В. В. Кузнецов, Е. А. Алексеева, Е. Г. Пыхтеева, И. С. Рублев, А. И. Грень

СТЕРЕОХИМИЯ 2,4-ДИЗАМЕЩЕННЫХ 1,3,2-ДИОКСАБОРИНАНОВ

По данным спектроскопии ПМР, молекулы 2,4-дизамещенных 1,3,2-диоксаборинанов пребывают в преимущественной конформации софы с экваториальной алкильной группой у атома $C_{(4)}$. Этот вывод подтвержден расчетом оптимальной геометрии кольца циклических борных эфиров методом молекулярной механики MM 2.

Характер преимущественной конформации цикла 1,3,2-диоксаборинанов предопределен частично двойной природой связи В—О, вследствие чего для молекул 2,5-, отдельных представителей 2,5,5-, транс-2,4,5- и цис-2,4,6-замещенных аналогов реализуется полуплоская форма, или софа [1-7]. В то же время конформация цис-изомеров 2,4,5-триалкил-1,3,2-диоксаборинанов искажена в сторону одной из гибких форм [5], а молекулы большинства 2,5,5- и 2,4,4-замещенных производных при комнатной температуре являются смесью инвертомеров [2, 8]. В силу этого, а также из-за отсутствия систематических литературных данных представляет интерес оценить у алкильного заместителя атома С(4) на характер влияние преимущественной конформации кольца молекул шестичленных циклических эфиров борных кислот. Настоящая работа посвящена исследованию конформационных свойств 2,4-дизамещенных 1,3,2-диоксаборинанов (соединения I—VI) методами спектроскопии ПМР и молекулярной механики.

Циклические борные эфиры I, III—VI получены взаимодействием соответствующих 1,3-диолов с борной кислотой либо эфирами алкилборных кислот [2] (см. табл. 1).

 $R = CH_3$, C_5H_{11} , C_6H_{13} ; $R^1 = OH$, *i*- C_3H_7 , *i*- C_4H_9 ; $R^2 = H$, C_3H_7 , *i*- C_4H_9

2-Фенокси-4-метил-1,3,2-диоксаборинан (II) синтезирован переэтерификацией 2-бутоксипроизводного фенолом.

Параметры спектров ПМР исследуемых соединений представлены в табл. 1. В случае метилзамещенных аналогов (соединения I—IV) обращает внимание заметная неэквивалентность ($\Delta\delta$ 0,21...0,25 м. д.) метиленовых протонов у атома C₍₅₎ кольца. Химические сдвиги протонов атома у C₍₆₎ находятся в ожидаемом интервале [2], однако их неэквивалентность заметно меньше, чем у однотипно замещенных 1,3-диоксанов ($\Delta \delta_{AB}$ в спектрах последних составляет 0,31...0,48 м. д. [9, 10]). Химический сдвиг протонов метильной группы у атома C₍₄₎ (1,25 м. д.) не отличается от наблюдаемого в спектре *цис*-4,6-диметил-1,3,2-диоксаборинана, молекулы которого, независимо от характера заместителя у атома бора, пребывают в конформации софы с диэкваториальной ориентацией заместителей [2, 5, 6]. В спектре 1574 соединения II для протонов этой группы наблюдается анизохронность (Δδ 0,05 м. д.). Интересной особенностью спектра соединения III является синглетный характер сигнала протонов изопропильной группы у атома бора; причины такого эффекта подробно обсуждаются в работах [2, 11, 12].

Значения вицинальных КССВ в спектрах 4-метил-1,3-диоксанов, молекулы которых пребывают в преимущественной конформации кресла, укладываются в интервалы: ${}^{3}J_{Aa} = 11, 0...11, 7, {}^{3}J_{Ba} = 4, 5...5, 3, {}^{3}J_{Ae} = 2, 9...3, 5,$ ³ J _{Be} = 1,6...2,0 Гц [9, 10]. Аналогичные КССВ в спектрах соединений I—IV, за исключением ${}^{3}J$ ве, также соответствуют этим диапазонам, свидетельствуя об отсутствии искажений в углеродной части кольца. В случае соединения II в результате подавления сигналов протонов метильной группы удалось выделить значения констант ${}^{3}J_{A'a} = 7,3$ и ${}^{3}J_{A'e} = 2,9$ Гц. Все сказанное свидетельствует об экваториальной ориентации метильной группы у С(4) и о реализации для молекул соединений I-IV, независимо от характера заместителя у атома бора, преимущественной конформации софы. Сделанные выводы подтверждаются сравнением экспериментальных и теоретических спектров 4-метиланалогов: последний рассчитан по программе PANIC для шестиспиновой системы (протоны H_A, H_B, H_{A'}, H_a, H_e и CH₃). АВ-Часть спиновой системы АВаеА' состоит из характерных триплета дублетов H_A и квартета дублетов H_B; на слабопольную часть последнего накладывается мультиплетный сигнал протона На'. еа-Часть обсуждаемой системы включает дублет квартетов от Не и квартет дублетов от Ha.

