П. Н. Гапоник, С. В. Войтехович, О. А. Ивашкевич, А. С. Ляхов, А. А. Говорова

СИНТЕЗ И СВОЙСТВА ПИКРАТОВ АЛКИЛ-И ФЕНИЛТЕТРАЗОЛИЯ

Кватернизацией С- и N-монозамещенных тетразолов диметилсульфатом и системой *t*-BuOH/H₂SO₄ с последующим осаждением образующихся катионов пикриновой кислотой синтезирован ряд пикратов тетразолия. Методами дифференциальной сканирующей калориметрии и термогравиметрического анализа изучена их термическая стабильность. Проведено рентгеноструктурное исследование пикрата 1,3-ди-*трет*-бутил-5-метилгетразолия.

Соли тетразолия находят практическое применение в различных областях техники, сельском хозяйстве, медицине, химическом анализе, перспективны в качестве катализаторов межфазного переноса [1] и интермедиатов в органическом синтезе [2—10]. При этом наиболее изученными являются соли тетразолия с анионами неорганических кислот (галогениды, перхлораты, тетрафторбораты, фторсульфонаты и т. д.) [4—16]. Среди солей с анионами органических кислот известны, в основном, бензол- и толуолсульфонаты, тетрафенилбораты [17, 18]. В то же время исследование путей синтеза и свойств тетразолиевых солей с органическими анионами может дать много ценной информации научного и практического характера.

В данной работе в качестве объектов исследования выбраны пикраты тетразолия, представляющие интерес как компоненты энергетических конденсированных систем различного назначения [19]. Из указанного ряда соединений достаточно подробно описан лишь пикрат 2,3,5-трифенилтетразолия [20], имеются сведения о расщеплении пикрата 1,4-диметилтетразолия аминами [21], однако какие-либо количественные данные как по свойствам субстрата, так и продуктам разложения не приведены.

В данной работе кватернизация С- и N-монозамещенных тетразолов осуществлялась действием диметилсульфата или в системе t-BuOH/H2SO4. Указанная система впервые успешно использована в такого рода реакциях и, как показано ниже, имеет некоторые преимущества по сравнению с t-BuOH/HBF4 [16]. Кроме того, исследование практически не изученных до настоящего времени реакций кватернизации N-незамещенных тетразолов [22, 23] представляет интерес как для выяснения их синтетических возможностей, так и для более глубокого понимания влияния строения субстрата на селективность процесса алкилирования. Ключевой проблемой при кватернизации тетразолов является региоселективность процесса, связанная с амбидентным характером тетразольного цикла. Лишь в случае алкилирования 2-моно- и 2,5-дизамещенных тетразолов, а также трет-бутилирования 1,5-дизамещенных тетразолов происходит образование индивидуальных солей тетразолия [1, 16]. Использование системы t-BuOH/H₂SO₄ позволило селективно получить некоторые соли тетразолия. Так, исходя из тетразола Іа и 5-метилтетразола Іб получены индивидуальные пикраты 1,3-ди-*трет*-бутилтетразолия IIa и 1,3-ди-*трет*-бутил-5-метилтетразолия IIб. Механизм данной реакции, по-видимому, включает региоселективное N₂-алкилирование исходных тетразолов I трет-бутанолом [24] с последующей кватернизацией образующихся 2-трет-бутилтетразолов IIIа, б, превращающихся при этом в кислые сульфаты IV.

I-IV a R = H, δ R = Me; B R = Ph, Pic = 2,4,6-(NO₂)₃C₆H₂O

Попытки получить подобным образом пикрат 1,3-ди-*трет*-бутил-5-фенилтетразолия (IIв) из тетразола Ів оказались безуспешными, что объясняется, вероятно, стерическими затруднениями кватернизации промежуточного 2-*трет*-бутил-5-фенилтетразола (IIIв), который был выделен из реакционной смеси (выход 85%) и идентифицирован согласно [24]. Аналогичный фактор приводит к снижению выхода солей при переходе от тетразола Іа к Іб.

Пикраты фенилтетразолия получены кватернизацией 1-фенилтетразола (V) по схеме:

VI, VII a R = t-Bu, X = OH; δ R = Me, X = OSO₂OMe

В этом случае при использовании системы t-BuOH/H₂SO₄ соотношение изомеров в смеси, оцененное по интенсивности сигналов протонов у циклического атома углерода в спектрах ПМР, а также их выход очень близки к ранее полученным при *трет*-бутилировании системой t-BuOH/HBF4 [16].

