О. Е. Насакин, А. Н. Лыщиков, П. М. Лукин, В. А. Тафеенко, А. Х. Булай

СИНТЕЗ ПИРРОЛОПИРИМИДИНОВ ИЗ 2,5-ДИАРИЛ-3,3,4,4-ТЕТРАЦИАНОПИРРОЛИДИНОВ

Показана возможность синтеза пирроло [1,2-*a*] пиримидинов взаимодействием 2,5-диарил-3,3,4,4-тетрацианопирролидинов I с β -дикарбонильными соединениями, которое осуществляется путем перегруппировки соединений I в 2-(N-арилиденамино)-5-арил-3,4-дицианопирролы II. Обнаружено различное направление взаимодействия пирролов II с β -дикетонами и ацетоуксусным эфиром, а наличие в их структуре скрытого *о*-енаминонитрильного фрагмента позволяет перейти к пирроло [2,3-*d*] пиримидинам.

В сообщении [1] было показано, что 2,5-дизамещенные 3,3,4,4-тетрацианопирролидины ацилируются по аминному фрагменту как вторичные амины. Нами и далее предпринимались попытки использовать эти соединения в качестве аминов. Но, по-видимому, из-за особенностей строения 2,5-диарил-3,3,4,4-тетрацианопирролидинов I не удалось получить продукта взаимодействия с фенилизоцианатом, а попытка синтеза соответствующего енамина ацетилацетона привела к неожиданному результату. После кипячения 2,5-дифенил-3,3,4,4-тетрацианопирролидина Ia с ацетилацетоном в бензоле в присутствии *п*-толуолсульфокислоты и последующей отгонки растворителя из продуктов разложения с небольшим выходом был выделен 2,4-диметил-6-фенил-7,8-дицианопирроло [1,2-*a*]пиримидин IVa, структура которого была определена по данным ИК и масс-спектроскопии.

IV a R = Ph, б R = 4-MeOC₆H₄, в R = 4-FC₆H₄, г R = 3-ClC₆H₄, д R = 2-ClC₆H₄, е R = OMe, ж R = OEt, и R = OC₃H₇-*н*, к R = OC₄H₉-*н*

По-видимому, в условиях проведения процесса пирролидин Ia частично претерпевает перегруппировку, а образующийся при этом пиррол IIa вступает с ацетилацетоном в реакцию обмена. Внутримолекулярная циклизация азометина III приводит к пирроло [1,2-*a*]пиримидину IV. Формирование пирроло [1,2-*a*]пиримидиновой структуры в данном случае согласуется с известными способами получения подобных структур из 2-аминопирролов [2, 3]. Предположение, что в ходе реакции первоначально происходит перегруппировка, было подтверждено взаимодействием ацетилацетона с пирролами II, полученными по методу [4]. В результате с выходами до 94% синтезирован ряд пирроло [1,2-*a*]пиримидинов IVа—д. Аналогичные по структуре 5-алкоксипирролы IIе—к, синтезированные взаимодействием пирролидинов I со спиртами [5, 6], с ацетилацетоном так же легко образуют соединения IV (табл. 1). Их спектральные данные полностью согласуются с предложенной структурой (табл. 2).

В реакциях пирролов II, когда в качестве β -дикарбонильного соединения использовался ацетоуксусный эфир, не происходит отщепления спирта, как это можно было бы предположить из того, что внутримолекулярная циклизация осуществляется по этоксикарбонилу, как в случае синтеза пиразолинонов. В результате их взаимодействия образуются 6-замещенные 4-арил-2-метил-7,8-дициано-3-этоксикарбонил-1,4-дигидропирроло [1,2-*a*]-пиримидины VIa—г (табл. 1). Их структура была определена рентгеноструктурным исследованием монокристалла VIa (рисунок, табл. 3).

VI a R = Ph, $R^1 = Ph$; $\delta R = OMe$, $R^1 = Et$; B R = OMe, $R^1 = 2$ -Fu; r R = OEt, $R^1 = Ph$

Исходя из строения соединений VI можно предположить, что в результате реакции обмена после образования связи C=N происходит конденсация выделившегося бензальдегида с аддуктом реакции обмена по типу Кневенагеля, а в дальнейшем — 1,4-присоединение по сопряженной системе с образованием конечного соединения VI.