Увеличение длины цепи алкильного заместителя у атома С(4) соединений V, VI не меняет характер спиновых взаимодействий в углеродной части кольца (табл. 1). Значения вицинальных КССВ и в этом случае свидетельствуют в пользу преимущественной конформации софы.

С целью более детального исследования влияния заместителя у атома $C_{(4)}$ на характер преимущественной конформации молекул 1,3,2-диоксаборинанов нами в рамках метода силового поля MM 2 со стандартной параметризацией [13] проведена оптимизация геометрии модельных 4-метил- (VII) и 4-гексил- (VIII)-1,3,2-диоксаборинанов. В результате на поверхности потенциальной энергии обнаружен минимум, соответствующий конформеру софы с экваториальной ориентацией заместителя у атома $C_{(4)}$. Оптимизированные геометрические параметры конформеров соединений VII и VIII представлены в табл. 2.

Длины связей В—О и С—О соответствуют экспериментальным в молекулах шестичленных циклических эфиров борных кислот [2, 6]. Валентные углы в гетероатомном фрагменте близки 120°, к а внутрициклические углы при атомах углерода кольца — к 109°. Внутрициклические торсионные углы т обоих соединений также взаимно близки. Следует, однако, отметить, что цикл соединения VIII слегка искажен со стороны замещенного атома углерода. В то же время из сравнения величин тсредн следует, что увеличение длины алкильного заместителя у атома С(4) практически не сказывается на степени уплощенности кольца.

Для оценки достоверности полученных результатов нами сопоставлены экспериментальные (соединения IV, VI) и теоретические (соединения VII и VIII) вицинальные КССВ. Последние получены несколькими способами на основе оптимальных расчетных значений торсионных углов φ между соответствующими протонами (табл. 3). При этом в первую очередь использована известная зависимость между углом φ и величиной КССВ [14]:

$${}^{3}J_{\text{HH}} = P_{1}\cos^{2}\varphi + P_{2}\cos\varphi + P_{3} + \sum \Delta \chi_{i} \Big\{ P_{4} + P_{5}\cos^{2}(\xi_{i}\varphi + P_{6} | \Delta \chi_{i} |) \Big\}$$
(1)

где $P_1 - P_6$ — эмпирические параметры, $\Sigma \Delta \chi i$ — сумма разностей электроотрицательностей между заместителями соответствующего этанового фрагмента и водородом (по данным работы [15]), а ξi — величина,

Таблица 1

Соеди- ненис	R	R ¹	Химические сдвиги, м. д.					КССВ, Гц						
			HA	Hв	$\Delta \delta_{AB}$	Ha	He	$\Delta \delta_{ae}$	- ² J AB	_2 _{J ae}	³ J _{Aa}	³ J _{Ba}	³ _{J Ae}	³ / Be
I	Ме	он	3,81	3,93	0,12	1,69	1,90	0,21	10,7	14,0	11,1	4,7	3,7	3,7
II	Me	PhO	3,96	4,05	0,09	1,62	1,87	0,25	10,7	14,3	11,0	4,8	3,4	3,5
III	Ме	<i>i</i> -Pr	3,94	4,03	0,09	1,63	1,86	0,23	10,7	14,0	11,2	4,7	3,5	3,7
IV	Me	<i>i-</i> Bu	3,93	4,02	0,09	1,65	1,89	0,24	10,7	14,0	11,2	4,7	3,5	3,7
v	Am	<i>i</i> -Bu	3,92	4,01	.0,09	1,68	1,89	0,21	10,7	14,0	11,2	4,9	3,4	3,7
VI	Hex	<i>i-</i> Bu	3.92	4.01	0.09	1.68	1.89	0.21	10.7	14.0	11.2	4,9	3,4	3,7

Параметры спектров ПМР 2,4-дизамещенных 1,3,2-диоксаборинанов I—VI

Таблица 2

Оптимальные геометрические параметры молекул модельных 4-метил- и 4-гексил-1,3,2-диоксаборинанов (R¹ = H)

Соеди- нение	R	Ba	лентные углы, г	рад.	Торсионные углы $ au$, град.						
		1-2-3*	612	234	1234	2345	3456	4561	5612	6123	и средн., град
VII VIII	CH ₃ C ₆ H ₁₃	121,2 121,1	122,2 122,0	122,4 122,1	-4,5	29,9 32,5	-53,8 -56,3	54,0 55,4	-30,2 -30,2	4,6 4,5	29,5 30,8

 Номера атомов цикла. Длины связей: В-О - 1,35 Å, С-О - 1,41 Å, С-С - 1,53...1,54 Å; внутрициклические уклы при атомах углерода - 108,4...109,6°.