Результаты фракционного осаждения пикратов из реакционной смеси свидетельствуют о большей растворимости 1,3-изомеров VI по сравнению с 1,4-изомерами VII, что в общем характерно и для других солей тетразолия [16]. Однако выделить индивидуальную соль удалось лишь в случае пикрата 1-фенил-4-метилтетразолия (VIIб). В то же время, используя различную растворимость изомерных пикратов и перхлоратов, удалось получить индивидуальный пикрат 1,4,5-триметилтетразолия (VIII) по схеме:

Синтезированные пикраты представляют собой желтые кристаллические вещества (спектральные и термоаналитические характеристики приведены в табл. 1), не чувствительные к удару и трению, безопасные при работе с ними. Все это относится и к практически не изученному пикрату 2,3,5-трифенилтетразолия (IX) [20], полученному нами для сравнительного исследования с выходом 90% взаимодействием хлорида 2,3,5-трифенилтетразолия и пикриновой кислоты в воде.

Таблица 1

Физико-химические свойства синтезированных соединений

Сосди- нснис	Брутто- формула	<i>Т</i> пл, °С	Спектр ПМР, м. д.			Основные термоаналитические характеристики				
			раство- ритель	катион	анион	эффект	$\left \Delta_{\mathrm{H}} \right _{\mathrm{gm/r}},$	<i>T</i> _H ^{*2}	<i>T</i> m* ³	потеря массы, %
IĮa	C15H21N7O7	112114	CD ₃ CN	1,78 (9H, с, 3-CH ₃) 1,82 (9H, с,3-CH ₃) 9,59 (1H, с, HC _{цикл})	8,61 (2H, с, Н _{аром})	эндо эндо экзо	232 47 607	132 195	135 273	47 53
П	C16H23N7O7	разл. > 101	CD ₃ CN	1,76 (9H, с, 3-CH ₃) 1,78 (9H, с, 3-CH ₃) 2,83 (3H, с, H ₃ C-C _{цикл})	8,61 (2H, с, Н _{аром})	эндо экзо	427 86	101 253	105 260	49 51
VIIG	C14H11N7O7	разл. > 100	(CD ₃) ₂ CO	4,85 (3H, с, CH ₃) 7,908,40 (5H, с, H _{аром}) 12,25 (1H, с, HС _{цикл})	8,90 (2H, с, Н _{аром})	экзо экзо	483 857	100 190	109 258	12 88
VIII	C10H11N7O7	164166	CD ₃ CN	2,75 (3H, c, CH ₃) 4,16 (6H, c, 2-CH ₃)	8,60 (2H, с, H _{аром})	эндо экзо	80 2026	215	274	67
IX	C25H17N7O7	187188*	(CD ₃) ₂ CO	7,707,91 (2Н, м, Н _{аром}) 7,918,08 (4Н, м, Н _{аром}) 8,258,35 (9Н, м, Н _{аром})	8,56 (2H, с, Н _{аром})	экзо экзо	1107 4050	225 520	290 554	45 55

*2 *3

Тпл 186...188 (С [20]. *T*_H — температура начала разложения, °С. *T*_m — температура максимального тепловыделения или теплопоглощения, °С.

В спектрах ПМР полученных пикратов 5-незамещенных тетразолиев VIIа, б наблюдается существенный сдвиг сигнала протона у атома углерода цикла в слабое поле по сравнению с исходными тетразолами и близкими по структуре солями тетразолия с другими анионами. Так, химический сдвиг этого протона для соли VIIб составляет 12,25 м. д. (растворитель-ацетон-D₆, концентрация 1 мол. %), в то время как для тетразола V — 9,67 м. д., для тетрафторбората 1-фенил-4-этилтетразолия — 11,30 м. д. в аналогичных условиях [25]. Высокая подвижность атома водорода тетразолиевого цикла пикрата VIIб приводит к полному его разложению уже при контакте с водой в течение 24 ч. Пикрат-анион и вода, очевидно, аналогично основаниям [13, 26], отщепляют протон от атома С(5), что приводит к фрагментации тетразольного цикла на молекулярный азот и метилфенилкарбодиимид (Хб). Дальнейшее присоединение пикриновой кислоты к карбодиимиду теоретически может привести к двум изомерным тризамещенным мочевинам XI6 и XII6. Однако практически выделен только один продукт. Реакции, подобные последней, достаточно хорошо изучены лишь на примере симметричных карбодиимидов [27, 28], и имеющиеся данные не позволяют однозначно идентифицировать структуру продукта. С учетом стерических препятствий можно предположить, что полученному соединению, вероятнее всего, соответствует структура ХІб.

