## В. Ю. Зубарев, Г. В. Гурская, В. Е. Заводник, В. А. Островский

### РАЗВЕТВЛЕННЫЕ ПОЛИЯДЕРНЫЕ ТЕТРАЗОЛЬНЫЕ СИСТЕМЫ

#### 1. СИНТЕЗ И СТРОЕНИЕ 2-(ТЕТРАЗОЛ-5-ИЛ)ЭТИЛЬНЫХ ПРОИЗВОДНЫХ НЕКОТОРЫХ СН-, ОН- и NH-КИСЛОТ\*

Циклоприсоединение диметиламмонийазида к нитрильным группам 2-цианэтильных производных CH-, OH- и NH-кислот приводит к открытоцепным разветвленным структурам, содержащим терминальные NH-тетразолильные группы. Рентгеноструктурный анализ трис[2-(тетразол-5-ил)этил] нитрометана выявил пространственную доступность равноценных NH-гетразольных циклов разветвленной системы. При переходе от разветвленных нитрильных субстратов к соответствующим им тетразолам в спектрах ЯМР <sup>1</sup>Н нарушается разрешение компонент мультиплетов, которое не наблюдалось ранее для моноядерных 5-замещенных тетразолов. Обнаружена зависимость между химическими сдвигами атомов <sup>13</sup>С и значениями  $pK_a$ , отражающими NH-кислотность разветвленных полиядерных тетразолов в воде.

Открытоцепные разветвленные структуры, имеющие терминальные азолильные группы, рассматриваются как полидентатные низкоселективные лиганды для связывания ионов тяжелых металлов в устойчивые комплексы [1]. В работах [2, 3] сообщается о синтезе подобных соединений, содержащих на концах ветвей имидазолильные и пиразолильные циклы. Однако до сих пор не были получены поданды, содержащие терминальные NH-тетразолильные фрагменты. Вместе с тем, именно тетразолсодержащие полидентатные лиганды, способные к элиминированию NH-протонов и образованию квазиароматических тетразолатов, представляют наибольший интерес [4, 5].

Мы предлагаем простой и универсальный подход к синтезу разветвленных полиядерных NH-тетразольных систем, основанный на реакции циклоприсоединения алкиламмонийазидов к соответствующим нитрилам [6, 7].

Разветвленные полинитрильные субстраты получали по реакции «цианэтилирования» [8—11] — частному случаю реакции Михаэля. В эту реакцию вступают СН-, ОН- и NH-кислоты, принадлежащие к различным химическим рядам. Образующиеся 2-цианэтильные производные составляют широкую выборку субстратов для синтеза разнообразных 2-(тетразол-5-ил)этильных производных. В качестве соединений, содержащих подвижные атомы водорода, в данной работе рассмотрены нитрометан, диэтилмалонат, циклогексанон, вода и 4-амино-1,2,4-триазол. Цианэтилирование указанных субстратов проводили по модифицированным методикам [12—16]. Физико-химические и спектральные характеристики разветвленных нитрилов Ia—д соответствуют литературным данным.

Переходное состояние реакции нитрилов с алкиламмонийазидами (1,3-диполярное циклоприсоединение) отличается жесткими пространственными требованиями. Обычно требуется длительное нагревание в высококипящих апротонных диполярных растворителях, а в некоторых случаях требуется применение высоких давлений [6, 7].

Предполагая достаточную пространственную доступность нитрильных групп, а также учитывая нивелирующее действие мостика из двух метиленовых групп по отношению к электронному эффекту заместителя на нитрильную группу, соединения Ia—д были превращены в тетразолы IIa—д

<sup>\*</sup> Посвящается памяти И. Н. Гончаровой.

согласно общей методике (см. экспериментальную часть). За основу были приняты условия проведения процесса циклоприсоединения алкиламмонийазидов к неразветвленным нитрильным субстратам. Выбор температуры и времени ведения процесса произведен с учетом кинетических данных работы [6]. В качестве 1,3-диполя использовали диметиламмонийазид, который генерировали *in situ* в результате обменной реакции диметиламина гидрохлорида и азида натрия в ДМФА. По этой общей методике с выходами 50...70% получены ранее не описанные разветвленные полиядерные тетразолы: трис[2-(тетразол-5-ил)этил]нитрометан (IIа), диэтиловый эфир бис[2-(тетразол-5-ил)этил]малоновой кислоты (IIб), 2,2,6,6-тетракис[2-(тетразол-5ил)этил]циклогексанон (IIв), 2,2'-ди(тетразол-5-ил)диэтиловый эфир (IIг) и 4-бис[2-(тетразол-5-ил)этил]амино-1,2,4-триазол (IIд).