.

принимающая значения +1 и -1 в зависимости от ориентации заместителей у атомов углерода, содержащих вицинальные протоны. Была также использована более простая формула [16]:

$${}^{3}J_{\rm HH} = (7,8 - 1,0\cos\varphi + 5,6\cos2\varphi)(1 - 0,1\sum\Delta\chi_{i}),$$
 (2)

где значение $\Delta \chi i$ аналогично приведенному в равенстве (1), и уравнение Карплуса [17] с параметрами из работы [14]:

$${}^{3}J_{\rm HH} = 7,76\cos^{2}\varphi - 1,10\cos\varphi + 1,40.$$
 (3)

Нетрудно видеть, что наиболее близкое соответствие экспериментальных и теоретических КССВ (наименьшая сумма $|\Delta J|$) наблюдается при использовании уравнений (1) и (2). Вместе с тем расчетные значения отдельных констант, в частности ${}^{3}J$ де, полученных в соответствии с этими равенствами, заметно отклоняются от экспериментальных величин. Вероятная причина такого несоответствия, по нашему мнению, не связана с заметным вкладом альтернативных (например, гибких) форм из-за существенной стабилизации софы вследствие p— π -электронных взаимодействий в гетероатомном фрагменте [2]. Другими словами, молекулы 2,4-дизамещенных 1,3,2-диоксаборинанов можно рассматривать как конформационно однородные. Остается предположить, что основным фактором, определяющим различие между сопоставляемыми КССВ, является более

Таблица З

	Pac	четные зн	ачения $arphi$,	град.	Расчет	ные значе	ния ³ J F	Урав- не-			
Сое- ди- не- ние	ндссна	HACCH _e	HBCCH2	HBCCHe	³ J _{Aa}	³ JAe	³ J _{Ba}	³ J _{Be}	ние для рас- чета КССВ	*∑ ð <i>j</i> , гц	
VП	175,1	57,1	52,3	65,7	11,5	2,2	5,3	3,6	(1)	0,3 + 1,3 + 0,6 + 0,1 = 2,3	
					11,9	4,1	4,8	3,1	(2)	$\begin{array}{r} 0,7 + 0,6 + \\ + 0,1 + 0,6 \\ = 2,0 \end{array}$	
					10,2	3,1	3,7	2,3	. (3)	1,0 + 0,4 + + 1,0 + 1,4 = 3,8	
VIII	175,0	55,8	53,3	65,8	11,5	2,4	5,1	3,6	(1)	0,3 + 1,0 + + 0,2 + 0,1 = 1,6	
					11,9	4,3	4,6	3,1	(2)	$\begin{array}{r} 0,7 + 0,9 + \\ + 0,3 + 0,6 \\ = 2,5 \end{array}$	
					10,2	3,2	3,5	2,3	(3)	$\begin{vmatrix} 1,0 + 0,2 + \\ + 1,4 + 1,4 \\ = 4,0 \end{vmatrix}$	

Значения торсионных углов между протонами и вицинальных КССВ для молекул модельных соединений VII и VIII (R¹ = H) в сравнении с данными эксперимента для соединений IV и VI

Сумма абсолютных величин разностей соответствующих экспериментальных (табл. 1) и расчетных ³Ј нн.

выраженное по сравнению с расчетным искажение (гофрированность) цикла реальной молекулы со стороны замещенного атома углерода из-за взаимодействий заместителя с одной из *n*-электронных пар атома кислорода кольца.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР регистрировали на спектрометре Bruker АМ-250 с рабочей частотой 250 МГц для 10% растворов исследуемых соединений в CDCl3 относительно ТМС (внутренний стандарт). Теоретический спектр получен с помощью программы PANIC для шестиспиновой системы с параметрами, аналогичными данным табл. 1; ³ J CH3HA = 6,5 Гц.