В случае соли VIIa лишь 10% от ее исходного количества разлагается по указанному пути, что подтверждается наличием в спектре ПМР (CD₃CN) продуктов реакции с водой синглетов *трет*-бутильных групп (1,25 и 1,38 м. д.) и мультиплетов фенильных групп (7,00...7,30 м. д.), принадлежащих, вероятно, соединениям XIa и XIIa. Более высокая устойчивость соли VIIa объясняется, по-видимому, стерическими затруднениями отрыву протона от атома C(5) за счет наличия в соседних положениях столь объемных групп, как *трет*-бутильная и фенильная. Однако сильное основание — диэтиламин — расщепляет соль VIIa, приводя к пикрату замещенного гуанидина XIII, образование которого можно объяснить исходя из данных о фрагментации тетразольного цикла [13, 26] и сведений о способности карбодиимидов к присоединению аминов [27, 28].

X–XII a R = t-Bu, $\delta R = Me$

Методами дифференциальной сканирующей калориметрии и комплексного термического анализа нами изучена термостабильность синтезированных солей. Основные термоаналитические характеристики процессов их разложения приведены в табл. 1. Результаты исследований свидетельствуют о том, что термостабильность изученных солей тетразолия существенно зависит от природы заместителей и их положения в гетероцикле. Оказалось, что наиболее стабильными в исследованном ряду являются пикраты тризамещенных тетразолиев VIII и IX, интенсивное разложение которых начинается при 215...225 °C. Характер разложения соли IX существенно не отличается от термического поведения аналогичных галогенидов [29]. 660 Наличие протона в положении C₍₅₎ значительно снижает термостабильность соли VIIб, что, по-видимому, связано с легкостью отрыва этого протона из указанного положения за счет нуклеофильных свойств пикрат-аниона.

Для установления особенностей строения пикратов тетразолия выполнен рентгеноструктурный анализ монокристалла соли IIб. Ha рисунке представлено взаимное расположение и конформации ионов в структуре. Тетразольный цикл — плоский, максимальное отклонение атомов от среднеквадратичной плоскости этого цикла не превышает 0.004 Å. Заместители также лежат в плоскости цикла: максимальное отклонение не более 0,03 Å. Заметим, что рентгеноструктурные данные имеются только для двух 1,3,5-тризамещенных солей тетразолия — хлорида 1,3-дифенил-5-(1,5-дифенил-3-формазанил) тетразолия (XIV) [30] и перхлората 1-фенил-3-метил-5-(*n*-хлорфенил) тетразолия (XV) [8]. Несмотря на существенные различия в природе заместителей этих соединений, длины связей тетразольного цикла C(5)—N(1), C(5)—N(4), N(1)—N(2) и N(3)—N(4) и валентные углы соединений II6 (табл.2, 3) и XV [8] практически одинаковы и лишь немногим отличаются от них длины связей C₍₅₎—N₍₁₎ (1,362 Å), C₍₅₎—N₍₄₎ (1,325 Å) и N₍₁₎—N₍₂₎ (1,332 Å) в соединении XIV [30]. Самой короткой связью в циклах катионов солей IIG, XIV и XV является N₍₂₎—N₍₃₎, что подтверждает сделанный ранее [16, 18] лля некоторых солей 1.3.5-тетразолия вывод о несовпадении центров кватернизации и локализации положительного заряда в цикле, а также наличии существенного сопряжения в его фрагменте N(1)-N(2)=N(3). Хорошо соответствуют этому и рассчитанные методом АМ-1 по экспериментальной геометрии значения *л*-порядков связей N(1)—N(2) и N(2)=N(3), равные 0,28 и 0,55 соответственно.