Координаты и тепловые параметры атомов в структуре Па, полученные на основе рентгеноструктурных исследований, представлены в табл. 1. На рис. 1 приведены стереоизображение молекулы трис [2-(тетразол-5-ил)этил ]нитрометана (IIa) и использованная нумерация атомов. Тетразольные ядра и соединяющие их с нитрогруппой алифатические цепочки обозначаются соответственно 1, 2, 3 по мере роста индексов при атомах N и C. Несмотря на недостаточно высокую точность определения кристаллической структуры (~0,022 Å и 1,4°), основные стереохимические и конформационные свойства молекул прослеживаются достаточно четко. Как видно из рис. 1, молекула трис [2-(тетразол-5-ил) этил ]нитрометана (IIa) в кристалле имеет клещеобразную форму. Основные торсионные углы, характеризующие ее конформацию, приведены в табл. 2. Тетразольные циклы плоские, средние значения отклонений атомов от их среднеквадратичных плоскостей составляют 0,002 Å для первого тетразольного цикла, 0,014 и 0,017 Å для второго и третьего циклов соответственно. Атомы углерода (С(1), С(2), С(20), С(4), С(5)) алифатических цепей, соединяющих первый и второй тетразольные циклы с нитрогруппой, с точностью до 0,02 Å лежат в одной плоскости, образуя вытянутую цепочку. Среднеквадратичная плоскость, проведенная через атомы С(3), N(1), N(2), N(3), N(4) первого тетразольного цикла, образует с ней угол 30,0°, плоскость же второго тетразольного цикла (атомы С(6), N(5), N(6), N(7), N(8)) наклонена к плоскости алифатической цепи под углом 37,1°. Сами тетразольные ядра находятся в *транс*-ориентации относительно алифатической цени, т. е. их связи N(1)-Н и N(8)-Н повернуты на 180°. Третья алифатическая цепь (атомы С(20), С(7), С(8)) расположена под углом 87,4° к плоскости алифатической цепи первых двух тетразольных ядер. Среднеквадратичная плоскость третьего тетразольного цикла (атомы С(9), N(9), N(10), N(11), N(12)) образует с плоскостью своей алифатической цени угол 113,0°. Нитрогруппа находится под углом 107,3° к плоскости алифатической цепи при первом и втором тетразольных циклах и под углом 31,5° к плоскости третьей цепи.

В табл. З приведены значения однотипных валентных связей, усредненные по трем тетразольным циклам и связанным с ними алифатическим цепям. Как можно было ожидать в силу сопряжения с тетразольными циклами, наблюдается укорочение валентных связей типа С (2)—С (3) (1,48 Å) по сравнению с длиной одинарной связи С—С (1,541 Å) [17].