Соединение I описано в работе [18]. Соединение II получено с выходом 68% переэтерификацией 2-бутокси-4-метил-1,3,2-диоксаборинана [19] эквимолярным количеством фенола, Ткип 130 °С (6 мм рт. ст.). Соединения III и IV описаны в работе [20], а циклические эфиры V и VI получены взаимодействием эфиров алкилборных кислот [21] с соответствующими 1,3-диолами по стандартной методике [2, 22]: диоксаборинан V, выход 73%, *Т*_{КИП} 95...96 °С (5 мм рт. ст.), *п*²⁰ = 1,4339; диоксаборинан VI, выход 64%, *Т*кип 111...113 °С (5 мм рт. ст.), *п*^{2U} = = 1,4360. Исходные 1,3-октан-и 1,3-нонандиолы синтезированы взаимодействием соответствующих олефинов с параформальдегидом по Принсу с последующим метанолизом промежуточных 1,3-диоксанов согласно прописи [23].

СПИСОК ЛИТЕРАТУРЫ

- 1. Matsubara H., Tanaka T., Takai J., Sawada M., Seto K., Imazaki H., Takahashi S. // Bull. Chem. Soc. Japan. - 1991. - Vol. 64. - P. 2103.
- 2. Грень А. И., Кузнецов В. В. Химия циклических эфиров борных кислот. Киев: Наукова Думка, 1988. — 160 с.
- 3. Кузнецов В. В., Захаров К. С., Петровский И. В., Грень А. И. // ХГС. 1990. № 8. С. 1107.
- 4. Кузнецов В. В., Грень А. И., Захаров К. С. // ХГС. 1986. № 4. С. 558.
- 5. Кузнецов В. В., Грень А. И. // ЖОХ. 1984. Т. 54. С. 2263.
- 6. Kuribayashi S. // Bull. Chem. Soc. Japan. 1973. Vol. 46. P. 1045.
- 7. Urbanski T. // J. Sci. Int. Res. 1974. Vol. 33. P. 124.
- 8. Кузнецов В. В., Калюский А. Р., Шапиро Ю. Е., Верхивкер Г. М., Грень А. И., Бочкор С. А., Ларионов В. И., Кантор Е. А. // VIII Всесоюз. симпозиум по межмолекулярному взаимодействию и конформациям молекул: Тез. докл. — Новосибирск, 1990. — Ч. 1. — С. 105.
- 9. Самитов Ю. Ю. Атлас спектров ядерного магнитного резонанса пространственных изомеров. — Казань: Казанский ун-т, 1978. — Т. 1. — 205 с.; 1983. — Т. 2. — 196 с.
- 10. Лапука Л. Ф., Чалова О. Б., Кантор Е. А., Киладзе Т. К., Рахманкулов Д. Л. // ДАН. 1981. — T. 258. — C. 116.
- 11. Кузнецов В. В., Захаров К. С., Грень А. И. // Теор. и эксперим. химия. 1984. Т. 20. С. 742.
- 12. Калюский А. Р., Кузнецов В. В., Грень А. И. // ХГС. 1991. № 9. С. 1262.
- 13. Allinger N. L. // J. Amer. Chem. Soc. 1977. Vol. 99. P. 8127.
- 14. Haasnoot C. A. G., de Leeuw F. A. A. M., Altona C. // Tetrahedron. 1980. Vol. 36. P. 2783.
- 15. Huggins M. L. // J. Amer. Chem. Soc. 1953. Vol. 75. P. 4123.
- Durette P. L., Horton D. // Org. Magn. Res. 1971. Vol. 3. P. 417.
 Karplus M. // J. Amer. Chem. Soc. 1963. Vol. 85. P. 2870.
- 18. Rippere R., La Mer V. // J. Phys. Chem. 1943. Vol. 47. P. 204.
- 19. Finch A., Gardner P., Pearn J. // Rec. trav. chim. 1964. Vol. 83. P. 1314.
- 20. Кузнецов В. В. Деп. в ВИНИТИ, 1983, № 5646-83; РЖХ. 1984. 5Ж 343.
- 21. А. с. 1220317 СССР / Бачериков В. А., Кузнецов В. В., Грень А. И. // Б. И. 1990. № 36. --- C. 299.
- 22. Кузнецов В. В., Алексеева Е. А., Грень А. И. // ХГС. 1995. № 9. С. 1291.
- 23. Heslinga L., van Gorkom M. // Rec. trav. chim. 1966. Vol. 85. P. 293.

Физико-химический институт им. А. В. Богатского НАН Украины, Одесса 270080

Поступило в редакцию 28.02.97