Взаимное расположение и конформации ионов в структуре соединения П

Длины связей и валентные углы в пикрат-ионе соли IIб обычные (ср. [31]). Угол между плоскостями бензольного и тетразольного циклов составляет 89,49(7)°, что исключает, согласно [31], дополнительное π -связывание этих ароматических систем. Расстояния между атомом кислорода O₍₁₎ группы С—О пикрат-аниона и атомами тетразольного цикла в пределах 2,934...3,161 Å, что значительно короче, чем соответствующие расстояния между хлорид-анионом и атомами гетероцикла в катионе соли XIV (3,413...3,702 Å). Самое короткое расстояние N₍₁₎—O₍₁₎ (2,93 Å) близко расстояниям N—O в пикратах ароматических аминов (2,67...2,88 Å) [31]. Вторым по длине является расстояние C₍₅₎—O₍₁₎, равное 3,009 Å, что

Атом	x/a	y/b	z/c	$U_{(eq)}$ (Å ² × 10 ³)
N(1)	2907(2)	5677(2)	2531(1)	49(1)
N(1)	3679(2)	6458(2)	1831(2)	52(1)
N(2)	4350(2)	7052(2)	2473(2)	52(1)
N(4)	4084(2)	6700(2)	3559(2)	59(1)
C(s)	3164(2)	5818(2)	3591 (2)	53(1)
C(6)	1975(3)	4793(3)	2062(2)	70(1)
C(7)	492(3)	4948(4)	2758(4)	112(1)
C(8)	1829(6)	5327(4)	855(3)	128(2)
C(0)	2778(4)	3263(3)	2143(3)	94(1)
C(10)	5360(3)	8064(3)	2028(3)	72(1)
C(11)	4718(4)	9464(3)	2494(4)	120(2)
C(12)	5403(4)	8176(5)	762(3)	120(1)
C(13)	6861 (3)	7430(4)	2387(4)	108(1)
C(14)	2575(3)	5121(3)	4645(2)	79(1)
C(15)	-4(3)	10553(3)	7118(3)	78(1)
C(16)	148(3)	9502(3)	8045(2)	66(1)
C(17)	1220(3)	8324(2)	8072(2)	63(1)
C (18)	2280(3)	8118(2)	7172(2)	62(1)
C(19)	2272(3)	9083(3)	6257(2)	67(1)
C(20)	1184(3)	10258(3)	6236(2)	71(1)
N(5)	-926(3)	9647(4)	9040(3)	92(1)
N(6)	3413(3)	6887(3)	7205(3)	89(1)
N(7)	1256(4)	11253(3)	5258(3)	103(1)
O (1)	-1025(3)	11573(3)	7074(3)	135(1)
O(2)	-1512(3)	10830(4)	927.9(3)	148(1)
O(3)	-1143(3)	8579(4)	9601 (3)	137(I)
O(4)	3408(4)	6033(3)	8018(3)	138(1)
O(5)	4371 (3)	6745(3)	6419(2)	121(1)
O(6)	2284(8)	11125(5)	4626(4)	285(4)
0(7)	378(6)	12215(5)	5101(4)	215(2)

Координаты (в долях ячейки, × 10⁴) и эквивалентные изотропные тепловые параметры атомов в структуре соединения Пб

косвенно указывает на наличие положительного заряда на атоме углерода тетразольного цикла. Связь С—О в пикрат-анионе (1,234 Å) соли Шб короче, чем в пикриновой кислоте (1,335 Å), и соответствует длинам связей в пикратах ароматических аминов (1,229...1,259 Å) [31]. По-видимому, такая ион-парная структура пикратов тетразолия с локализацией аниона вблизи атома $C_{(5)}$ способствует наблюдаемой в спектрах ПМР высокой подвижности атома водорода у атома углерода цикла и отмеченной выше гидролитической и термической нестабильности пикратов 5-незамещенных тетразолиев.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные тетразол [32], 5-метил- и 5-фенилтетразол [33], 1-фенилтетразол [34] синтезированы по известным методикам. Спектры ПМР сняты на спектрометре Tesla BS-567 (100 МГц). Индивидуальность соединений показана методом TCX на пластинках Silufol UV-254. ИК спектры (в вазелиновом масле) сняты на приборе Specord IR-75. Термолиз синтезированных солей исследован с использованием метода дифференциальной сканирующей калориметрии (ДСК) (прибор