1495

Таблица 1

| Атом               | x          | у         | <i>z</i> | U      |
|--------------------|------------|-----------|----------|--------|
| Orin               | 5575(23)   | 1578(14)  | 1464(5)  | 80(5)  |
|                    | 4556(25)   | 3101(14)  | 882(5)   | 80(5)  |
| U(2)               | 5769(27)   | 2649(16)  | 1194(6)  | 48(5)  |
| N(13)              | 7917(25)   | 3350(17)  | 1233(7)  | 23(5)  |
| $C_{(20)}$         | 9462(28)   | 2276(16)  | 1416(7)  | 37(5)  |
|                    | 10000(28)  | 1106(16)  | 997(7)   | 36(6)  |
| C(2)               | 10745(27)  | -155(18)  | 1278(7)  | 34(5)  |
| C(3)               | 11614(20)  | -257(14)  | 1762(5)  | 34(5)  |
| N(1)               | 12016(23)  | -1657(16) | 1891(6)  | 54(5)  |
| N(2)               | 11362(25)  | -2371(16) | 1466(7)  | 53(5)  |
| N(3)               | 10586(22)  | -1458(15) | 1082(5)  | 44(5)  |
| C(4)               | 7720(29)   | 4459(17)  | 1686(7)  | 41 (6) |
| C(4)               | 6158(27)   | 5629(17)  | 1610(7)  | 41 (6) |
|                    | 6598(22)   | 6841(19)  | 1975(7)  | 32(6)  |
| N(5)               | 7133(21)   | 6828(16)  | 2470(7)  | 44(5)  |
| N(S)               | 7367(23)   | 8231 (18) | 2636(6)  | 60(5)  |
| N(0)               | 6886(22)   | 9046(16)  | 2236(7)  | 58(5)  |
| N(2)               | 6479(20)   | 8223(16)  | 1813(6)  | 39(5)  |
| $\mathbf{C}_{(7)}$ | 8282(26)   | 3994(18)  | 662(8)   | 47(6)  |
|                    | 10345(29)  | 4757(17)  | 644(7)   | 44(6)  |
|                    | 10427(29)  | 5608(17)  | 142(7)   | 34(5)  |
| No                 | 10602(25)  | 5147(14)  | -366(6)  | 48(5)  |
| N(10)              | 10509(23)  | 6330(15)  | -681(6)  | 57(5)  |
| N(11)              | 10441 (27) | 7471(14)  | -396(6)  | 57(5)  |
| N(12)              | 10389(23)  | 7006(13)  | 126(5)   | 38(4)  |

# Атомные координаты (×10<sup>4</sup>) и температурные факторы (Å<sup>2</sup> × 10<sup>3</sup>) в структуре тристетразола Па

## Таблица 2

| Угол                                      | ω (град.) | Угол                                                              | ω (град.) |
|-------------------------------------------|-----------|-------------------------------------------------------------------|-----------|
|                                           | 1         |                                                                   |           |
| $C_{(20)} - C_{(1)} - C_{(2)} - C_{(3)}$  | -155,0    | N(5)—N(6)—N(7)—N(8)                                               | -3,9      |
| $C_{(1)} - C_{(20)} - C_{(4)} - C_{(5)}$  | -177,0    | N(6)—N(7)—N(8)—C(6)                                               | 4,0       |
| $C_{(1)}-C_{(20)}-C_{(7)}-C_{(8)}$        | -59,9     | N(7)—N(8)—C(6)—N(5)                                               | -2,5      |
| $C_{(1)}-C_{(2)}-C_{(3)}-N_{(1)}$         | -25,4     | N(8)-C(6)-N(5)-N(6)                                               | 0,1       |
| $C_{(1)}-C_{(2)}-C_{(3)}-N_{(4)}$         | 152,5     | $O_{(1)}-N_{(13)}-C_{(20)}-C_{(7)}$                               | 146,3     |
| $C_{(3)} - N_{(1)} - N_{(2)} - N_{(3)}$   | 0,2       | $O_{(2)}$ -N <sub>(13)</sub> -C <sub>(20)</sub> -C <sub>(1)</sub> | -152,0    |
| $N_{(1)} - N_{(2)} - N_{(3)} - N_{(4)}$   | 0,3       | $C_{(20)} - C_{(7)} - C_{(8)} - C_{(9)}$                          | -167,7    |
| $N_{(2)} - N_{(3)} - N_{(4)} - C_{(3)}$   | -0,7      | $C_{(7)} - C_{(20)} - C_{(1)} - C_{(2)}$                          | -47,6     |
| $N_{(3)} - N_{(4)} - C_{(3)} - N_{(1)}$   | 0,8       | $C_{(7)} - C_{(20)} - C_{(4)} - C_{(5)}$                          | 53,9      |
| $N_{(4)}-C_{(3)}-N_{(1)}-N_{(2)}$         | -0,6      | $C_{(7)} - C_{(8)} - C_{(9)} - N_{(9)}$                           | -71,3     |
| $O_{(1)} - N_{(13)} - C_{(20)} - C_{(1)}$ | 21,6      | $C_{(7)} - C_{(8)} - C_{(9)} - N_{(12)}$                          | 110,5     |
| $O_{(1)} - N_{(13)} - C_{(20)} - C_{(4)}$ | -93,6     | C(9)-N(9)-N(10)-N(11)                                             | 4,7       |
| $C_{(20)} - C_{(4)} - C_{(5)} - C_{(6)}$  | -161,5    | N(9)-N(10)-N(11)-N(12)                                            | -2,9      |
| $C_{(4)} - C_{(20)} - C_{(1)} - C_{(2)}$  | -175,8    | $N_{(10)} - N_{(11)} - N_{(12)} - C_{(9)}$                        | 0,0       |
| $C_{(4)} - C_{(20)} - C_{(7)} - C_{(8)}$  | 64,9      | N(11)-N(12)-C(9)-N(9)                                             | 2,9       |
| $C_{(4)} - C_{(5)} - C_{(6)} - N_{(5)}$   | -42,6     | $N_{(12)}-C_{(9)}-N_{(9)}-N_{(10)}$                               | -4,5      |
| $C_{(4)}-C_{(5)}-C_{(6)}-N_{(8)}$         | 137,1     | $O_{(2)}-N_{(13)}-C_{(20)}-C_{(4)}$                               | 92,8      |
| C(6)-N(5)-N(6)-N(7)                       | 2,4       | O(2)-N(13)-C(20)-C(7)                                             | -27,3     |