Присутствие бензальдегида не влияет на выход конечного продукта, что свидетельствует о сложности реакции. Возможно, что стадия обмена, протекающая, вероятно, через четырехцентровое состояние [7], и стадия конденсации практически совмещены. При проведении реакции пиррола IIa с бензилиденацетоуксусным эфиром соединение VIa образуется, но его низкий выход при этом определяется сложностями самой реакции и

Молекула соединения VIa без атомов водорода (длины связей, Å)

выделения продукта. Обнаружено, что пирролопиримидины VI6—г выделяются намного лучше. Данные ИК и масс-спектров соединений VI6—г согласуются со спектральными данными соединения VIa.

Интересные особенности N-арилиденаминного фрагмента, примененного вместо аминогруппы для формирования пирроло [1,2-а]пиримидиновой структуры, были использованы для получения пирроло [2,3-d]пиримидинов, не замещенных в положении 7. При кипячении пирролов II в формамиде с выходом до 74% синтезированы 4-амино-6-арил-5-цианопирроло [2,3-d]пиримидины VIIа—в.

VII a R = Ph, δ R = 4-MeOC₆H₄, B R = 4-BrC₆H₄

Таблица 1

Соеди-	R	R ¹	Брутто-	Н Вы	айдено, % числено, ч	Т _{ПЛ} , ℃	Выход,	
нение			формула	с	н	N		70
IVa	Ph		$C_{17}H_{12}N_4$	<u>74,83</u> 74,98	<u>4,31</u> 4,44	$\frac{20,98}{20,57}$	296297	82
губ	4-MeOC ₆ H ₄	-	C18H14N4O	<u>71,39</u> 71,51	$\frac{4,78}{4,67}$	$\frac{18,41}{18,53}$	253254	73
IVв	4-FC6H4	_	C17H11FN4	<u>70,25</u> 70,34	$\frac{3,91}{3,82}$	$\frac{19,49}{19,30}$	294295 (разл.)	94
IVr	3-ClC6H4	. —	C17H11ClN4	<u>66,64</u> 66,56	<u>3,69</u> 3,61	$\frac{18,14}{18,26}$	305306	83
гνд	2-C1C6H4	—	C17H11ClN4	<u>66,61</u> 66,56	<u>3,53</u> 3,61	$\frac{18,19}{18,26}$	252253	71
IVe	ОМе	-	C ₁₂ H ₁₀ N4O	<u>63,71</u> 63,67	$\frac{4,46}{4,49}$	$\frac{24,76}{24,65}$	249251 (разл.)	74
IVж	OEt		C13H12N4O	<u>64,99</u> 65,05	$\frac{5.03}{5.09}$	$\frac{23,32}{23,21}$	209210	88
IVи	OC3H7-н	_	C14H14N4O	$\frac{66,21}{66,13}$	<u>5,59</u> 5,55	$\frac{21,95}{22,03}$	187188	84
IVк	0С4Н9-н	-	C15H16N4O	$\frac{67,18}{67,15}$	<u>6,08</u> 6,01	$\frac{20,79}{20,88}$	184185	93
VIa	Ph	Ph	C25H20N4O2	<u>73,42</u> 73,51	<u>5,06</u> 4,94	$\frac{13,88}{13,72}$	257258	12
VIG	ОМе	Ph	C ₂₀ H ₁₈ N4O ₂	<u>66,34</u> 66,29	<u>5,07</u> 5,01	<u>15,41</u> 15,46	233234	68
VIB	ОМе	2-Fu	C ₁₈ H ₁₆ N4O ₂	$\frac{61,42}{61,36}$	<u>4,66</u> 4,58	$\frac{15,81}{15,90}$	241242 (разл.)	43
VIr	OEt	Ph	C ₂₁ H ₂₀ N ₄ O ₂	<u>67,11</u> 67,01	<u>5,44</u> 5,36	$\frac{14,75}{14,88}$	216217	56
VIIa	Ph		C13H9N5	<u>66,45</u> 66,37	<u>3,91</u> 3,86	<u>29,64</u> 29,77	342343 (разл.)	74
VIIб	4-MeOC ₆ H ₄	—	C14H11N5O	<u>63,48</u> 63,39	$\frac{4,25}{4,18}$	$\frac{26,28}{26,40}$	337338	38
VIIB	4-BrC ₆ H ₄	—	C13H8BrN5	<u>49,75</u> 49,70	<u>2,44</u> 2,57	$\left \frac{22,37}{22,29} \right $	357358	72

Характеристики соединений IVа-к, VIa-г, VIIa-в

ик	И	масс-спектры	соединений	IVа—к,	VIa—г,	VПа—в
----	---	--------------	------------	--------	--------	-------

