N₂OS₂. Вытислено, %: C 42,49; H 3,31; Cl 26,88; N 7,08; S 16,20.

Хлорид 2-амино-3-гидрокси-4-метил-5-(2,2,2-грихлорэтил) гиазолия (III). Смесь 2,47 г (0,01 моль) роданокетона I и 0,7 г (0,01 моль) гидрохлорида гидроксиламина в 5 мл этанола кипятят до полной гомогенизации (72 ч), после чего выдерживают при ~20 °C 24 ч, выпавший осадок отфильтровывают и промывают спиртом. Выделяют 2,14 г (75,5%) соли III. T_{IIII} 215 °C (разл.). Спектр ПМР (ДМСО-D₆): 13,25 (1H, пиир., OH), 9,78 (2H, уш. с, NH₂), 4,28 (2H, с, CH₂), 2,30 м. д. (3H, с, CH₃). Спектр ЯМР ¹³С (ДМСО-D₆): 161,7 (С₍₂₎), 137,6 (С₍₄₎), 104,4 (С₍₅₎), 98,6 (CCl₃), 49,4 (CH₂), 11,6 м. д. (CH₃). Найдено, %: С 24,27; H 2,70; Cl 47,11; N 9,96; S 10,84. C₆H₈Cl₄N₂OS. Вычислено, %: С 24,18; H 2,71; Cl 47,58; N 9,40; S 10,76.

Рентгеноструктурное исследование соединений II и III. Кристаллы соединения II моноклинные, при 20 °С a = 6,640(2), b = 12,782(3), c = 12,603(4) Å, $\beta = 102,22(2^{\circ})$, V = 1045(1) Å, $d_{\rm BFT} = 1,662$ г/см³, пространственная группа P2₁/с, Z = 4 Кристаллы соединения III моноклинные, при -125 °С a = 10,496(2), b = 9,379(2), c = 11,860(2) Å, $\beta = 95,38(2^{\circ})$, V = 1162,4(7) Å, $d_{\rm BHT} =$ = 1,703 г/см³, пространственная группа P2₁/с, Z = 4. Параметры ячеек и интенсивностей 2866 и 2370 (для II и III соответственно) независимых отражений измерены на четырехкружном автоматическом дифрактометре Siemens P3/PC (\dot{A} МоК α , графитовый монохроматор, $\theta/2\theta$ -сканирование до $\theta_{\text{max}} = 28 \text{ и } 27^\circ$). Структуры расшифрованы прямым методом, выявившим все неводородные атомы, и уточнены полноматричным МНК в анизотропном приближении для неводородных атомов по 2007 и 1874 отражениям с $I > 3\sigma(I)$ и $I > 2\sigma(I)$. Все атомы водорода объективно выявлены разностными синтезами и уточнены изотропно. Окончательные значения факторов расходимости R = 0,041, $R_w = 0,041$ (для II) и R = 0,025, $R_w = 0,025$ (для III). Все расчеты проведены по программе SHELXTL PLUS [23] (версия PC). Координаты атомов даны в табл. 3 и 4 (тепловые параметры можно получить у авторов).

Авторы выражают благодарность Российскому фонду фундаментальных исследований за финансовую помощь в оплате лицензии на пользование Кембриджским банком структурных данных (проект № 96-07-89187), которые активно применялись при анализе структурных результатов, а также за поддержку данной работы (гранты № 95-03-09748а и 97-03-33783а).

СПИСОК ЛИТЕРАТУРЫ

- Дудинов А. А., Вознесенский С. А., Поддубный И. С., Беленький Л. И., Уграк Б. И., Краюшкин М. М. // ХГС. — 1995. — № 11. — С. 1511.
- 2. Дудинов А. А., Беленький Л. И., Краюшкин М. М. // ХГС. 1993. № 8. С. 1120.
- 3. Vernin G. // Thiazole and Its Derivatives / Ed. J. V. Metzger. N. Y.: J. Wiley, 1979. Pt 1. P. 211, 271, 276.
- 4. Шестопалов А. М., Промоненков В. К., Шаранин Ю. А., Родиновская Л. А., Шаранин С. Ю. // ЖОрХ. 1984. Т. 20. С. 1517.
- 5. Gregory J. T., Mathes R. A. // J. Amer. Chem. Soc. 1952. Vol. 74. P. 1719.
- 6. Vernin G., Metzger J. // Bull. Soc. chim. France. 1963. N.11. P. 2498.
- 7. Hanefeldt W., Bercin E. // Lieb. Ann. Chem. 1985. N 1. S. 58.
- 8. Korohoda M. J. // Pol. J. Chem. 1983. Vol. 57. P. 875.
- 9. Nalini V., Desiraju G. R. // Acta crystallogr. 1989. Vol. C45. P. 1525.
- 10. Nalini V., Desiraju G. R.// Acta crystallogr. 1989. Vol. C45. P. 1528.
- Metzger J. V. // Comprehensive Heterocyclic Chemistry. Vol. 6. Oxford: Pergamon Press, 1984. — P. 238.
- 12. Nygaard L., Asmussen E., Hog J. H., Macheshwari R. C., Nielsen C. H., Petersen I. B., Rastrup-Andersen J., Sorensen G. O. // J. Mol. Struct. — 1971. — Vol. 8. — P. 225.
- 13. Caranoni C., Reboul J. P. // Acta crystallogr. 1982. Vol. B38. P. 1255.
- Нестеров В. Н., Шаранин Ю. А., Шестопалов А. М., Шкловер В. Е., Стручков Ю. Т. // ЖОрХ. — 1988. — Т. 24. — С. 845.
- 15. Allen F. H., Kennard O., Watson D. G., Brammer L., Orpen A. G., Taylor R. // J. Chem. Soc. Perkin Trans. II. 1987. N 12. P.S1.
- 16. Rowland R. S., Taylor R. // J. Phys. Chem. 1996. Vol. 100. P. 7384.
- 17. Beyer H., Ruhlig G. // Chem. Ber. 1956. Bd 89. S. 107.
- 18. Entenmann G. // Tetrahedron. 1975. Vol. 31. P. 3131.
- Perrone E., Alpegiani M., Gindici F., Bedeschi A., Pellizzato R., Nannini G. // J. Heterocycl. Chem. - 1984. - Vol. 21. - P. 1097.
- 20. Кузьмина Л. Г., Стручков Ю. Т. // Журн. структ. химии. 1984. Т. 25., № 6. С. 88.
- Кузьмина Л. Г., Стручков Ю. Т., Кравцов Д. Н., Головченко Л. С. // Журн. структ. химин. — 1982. — Т. 23, № 1. — С. 102.
- 22. Form G. R., Raper E. S., Downie T. C. // Acta crystallogr. 1974. Vol. 30B. P. 342.
- 23. Bertolasi V., Gilli G. // Acta crystallogr. 1983. Vol. C39. P. 1242.
- 24. Рыбинов В. И., Горелик М. В., Тафеенко В.А., Медведев С.В., Гурвич В.Ю. // ЖОрХ. 1989. Т. 25. С. 1252.
- Robinson W., Sheldrick G. M. // Crystallographic computing-techniques and new technologies Oxford: Oxford Univ. Press, 1988. — P. 366.

Институт органической химии им. Н.Д.Зелинского РАН, Москва 117813 Поступило в редакцию 26.12.97

Институт элементоорганических соединений им. А.Н.Несмеянова РАН, Москва 117813 ę-mail: L030@suearn2.bitnet