М. Флейшер, Л. Лейте, А. Лебедев, Э. Лукевиц

КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ КАТАЛИТИЧЕСКОЙ ЦИКЛОДЕГИДРАТАЦИИ 1,4-БУТАНДИОЛА МЕТОДОМ АМ1

1,4-Бутандиол превращается в тетрагидрофуран в присутствии силикагеля при температурах 245...340 °C. Механизм превращения 1,4-бутандиола изучался квантово-химическим AM1 методом с полной оптимизацией геометрии. Установлено, что в зависимости от конформации молекулы возможны два направления реакции. Реакция циклодегидратации осуществляется путем превращения полуциклического конформера протонированной молекулы диола на основном центре катализатора по «концертному» механизму. Теплота реакции образования тетрагидрофурана составляет – 161,768 ккал/моль.

Превращение 1,4-бутандиола в тетрагидрофуран — это промышленный процесс, который осуществляется в условиях кислотно-основного катализа [1]:

Реакцию дегидратации-циклизации 1,4-бутандиола ускоряют каталитические количества минеральных кислот (H₂SO₄, H₃PO₄), некоторые кислоты Льюиса (PdCl₂) и гетерогенные катализаторы (силикагель, алюмосиликаты, синтетические цеолиты) [2—4]. Основным продуктом превращения 1,4-бутандиола в парогазовой фазе при 245...340 °C в присутствии силикагеля и кизельгура является тетрагидрофуран (табл. 1). При использовании в качестве катализаторов некоторых видов силикагелей

Таблица 1

еакции, °С 245 270	2,5	тетрагидрофуран	4-оксибутаналь	2,3-дигидрофуран
245 270	2,5			
300	2,2 9,8	0,8 0,6 3,6	0,2 0,2 0,3	0,3 0,4 3,0
245	· 100	99,0	—	_
260	100	100		
340	100	99,5		
300	100	99,3	_	
340	100	99,3		-
245	18,7	6,7	1,0	2,2
270	7,7	5,0	0,7	1,2
	245 260 340 340 245 270 300	245 100 260 100 340 100 300 100 340 100 245 18,7 270 7,7 300 17,2	245 100 99,0 260 100 100 340 100 99,5 300 100 99,3 340 100 99,3 245 18,7 6,7 270 7,7 5,0 300 17,2 11,8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Парофазное превращение 1,4-бутандиола

* Фирма «Acros».

*² Фирма «Chemapol».

выход тетрагидрофурана составляет 100%. Кроме тетрагидрофурана в продуктах реакции установлено присутствие 4-оксибутаналя и 2,3-дигидрофурана, образующихся в результате реакции дегидрирования 1,4-бутандиола. Как известно, реакцию дегидратации спиртов используют для характеристики кислотных свойств катализатора. Из результатов, приведенных в табл. 1, следует что поверхности исследованных в настоящей работе силикагелей значительно различаются по концентрации активных кислотных центров.

В литературе обсуждаются несколько возможных механизмов реакции циклодегидратации диолов [4—7]. Высказано предположение, что кислоты Льюиса образуют донорно-акцепторные связи с гидроксильными группами и индуцируют синхронное элиминирование молекулы воды и реакцию циклизации. В соответствии с другой версией тетрагидрофуран образуется последовательно путем адсорбции диола на бренстедовских кислотных центрах, протонирования одной из гидроксильных групп, удаления молекулы воды с образованием карбкатиона и циклизации. Для обоснования предположения относительно образования карбкатиона использованы экспериментальные данные, полученные для моноалканолов [8]. М. Барток с соавторами считают, что внутримолекулярная циклизация 1,4-бутандиола происходит в результате атаки протонированной группы ОН второй гидроксильной группой и относится к реакциям замещения типа SN2 [5].