d, Å	Валентный угол	ω, град.
1,320(2)	N(2)—N(1)—C(5)	109,2(2)
1,353(3)	N(2)-N(1)-C(6)	118.9(2)
1,514(3)	C(5)-N(1)-C(6)	131,9(2)
1,287(3)	N(3)-N(2)-N(1)	104,0(2)
1,328(3)	N(2)—N(3)—N(4)	114,8(2)
1,504(3)	N(2)-N(3)-C(10)	122,6(2)
1,314(3)	N(4)—N(3)—C(10)	122,6(2)
1,478(3)	C(5)-N(4)-N(3)	103,6(2)
1,512(4)	N(4)-C(5)-N(1)	108,5(2)
1,522(5)	N(4)-C(5)-C(14)	123,0(2)
1,523(4)	N(1)-C(5)-C(14)	128,5(2)
1,500(4)	C(8)C(6)N(1)	107,5(2)
1,516(5)	C(8)-C(6)-C(7)	111,7(3)
1,516(4)	N(1)-C(6)-C(7)	108,7(2)
	C(8)-C(6)-C(9)	110,8(3)
	N(1)-C(6)-C(9)	107,2(2)
	C(7)C(6)-C(9)	110,8(3)
	C(11)-C(10)-N(3)	107,1(2)
	$C_{(11)}-C_{(10)}-C_{(12)}$	110,9(3)
	N(3)-C(10)-C(12)	107,2(2)
	C(11)-C(10)-C(13)	113,5(3)
	N(3)-C(10)-C(13)	107,2(2)
	C(12)-C(10)-C(13)	110,6(3)
	$\begin{array}{c} d, \ \tilde{A} \\ \\ 1,320(2) \\ 1,353(3) \\ 1,514(3) \\ 1,287(3) \\ 1,328(3) \\ 1,504(3) \\ 1,314(3) \\ 1,478(3) \\ 1,512(4) \\ 1,522(5) \\ 1,523(4) \\ 1,500(4) \\ 1,516(5) \\ 1,516(4) \end{array}$	d, ÅВалентный угол1,320 (2) $N(2)-N(1)-C(5)$ 1,353 (3) $N(2)-N(1)-C(6)$ 1,514 (3) $C(5)-N(1)-C(6)$ 1,514 (3) $C(5)-N(1)-C(6)$ 1,287 (3) $N(3)-N(2)-N(1)$ 1,328 (3) $N(2)-N(3)-C(10)$ 1,314 (3) $N(4)-N(3)-C(10)$ 1,314 (3) $N(4)-N(3)-C(10)$ 1,478 (3) $C(5)-N(4)-N(3)$ 1,512 (4) $N(4)-C(5)-C(14)$ 1,522 (5) $N(4)-C(5)-C(14)$ 1,523 (4) $N(1)-C(5)-C(14)$ 1,500 (4) $C(8)-C(6)-C(7)$ 1,516 (5) $C(8)-C(6)-C(7)$ 1,516 (4) $N(1)-C(6)-C(9)$ $C(11)-C(10)-N(3)$ $C(11)-C(10)-C(12)$ $N(3)-C(10)-C(12)$ $N(3)-C(10)-C(13)$ $N(3)-C(10)-C(13)$ $N(1)-C(10)-C(13)$

Длины связей и валентные углы в катионе соединения Пб

Mettler TA-3000 с ячейкой DSC-20) и комплексного термического анализа (дериватограф OD 102 системы F. Paulik-J. Paulik-L. Erdey) при скорости нагрева 5°/мин в атмосфере азота. В опытах на ДСК тигли-держатели капсулировали.

Рентгеноструктурное исследование соединения Пб. Монокристаллы соли II получены кристаллизацией из ацетона при 303 К. Для рентгеноструктурного анализа был отобран кристалл размерами 0,7 × 0,6 × 0,4 мм. Соединение кристаллизуется в триклинной сингонии, пространственная группа P1. Параметры элементарной ячейки имеют следующие значения: a =9,342(2); b = 9,640(2); c = 12,063(3) Å; $\alpha =$ 84,66(2); $\beta =$ 83,19(2); $\gamma =$ 79,02(2)°; Z = 2; V =1056,2(4) Å³. Трехмерный набор рентгеновских дифракционных данных собран на автоматическом четырехкружном дифрактометре Nicolet R3m, МоК α -излучение, графитовый монохроматор, $\theta/2\theta$ -сканирование, $2\theta_{max} = 55^{\circ}$. Структура II6 расшифрована прямым методом. Положения атомов водорода рассчитаны геометрически. Уточнение проведено полноматричным МНК с учетом анизотропии тепловых колебаний неводородных атомов. Атомы водорода уточнены в рамках модели «наездника». В расчетах использовали 3896 независимых отражений. Расчеты выполнены с помощью программ SHELXS-86 [35] и SHELXL-93 [36] (PC Version) на IBM 486. Координаты и изотропные тепловые параметры атомов приведены в табл. 2.