Соеди-	ИК	спектр, см ⁻¹		Масс-спектр, т/z*			
нение	ν _(=CH-)	ν _(C =N)	ν _(C=N)	(относительная интенсивность, %)			
IVa	3070	2238	1620	272 (100), 271 (20), 270 (5), 257 (2), 256 (2), 244 (1)			
IVб	3060	2238	1618	_			
IVB	3060	2235, 2245	1618	290 (100), 289 (19), 288 (9), 182 (9), 145 (9), 81 (6), 69 (12), 67 (10), 57 (10), 44 (39), 42 (12)			
IVr	3060	2230, 2245	1620	306 (100), 305 (9), 271 (13), 270 (16), 256 (9), 190 (24), 135 (25), 75 (14), 67 (19), 65 (15), 51 (12)			
ΙVд	3080	2230, 2250	1628	306 (100), 271 (8), 270 (13), 269 (21), 190 (12), 135 (16), 109 (8), 85 (10), 69 (11), 55 (12), 43 (15)			
IVe	3070	2220, 2235	1620	226 (15), 212 (17), 211 (100), 156 (8), 143 (8), 130 (7), 107 (12), 77 (8), 67 (18), 57 (10), 45 (15)			
IVж	3065	2225, 2240	1620				
IVи	3065	2230, 2235	1620	_			
IVκ	3055	2220, 2235	1605				
	ν (NH)		ν (C=O)				
VIa	3305, 3260, 3215, 3155	2235	1700	408 (100), 362 (38), 335 (41), 334 (36), 331 (23), 232 (33), 165 (12), 128 (37), 103 (11), 77 (20) 45 (29)			
VIG	3300, 3235, 3150	2230	1690	362 (100), 347 (55), 317 (15), 302 (69), 273 (24), 201 (15), 186 (34), 155 (29), 128 (41), 91 (6), 77 (22)			
VIB	3300, 3230, 3145	2230	1690	352 (100), 347 (32), 323 (91), 307 (48), 291 (91), 263 (55), 186 (86), 130 (52), 108 (50), 91 (36), 44 (45)			
VIr	3300, 3225, 3145	2235	1690	376 (100), 348 (45), 347 (91), 303 (27), 302 (41), 276 (18), 274 (18), 270 (23), 155 (45), 129 (37), 128 (47)			
			$\delta_{ m (NH)}$				
VIIa	3475, 3320, 3100	2230	1655	235 (100), 208 (41), 184 (22), 180 (9), 155 (10), 118 (6), 105 (12), 104 (22), 77 (26), 55 (8), 45 (98)			
VIIG	3475, 3220, 3120	2230	1655	265 (48), 250 (19), 199 (10), 195 (13), 185 (25), 149 (27), 115 (33), 111 (42), 97 (60), 84 (59), 44 (100)			
VIIB	3450, 3220, 3100	2225	1650	313 (100), 288 (16), 265 (26), 207 (40), 180 (16), 165 (14), 104 (23), 77 (30), 55 (16), 51 (11), 44 (89)			

* Приведены пик молекулярного иона и 10 наиболее интенсивных пиков осколочных ионов.

В ИК спектрах соединений VIIа—в наблюдаются полосы поглощения валентных колебаний связей NH при 3475...3100 см⁻¹ и деформационных колебаний при 1655...1650 см⁻¹ (табл. 2). Причем в области 3125...3100 см⁻¹ выделяется уширенная полоса поглощения, характерная для пиррольного NH-фрагмента. Сопряженная цианогруппа обусловливает наличие интенсивной полосы поглощения при 2230 см⁻¹. Полностью согласуются с предложенной структурой и данные спектра ЯМР ¹³С соединения VIIа. В спектре кроме сигналов атомов углерода бензольного кольца наблюдается набор из шести сигналов атомов углерода пирроло [2,3-*d*] пиримидиновой структуры в области 78...156 м. д. и сигнал углерода цианогруппы с $\delta = 116,50$ м. д.

Таким образом, найдены оригинальные приемы формирования пирролопиримидиновых структур. Особый практический интерес из них могут представлять незамещенные в положении 7 пирроло [2,3-*d*]пиримидины, которые являются структурными аналогами агликона нуклеозидных антибиотиков [8, 9].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакций и чистотой синтезированных веществ осуществлялся методом ТСХ на пластинках типа Silufol UV-254 (проявление — УФ облучение, пары йода). ИК спектры сняты на спектрометре UR-20 в тонком слое (суспензия в вазелиновом масле). Масс-спектры получены на приборе MS 25PFA Kratos с прямым вводом вещества в ионный источник при энергии ионизации 50 и 70 эВ. Спектры ЯМР ¹³С записаны на спектрометре Brucker WH-90 с рабочей частотой 22,63 МГц, внутренний эталон ГМДС. Рентгеноструктурное исследование выполнено на четырехкружном автоматическом дифрактометре CAD-4 фирмы Enraf Nonius, МоКα-излучение, *ω*-сканирование, графитовый монохроматор.