Наши исследования квантово-химическим методом показали, что при полной оптимизации геометрии линейного карбкатиона, полученного в результате дегидратации протонированного 1,4-бутандиола, возможно образование промежуточного циклического положительно заряженного комплекса [7]. Аналогичный комплекс был включен в эмпирическую схему механизма при обсуждении превращения диола в присутствии катализатора CrZSM-5 [6]. По мнению авторов, структура пор использованного ими цеолитного катализатора благоприятна для стабилизации в них промежуточных циклических соединений.

В настоящей работе квантово-химическим методом AM1 исследована роль основных центров силикагеля в реакции превращения 1,4-бутандиола.

Известно большое число конформеров молекулы 1,4-бутандиола [9]. В настоящем исследовании для уточнения механизма превращения 1,4-бутандиола в тетрагидрофуран были использованы два конформера (рис. 1) протонированного 1,4-бутандиола I ($E_{\rm общ} = -1297,655$ эВ) и II ($E_{\rm общ} = -1297,784$ эВ), торсионные углы которых приведены в табл. 2.

Рис. 1. Конформеры протонированного 1,4-бутандиола

Расстояние между атомами C₍₁₎ и O₍₅₎ конформера II составляет 2,629Å. Максимальный барьер вращения вокруг связей C₍₁₎—C₍₂₎ и C₍₂₎—C₍₃₎ при превращении конформера I в конформер II равен 1,223 ккал/моль.

Аналогично общепринятой точке зрения относительно гетерогенно-каталитической дегидратации спиртов [10] в настоящей работе предполагается, что одна из групп ОН диола, адсорбированного на кислотном центре катализатора, участвует в образовании поверхностного комплекса типа оксониевого иона. Расчеты показали, что дальнейшие превращения оксониевого иона 1,4-бутандиола зависят от его конформации. Так, если на

Торсионные углы в молекулах конформеров I и II

Последовательность атомов, образу- ющих торсионные углы	Торсионные углы (град.)			
	конформер I	конформер П		
O ₍₆₎ C ₍₁₎ C ₍₂₎ C ₍₃₎	-86,1	-174,7		
$C_{(1)}-C_{(2)}-C_{(3)}-C_{(4)}$	-176,4	-60,0		
$C_{(2)} - C_{(3)} - C_{(4)} - O_{(5)}$	53,6	64,7		

поверхности катализатора протонированный 1,4-бутандиол адсорбируется в конформации I и непротонированная гидроксильная группа поверхностного комплекса находится вблизи основного центра Si(OH)₃O⁻, то эта группа отдает свой протон катализатору и превращается в ненасыщенный спирт CH₂=CH-CH₂-CH₂-OH. Теплота превращения конформера I равна $^{-167,746}$ ккал/моль. Визуализация результатов оптимизации системы катализатор-реагент дает возможность установить, что в процессе превращения конформера I можно выделить несколько стадий, наиболее интересных с нашей точки зрения для понимания механизма реакции (рис. 2).

Рис. 2. Превращение конформера I

В исходном состоянии (*a*) расстояние между гидроксильной группой и основным центром 1,266 Å. После передачи протона гидроксильной группы катализатору (*б*, цикл оптимизации 23) происходит образование пятичленного цикла с участием одного из атомов водорода при C₍₂₎ и кислорода O₍₅₎ (цикл 24 на рис. 2 не показан), затем следует разрыв связи C—OH2⁺ и дегидратация (*a*, цикл 25). В 27 цикле наблюдается размыкание C₍₂₎---H связи и образование ненасыщенного спирта 3-бутен-1-ола (г). Длины связей C₍₂₎---H и H---O₍₅₎ в переходном состоянии (цикл 25) составляют 1,451 и 1,341 Å соответственно. Угол C₍₂₎---H --O₍₅₎ 129,282°. Длина связи C₍₁₎—C₍₂₎ в образовавшемся ненасыщенном спирте 1,332 Å соответствует экспериментально установленному значению длины связи C_{sp2} = C_{sp2} [11]. Для конформера II показано, что если оксониевый ион 1,4-бутандиола, мигрирующий по поверхности катализатора, приближается непротонара.