Пикраты 1,3-ди-*трет*-бутил-5R-тетразолия (Па,б). К раствору 0,05 моль тетразола или 5-метилтетразола в 20 мл серной кислоты (70%) приливают 18 мл (0,20 моль) *трет*-бутилового спирта. Смесь выдерживают 72 ч, разбавляют водой до 200 мл и приливают насыщенный водный раствор 11,45 г (0,05 моль) пикриновой кислоты. Полученный раствор оставляют на 7 сут, выпавниие кристаллы отделяют, промывают холодной водой, сушат при 40 °С. Выход продукта Па 62%. Найдено, %: С 43,91; Н 5,08; N 23,93. С₁₅H₂₁N₇O₇. Вычислено, %: С 43,80; Н 5,15; N 23,83. Выход продукта Пб 10%. Найдено, %: С 45,25; Н 5,59; N 23,09. С₁₆H₂₃N₇O₇. Вычислено, %: С 45,18; Н 5,45; N 23,05.

Смесь пикратов 1-фенил-3-*трет*-бутил- и 1-фенил-4- *трет*-бутилтетразолия (VIa,VIIa) и ее реакция с триэтиламином. Смесь 1,46 г (0,01 моль) 1-фенилтетразола, 1,48 г (0,02 моль) *трет*-бутилового спирта и 15 мл серной кислоты (70%) оставляют на 3 сут. Далее смесь разбав-

ляют водой до 70 мл и приливают насыщенный водный раствор 2,29 г (0,01 моль) пикриновой кислоты. Выпавший осадок отделяют, промывают холодной водой, сушат при 40 °С. Выход продукта, представляющего собой смесь VIa и VIIa в соотношении 35 : 65, по данным ПМР, 2,9 г (70%). Спектр ПМР (CD₃CN): VIa — 1,85 (9H, с, 3-CH₃), 7,82...8,00 (5H, м, Н_{аром}), 8,66 (2H, с, H_{аром}), 10,07 (1H, с, HC_{ПИКЛа}); VIIa — 1,85 (9H, с, 3-CH₃), 7,66...7,82 (5H, м, Н_{аром}), 8,66 (2H, с, H_{аром}), 10,98 м. д. (1H, с, HC_{ЦИКЛа}). Найдено, %: С 47,31; Н 4,08; N 22,89. С₁₇Н₁₇N₇O₇. Вычислено, %: С 47,34; Н 3,97; N 22,73.

К раствору 2,1 г (0,005 моль) смеси VIa и VIIa в 50 мл бензола приливают 1 мл (0,0097 моль) диэтиламина, смесь оставляют на 3 ч при ~20 °С, затем бензол удаляют под вакуумом, продукт дважды перекристаллизовывают из этанола. Получают 0,8 г (выход 50%) пикрата N-*mpem*-бутил-N',N'-диэтил-N''-фенилгуанидина (XIII). Желтые кристаллы. T_{III} 153...155 °С. ИК спектр: 3215...3410 (NH), 1625 (C=N), 1608 (C=C_{аром}), 1555 (NO₂), 1495 (CH₃), 1410, 1340 (NO₂), 1310, 1290, 1260 (C—N), 1190, 1150, 1075, 1060, 985, 940, 910 (HC_{аром}), 840, 810 (NO₂), 780, 710, 620, 545, 520, 498, 460 см⁻¹. Спектр ПМР (ацетон-D₆): 1,18 (6H, т, 2-CH₃), 1,50 (9H, с, C4H₉), 2,85 (2H, уш. с, 2-NH), 3,42 (4H, к, 2-CH₂), 7,16...7,65 (5H, м, H_{аром}), 8,63 м. д. (2H, с, H_{аром}). Найдено, %: С 53,09; Н 5,89; N 17,82. C₂₁H₂₈N₆O7. Вычислено, %: С 52,94; Н 5,92; N 17,64. Маточный раствор, полученный при перекристаллизации, содержит, по данным ПМР, смесь пикратов VIa и XIII.

Пикрат 1-фенил-4-метилтетразолия (VIIб) и расщепление его под действием воды. Раствор 9,3 г (0,064 моль) 1-фенилтетразола в 24,1 г (0,19 моль) диметилсульфата выдерживают 72 ч при ~20 °С. Полученную белую кристаллическую массу растворяют в 100 мл воды и после отделения органического слоя к раствору приливают насыщенный водный раствор 9,4 г (0,041 моль) пикриновой кислоты. Выпавший осадок отделяют, промывают холодной водой, сушат при 40 °С. Получают 8,25 г (53%) смеси пикратов VI6 и VII6 (соотношение изомеров 4 : 96). Спектры ПМР (ацетон-D₆): VI6 — 5,15 (3H, с, CH₃), 7,88...8,35 (5H, м, аром.), 8,90 (2H, с, Наром), 11,09 (1H, с, HC_{цикла}); VII6 (см. табл. 1). При постепенном добавлении пикриновой кислоты на ранней стадии из раствора выделяется индивидуальный пикрат VII6. Выход 3,70 г (15%). Найдено, %: С 43,31; H 2,78; N 25,08. С14H₁₁N7O7. Вычислено, %: С 43,20; H 2,85; N 25,19.