Таблица З

4.00M		v	z	Атом	x	y	z
0	7658(5)	-3545(4)	8762(3)	C(19)	7306(6)	-1190(6)	7476(3)
0 (1)	8850(6)	-2430(5)	10166(3)	C(20)	7265(7)	-2371(7)	6698(4)
N(1)	6252(5)	1640(5)	9559(3)	C(21)	8220(8)	-2390(8)	6021 (4)
N(I)	5087(4)	156(4)	8122(3)	C(22)	9226(7)	-1239(8)	6143(4)
N(4)	3708(6)	5422(6)	9065(4)	C(22)	9303(7)	-64(8)	6915(5)
N(5)	1419(6)	3084(5)	6356(3)	C(24)	8332(6)	-40(7)	7596(4)
$\Gamma(0)$	4230(6)	2601 (5)	8345(4)	C(25)	885(2)	-547(1)	8039(7)
	3475(5)	1821(5)	7462(3)	HN(1)	623(6)	263(6)	1006(3)
$C_{(2)}$	4032(5)	326(5)	7330(3)	H(5)	581 (5)	-203(5)	809(3)
C(3)	5230(5)	1527(5)	8732(3)	Hrim	793(6)	4(6)	1122(4)
C(4)	6233(6)	-1137(5)	8198(3)	H(14)	328(5)	-239(5)	734(3)
C(3)	7051(6)	-976(6)	9201 (3)	H(15)	237(7)	-441 (6)	591 (4)
C(0)	7100(6)	380(6)	9818(3)	H(16)	258(6)	-421(6)	437(4)
Ca	4008(6)	4153(6)	8760(4)	H(17)	311(6)	-172(6)	417(4)
Ca	2348(6)	2494(5)	6847(4)	H(18)	368(7)	41(7)	552(4)
	8010(7)	726(7)	10793(4)	H(20)	647(7)	-302(7)	656(5)
C(10)	7956(7)	-2341(6)	9455(4)	H(21)	819(8)	-352(7)	533(5)
C(12)	856(1)	-4958(7)	8866(5)	H(22)	979(7)	-95(7)	557(4)
C(12)	3609(6)	-925(5)	6522(3)	H(23)	983(6)	85(6)	703(4)
C(14)	3206(7)	-2353(6)	6648(4)	H(24)	837(5)	79(5)	821 (3)
Cus	2815(8)	-3503(7)	5876(4)	H(101)	777(7)	188(6)	1112(4)
C(16)	2815(9)	-3252(7)	4970(5)	H(102)	899(6)	67(6)	1084(4)
C(17)	3182(9)	-1832(7)	4838(4)	H(121)	861 (6)	503(6)	955(3)
C(18)	3588(7)	-670(6)	5607(4)			1	

Коорлинаты атомов (×10 ⁻ , для	H	x	10)	в	молекуле	via
--	---	---	-----	---	----------	-----

2,4-Диметил-7,8-дициано-6-фенилпирроло[1,2-*a*]пиримидин (IVa). Реакционную смесь, состоящую из 3,23 г (0,01 моль) 2,5-дифенил-3,3,4,4-тетрацианопирролидина, 5 мл ацетилацетона и 3—4 кристалликов *n*-толуолсульфокислоты кипятят до исчезновения в ней исходного пирролидина. После охлаждения и разбавления 5 мл изопропилового спирта отфильтровывают выделившийся осадок, промывают изопропиловым спиртом и перекристаллизовывают из метилцеллозольва. После сушки на воздухе получают 0,3 г (11%) соединения IVa с *T*_{пл} 296...297 °C.

6-Замещенные 2,4-диметил-7,8-дицианопирроло[1,2-а]пиримидины (IVа—к). К суспензии 10 ммоль исходного 2-(N-арилиденамино)-3,4-дицианопиррола Па—к в 8 мл ацетилацетона добавляют 2—3 кристаллика *п*-толуолсульфокислоты и нагревают до кипения. Смесь кипятят в течение 15...20 мин до исчезновения в ней исходного пиррола П. При этом, в некоторых случаях, из раствора начинает выкристаллизовываться осадок. После охлаждения реакционной смеси водой отфильтровывают выделившийся осадок, промывают изопропиловым спиртом и перекристаллизовывают. Характеристики полученных соединений см. в табл. 1.