ной группой ОН к основному центру на расстояние больше 1,40 Å, то молекула разворачивается к этому центру своей положительно заряженной группой OH_2^+ и депротонируется. Если же в исходном состоянии молекула ориентирована относительно поверхности катализатора таким образом, что расстояние между основным центром и гидроксильной группой меньше 1,40 Å (например, 1,373 Å), то, согласно нашим расчетам, это приводит к образованию тетрагидрофурана. На рис. 3 представлены исходное состояние (*a*) и три цикла процесса превращения полуциклического конформера II (*б*,

Рис.3. Превращение конформера П

в, *г*). В этом случае после передачи протона гидроксильной группы катализатору (*б*, цикл 25) следует разрыв связи С—ОН2⁺ и дегидратация (*в*, цикл 26), а затем образование фуранового кольца (*г*, цикл 27). Теплота реакции −161,768 ккал/моль. Указанные превращения диола протекают без активационных барьеров, о чем свидетельствует характер изменения теплоты образования реакционной системы в каждом цикле процесса оптимизации (рис. 4).

Рис.4. Изменение теплоты образования в процессе оптимизации системы 1,4-бутандиол-активный центр

Это дает возможность заключить, что, по-видимому, в случае реакции циклодегидратации протонированного 1,4-бутандиола реализуется так называемый «концертный» механизм в режиме, близком к синхронному.

Наличие дотенциального барьера высотой 1,152 ккал/моль при сближении реагирующей молекулы протонированного 1,4-бутандиола (конформация II) и катализатора установлено только при изменении

расстояния от 1,40 до 1,373 Å. Для расчета потенциального барьера использовали метод «координаты реакции». В качестве реакционной координаты выбрано расстояние между основным центром и гидроксильной группой; шаг сканирования 0,02 Å.

Обращает на себя внимание следующее обстоятельство. Хотя конформер II более стабилен, чем конформер I, однако, согласно расчетам, теплота превращения конформера II в продукты реакции несколько ниже соответствующей теплоты конформера І. Это дает основание полагать, что описанные выше продукты реакции (3-бутен-1-ол и тетрагидрофуран) должны образовываться в присутствии содержащих SiO₂ катализаторов в сравнимых количествах. Однако в реальных условиях, в том числе и в наших опытах по исследованию превращения 1,4-бутандиола в присутствии некоторых видов силикагеля (см. табл. 1), селективность по тетрагидрофурану приближается к 100%, а ненасыщенный спирт в реакционной смеси не найден. Это кажущееся противоречие, по-видимому, связано с особенностями строения активной поверхности катализатора, благодаря которым взаимное расположение кластеров, содержащих кислые и основные центры, более благоприятно для реакции циклодегидратации. Отметим, что образование 3-бутен-1-ола было установлено при дегидратации 1,4-бутандиола в присутствии трикальцийфосфатного катализатора [12].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Опыты проводили на микрокаталитической установке в импульсном хроматографическом режиме при 245...300 °С. В качестве катализатора использовали силикагель фирмы «Асгоз» с диаметром пор 60 Å, силикагель L фирмы «Chemapol» (ситовой состав 0,035...0,07 мм) и кизельгур (ситовой состав 0,25...1 мм, S_{YI} 5,7 м²/г). В стальной реактор (1,2×3 см) помещали 15...37 мг катализатора на подложке из стекловолокна. ГЖХ анализ продуктов реакции осуществляли на колонке (2,5 м × 3 мм) с неподвижной фазой 10% OV-101 + 2,5% Reoplex на хромосорбе WHP при программировании температуры 50...150°С. Температура испарителя 270 °С. Скорость газа-носителя аргона 60 мл/мин.