Смесь 2 г (0,0051 моль) соли VII6 и 20 мл воды перемешивают 24 ч при комнатной температуре, фильтруют, осадок отделяют и перекристаллизовывают из этанола. Получают 0,73 г (40%) N-метил-N-(2,4,6-тринитрофенил)-N'-фенилмочевины (XIб). Желтые кристаллы. *Т*_{разл} 170 °С. ИК спектр: 3430 (NH), 1690 (С=О), 1650, 1601 (С=С_{аром}), 1540, 1501 (NO₂), 1490 (СН₃), 1410 (С=С_{аром}), 1345 (NO₂), 1300, 1245 (С—N), 1160, 1100, 1080, 940, 925, 900 (НС_{аром}), 830, 800 (NO₂), 760, 700, 665, 650, 605, 540, 515, 490, 460 см⁻¹. Спектр ПМР (ацетон-D₆): 2,75 (3H, с, СН₃), 2,94 (1H, уш. с, NH), 7,26...7,40 (5H, м, Н_{аром}), 8,93 м. д. (2H, с, Н_{аром}). Найдено, %: С 46,66; H 3,01; N 19,50. С₁4H₁₁N₅O7. Вычислено, %: С 46,55; H 3,07; N 19,38.

Пикрат 1,4,5-триметилтетразолия (VIII). Раствор 8,4 г (0,1 моль) 5-метилтетразола в 37,8 г (0,03 моль) диметилсульфата выдерживают 2 ч на кипящей водяной бане, охлаждают, избыток диметилсульфата экстрагируют диэтиловым эфиром (3 × 15 мл), остаток сушат в вакууме. Полученное масло растворяют в 30 мл воды, добавляют 7,2 г (0,032 моль) перхлората магния, охлаждают до 5 °C, отфильтровывают выпавшие кристаллы, промывают 10 мл ледяной воды. Полученные 8,4 г (0,04 моль) перхлората 1,4,5-триметилтетразолия растворяют в 50 мл воды, приливают насыщенный водный раствор 9,2 г (0,04 моль) пикриновой кислоты. Раствор упаривают до 80 мл и охлаждают до 5 °C. Осадок отделяют, промывают холодной водой, сушат при 50 °C. Выход 12 г (35%). Найдено, %: С 35,31; Н 3,18; N 28,63. С10H11N7O7. Вычислено, %: С 35,20; Н 3,25; N 28,73.

Пикрат 2,3,5-трифенилтетразолия (IX). К раствору 3,35 г (0,01 моль) хлорида 2,3,5-трифенилтетразолия в 20 мл воды приливают раствор 2,29 г (0,01 моль) пикриновой кислоты в минимальном количестве горячей воды (~60 °C). Раствор охлаждают до комнатной температуры, выпавший осадок отделяют, промывают холодной водой, сушат при 50 °C и перекристаллизовывают из ацетона. Выход 4,74 г (90%). Найдено, %: С 56,99; Н 3,12; N 18,53. С25H₁7N7O7. Вычислено, %: С 56,93; Н 3,25; N 18,59.

Авторы вражают благодарность Российскому фонду фундаментальных исследований за финансовую помощь в оплате лицензии на пользование Кембриджским банком структурных данных (проект 96-07-89187) при анализе результатов, полученных в данной работе.