4-Арил-2-метил-6-R-7,8-дициано-3-этоксикарбонил-1,4-дигидропирроло[1,2-а] пиримидины (VIa—r). Кипятят 10 ммоль 2-(N-арилиденамино)-5-R-3,4-дицианопиррола II в 8 мл ацетоуксусного эфира в присутствии 2—3 кристалликов *n*-толуолсульфокислоты до полного исчезновения исходного пиррола II в реакционной смеси (~30 мин). После охлаждения выдерживают реакционную массу 1 ч для кристаллизации целевых веществ (в случае синтеза VIa выдерживают сутки). Затем отфильтровывают выделившийся осадок, промывают водным изопропиловым спиртом (1:1) и перекристаллизовывают из изопропилового спирта (табл. 1).

Рентгеноструктурное исследование соединения VIa. Основные кристаллографические данные: a = 8,802(4), b = 8,873(3), c = 14,354(3) Å, $\alpha = 100,8(3)$, $\beta = 99,51(3)$, $\gamma = 86,15(3)^\circ$, V = 874,7 Å³, пространственная группа P1, Z = 2. В области $\theta \le 25^\circ$ обнаружено 3119 ненулевых отражений, из которых 2238 с $I > 3\sigma(I)$ использовали для уточнения позиционных и тепловых параметров молекулы, мотив которой найден с использованием прямых методов, реализованных в программе MULTAN комплекса программ SDP. Уточнение позиционных и тепловых параметров неводородных атомов проведено в анизотропном полноматричном приближении. Атомы водорода локализованы из синтезов Фурье и уточнены в изотропном приближении. Не удалось локализовать атомы водорода при атоме C(25), а также один атом водорода при C(12) (рисунок). Окончательный R_f 6,4%. Молекула без атомов водорода изображена на рисунке, координаты атомов приведены в табл. 3.

4-Амино-6-арил-5-цианопирроло[2,3-*d***]пирими**дины (VIIа—в). Реакционную смесь, состоящую из 10 ммоль 2-(N-арилиденамино)-5-арил-3,4-дицианопиррола II и 8 мл формамида, кипятят с обратным холодильником до образования в ней осадка и исчезновения исходного пиррола II (50...80 мин). После этого кипятят еще 10 мин, затем охлаждают холодной водой, отфильтровывают образовавшийся осадок, промывают его изопропиловым спиртом и перекристаллизовывают из ДМФА (табл. 1). Спектр ЯМР ¹³С соединения VIIa (ДМФА), м. д.: С(2) 153,37; С(4) 156,47; С(4а) 78,83; С(5) 102,61; С(6) 142,18; С(7а) 151,13; С(СN) 116,50.

СПИСОК ЛИТЕРАТУРЫ

- 1. Насакин О. Е., Лышиков А. Н., Лукин П. М., Булай А. Х. // ХГС. 1994. № 3. С. 353.
- 2. Шведов В. И., Мезенцева М. В., Гринев А. Н., Ермаков А. И. // ХГС. 1976. № 12. С. 1677.
- 3. Wamhoff H., Wehling B. // Chem. Ber. 1976. Bd 109, N 9. S. 2983.
- 4. Насакин О. Е., Лыщиков А. Н., Лукин П. М., Булай А. Х. // ХГС. 1995. № 1. С. 42.
- Насакин О. Е., Лыщиков А. Н., Лукин П. М., Булай А. Х., Тафеенко Б. А., Шарбатян П. А. // ХГС. — 1991. — № 11. — С. 1502.
- 6. Насакин О. Е., Лыщиков А. Н., Лукин П. М., Тафеенко Б. А. // ХГС. 1992. № 11. С. 1472.
- 7. Smith C. W., Norton D. G., Ballard S. A. // J. Amer. Chem. Soc. 1953. Vol. 75. P. 3316.
- 8. Teylor E. C., Hendess R. W. // J. Amer. Chem. Soc. 1965. Vol. 87. P. 1995.
- 9. Tolman R. L., Robins R. K., Townsend L. B. // J. Amer. Chem. Soc. 1969. Vol. 91. P. 2102.

Чувашский государственный университет им. И. Н. Ульянова, Чебоксары 428015 Поступило в редакцию 03.02.97