Квантово-химические расчеты проводили полуэмпирическим методом АМ1 по программе МОРАС 5.0 [13] с полной оптимизацией геометрических параметров всех структур по алгоритму Бройдена-Флетчера-Гольдфарба-Шанно [14]. Для получения данных об изменении геометрии структур во время процесса оптимизации в расчетах использовали ключевое слово FLEPO. Таким образом был получен набор величин, характеризующих геометрию системы каждого из 96 циклов оптимизации, осуществленной программой. Для визуализации изучаемой реакции эти величины были конвертированы в ХҮГ формат, пригодный для программы анимации и визуализации молекулярных структур MOVIEMOL (К. Hermansson, L. Ojamae, University of Upsala, Institute of Chemistry, Report UUIC-B19-500). Для компьютерного дизайна, исходной молекулы 1,4-бутандиола и кластера катализатора использовался пакет программ LabVision [15]. Протонирование 1,4-бутандиола симулировалось ионом Н⁺, направленным к атому кислорода гидроксильной группы вдоль связи С-О фрагмента С-О-Н. Расстояние между атомом кислорода и ионом Н^т в исходном состоянии 5 Å. Теплоту реакции рассчитывали как разность теплоты образования конечной системы, включающей продукт реакции и кластер катализатора Si(OH)4, и суммы теплот образования 1,4-бутандиола и основного центра, который моделировался кластером Si(OH)₃O⁻ аналогично работам [16, 17].

Авторы признательны Латвийскому совету по науке за финансирование настоящего исследования (грант 706).

СПИСОК ЛИТЕРАТУРЫ

- Контактные реакции фурановых соединений / Под ред. Шиманской М. В. Рига: Зинатне, 1985. — 301 с.
- 2. The Chemistry of Ethers, Crown Ethers, Hydroxyl Groups and their Sulphur Analogues. Suppl. E2. Dehydration of Diols. Ch. 16 / S. Patai, Ed. New York: Wiley and Sons, 1980. P. 721.
- 3. Shymanska M., Lukevics E. // Chem. Heterocycl. Compds. 1993. Vol. 29. P. 1000.

- 4. Molnar A., Felföldi K., Bartok M. // Tetrahedron. 1981. Vol. 37. P. 2149.
- 5. Bucsi I., Molnar A., Bartok M. // Tetrahedron. 1995. Vol. 51. P. 3319.
- Subba Rao Y. V., Kulkarni Sh. J., Subrahmanyam M., Rama Rao A. V. // J. Org. Chem. 1994. – Vol. 59. – P. 3998.
- 7. Studies in Surface Science and Catalysis. Heterogeneous Catalysis and Fine Chemicals. IV / Adv. eds. B. Delmon, J. T. Yates. 1997. Vol. 108. P. 641.
- 8. *Чувылкин Н. Д., Жидомиров Г. М., Казанский В. Б. //* Кинетика и катализ. 1973. Т. 14. — Вып. 4. — С. 943.
- 9. Шагидуллин Риф. Р., Чернова А. В., Шагидуллин Р. Р. // Изв. АН СССР. Сер. хим. 1993. № 9. С. 1572.
- 10. Blaszkowski S. R., Van Santen R. A. // J. Phys. Chem. 1995. Vol. 99. P. 11728.
- Allen F. H., Kennard O., Watson D. G. // J. Chem. Soc. Perkin Trans. II. 1987. N 12. P. S1.
- 12. Фрейдлин Л. Х., Шарф В. З. // Изв. АН СССР. Сер. хим. 1960. № 9. С. 1700.
- 13. Stewart P. Program package MOPAC (QCPE N 455). Version 5.0
- 14. Shanno D. F. // J. Optimiz. Theory Appl. 1985. Vol. 46. P. 87.
- LabVision (Version 1, 1992). TRIPOS associates Inc., 1699. S.Hanley Rd., St. Louis, MO, 63144, USA.
- 16. Горлов Ю. И., Заец В. А., Чуйко А. А. // ТЭХ. 1988. № 4. С. 407.
- 17. Гохберг П. Я., Толстоногов В. А., Захаров И. П., Но Б. И. // Кинетика и катализ. 1989. Т. 30, Вып. 2. С. 334.

Латвийский институт органического синтеза, Рига LV-1006 e-mail: leite@osi.lanet.lv Поступило в редакцию 9.04.98