СПИСОК ЛИТЕРАТУРЫ

- 1. Живич А. Б., Колдобский Г. И., Островский В. А. // ХГС. 1990. № 12. С. 1587.
- 2. Беленький Л. И., Чувылкин Н. Д. // ХГС. 1996. № 11/12. С. 1535.
- 3. Quast H., Hergenrother T. // Liebigs Ann. Chem. 1992. N6. S. 581.
- 4. Quast H., Bieber L., Meichsner G. // Liebigs Ann. Chem. 1987. N5. S. 469.
- 5. Lowack R. H., Weiss R. // Angew. Chem. 1991. Bd 106. S. 1183.
- 6. Швайка О. П., Коротких Н. И., Асланов А. Ф. // ХГС. 1992. № 9. С. 1155.
- Araki S., Wanibe Y., Uno F., Morikana A., Yamamato K., Chiba K., Butsugan Y. // Chem. Ber. — 1993. — Bd 126. — S. 1149.
- Butler R. N., Duffy J. P., Nibhradaigh E. P., McArdile P., Cunningham D. // J. Chem. Res. Synop. — 1994. — N 6. — P. 216.
- 9. Koren A. O., Gaponik P. N., Ivashkevich O. A., Kovalyova T. B. // Mendeleev Commun. 1995. N1. P. 10.
- 10. Moderhack D., Bode D.-O., Schomburg D. // Chem. Ber. 1993. Bd 126. S. 129.
- 11. Moderhack D., Lembcke A. // J. Chem. Soc. Perkin Trans. I. 1979. P. 376.
- 12. Carbony B., Carrie R. // Tetrahedron. 1984. Vol. 40. P. 4115.
- 13. Zimmerman O. M., Olofson R. A. // Tetrah. Lett. 1970. N 39. P. 3453.
- Messmer A., Hajos G., Juhasz-Riedl Z., Sohar P. // J. Org. Chem. 1988. Vol. 53. -P. 973.
- 15. Fischer G. W. // J. prakt. Chem. 1989. Bd 331. S. 885.
- Гапоник П. Н., Григорьев Ю. В., Андреева Т. Н., Маруда И. И. // ХГС. 1995. № 7. С. 913.
- 17. Konnecke A., Lippmann E. // Z. Chem. 1977. Bd 17. S. 262.
- Gaponik P. N., Ivashkevich O. A., Naumenko V. N., Kovalyova T. B., Andreeva T. N., Koren A. O. // Spectrochim. acta. - 1993. - Vol. 49A. - P. 135.
- Информация о материалах Международного симпозиума по конверсии энергетических конденсированных систем// Изв. РАН. Сер.хим. — 1995. — № 8. — С. 1454.
- 20. Jersel D., Fischer H. // Liebigs Ann. Chem. 1949. Bd 563. S. 200.
- 21. Norris N. P., Henry R. A. // Tetrah. Lett. 1965. № 17. P. 1213.
- Isida T., Kosima S., Fujimori Sh., Sisido K. // Bull. Chem. Soc. Japan. 1972. Vol. 45. P. 1471.
- 23. Гапоник П. Н., Каравай В. П., Григорьев Ю. В. // ДАН Беларуси. 1997. Т. 41. С. 66.
- 24. Корень А. О., Гапоник П. Н. // ХГС. 1990. № 12. С. 1643.
- 25. Konnecke A., Lippmann E., Kleinpeter E. // Tetrahedron. 1977. Vol. 33. P. 1399.
- Olofson R. A. Thompson W. R., Henry R. A., Michelman J. S. // J. Amer. Chem. Soc. 1964. – Vol. 86. – P. 1865.
- 27. Mikolajczyk M., Kielbasinski P. // Tetrahedron. 1981. Vol. 37. P. 233.
- Wagner K., Findeisen K., Schafer W., Werner D. // Angew. Chem. 1981. Bd 93. S. 855.
 Живич А. Б., Мызников Ю. Е., Колдобский Г. И., Островский В. А. // ЖОХ. 1988. —
- T. 58. C. 1906.
- 30. Neugebaer F. A., Fischer H., Krieger C. // Chem. Ber. 1979. Bd 112. S. 2369.
- Takayanagi H., Kai T., Yamaguchi S., Takeda K., Goto M. // Chem. Pharm. Bull. 1996. Vol. 44. — P. 2199.
- 32. Гапоник П. Н., Каравай В. П. // Вестник БГУ. Сер. 2. 1980. № 1. С. 51.
- 33. Finnegan W. G., Henry R. A., Lofqist R. // J. Amer. Chem. Soc. 1958. Vol. 80. P. 3908.
- 34. Гапоник П. Н., Каравай В. П., Григорьев Ю. В. // ХГС. 1985. № 11. С. 1521.
- 35. Sheldrick G. M. SHELXS-86. Program for Crystal Structure Solution. Gottingen, 1986.
- 36. Sheldrick G. M. SHELXL-93. Program for Crystal Structure Refinement. -- Gottingen, 1993.

Научно-исследовательский институт физико-химических проблем Белорусского государственного университета, Минск 220080 Поступило в редакцию 16.07.97 После переработки 19.01.98