Основные торсионные углы в молекуле тристетразола Па



Рис. 1. Стереоизображение молекулы трис [2- (тетразол-5-ил) этил] нитрометана Па. Атомы О, N, C изображены шарами, радиусы которых пропорциональны параметрам их тепловых колебаний





| Длины | валентных | связеи  | В   | молекуле   | тристетразола | шa, | усредненные |  |
|-------|-----------|---------|-----|------------|---------------|-----|-------------|--|
|       |           | по трем | E ( | однотипным | фрагментам    |     |             |  |

| Связь                                                        | 1 (Å)                         | Связь                               | 1 (Å)                         | Связь                  | 1 (Å)              |
|--------------------------------------------------------------|-------------------------------|-------------------------------------|-------------------------------|------------------------|--------------------|
| $C_{(20)}-C_{(1)}$<br>$C_{(1)}-C_{(2)}$<br>$C_{(2)}-C_{(3)}$ | 1,53(2)<br>1,55(2)<br>1,48(2) | C(3)—N(1)<br>N(1)—N(2)<br>N(2)—N(3) | 1,34(2)<br>1,36(2)<br>1,30(2) | N(3)—N(4)<br>N(4)—C(3) | 1,38(2)<br>1,31(2) |

В кристаллической структуре молекулы трис [2-(тетразол-5-ил) этил]нитрометана (IIa) связаны друг с другом трехмерной сеткой N—H...N межмолекулярных водородных связей. При этом каждая молекула IIa участвует в образовании шести водородных связей, выступая одновременно донором трех водородных связей и акцептором трех связей (N<sub>(1)</sub>(x, y, z)—H...N<sub>(5)</sub>(2-x, y -0,5, 0,5-z) = 2,86 Å; N<sub>(8)</sub>(x, y, z)—H...N<sub>(10)</sub>(x-0,5, 1,5-y, -z) = 2,90 Å; N<sub>(12)</sub>(x, y, z)—H...N<sub>(4)</sub>(x, y+1, z) = 2,78 Å).

В силу конформационной подвижности молекулы трис [2-(тетразол-5ил) этил ]нитрометана IIa относительно одинарных связей С—С на общую конформацию молекулы в кристалле, по-видимому, существенно влияет кристаллическая упаковка и, в частности, асимметричное расположение межмолекулярных водородных связей относительно тетразольных циклов.

Полученные разветвленные полиядерные тетразолильные соединения имеют в инфракрасной области общие характеристические полосы поглощения при 3100...3000 см<sup>-1</sup>, принадлежащие валентному колебанию группы NH, а также характеристические полосы поглощения, принадлежащие валентным и валентно-деформационным колебаниям тетразольного цикла [18] (см. экспериментальную часть). В спектрах ЯМР <sup>13</sup>С при замене нитрильной группы на тетразол-5-иль-

В спектрах ЯМР <sup>13</sup>С при замене нитрильной группы на тетразол-5-ильную наблюдается исчезновение сигнала нитрильного углерода на 119...120 м. д. и появление сигнала углерода тетразольного цикла на 154...156 м. д. Тетразольное кольцо является более сильным электроноакцептором по сравнению с нитрильной группой [19], что ведет к смещению всех остальных сигналов атомов углерода молекулы в слабое поле.

Спектры ЯМР <sup>1</sup>Н тетразолов IIа—д имеют специфическую особенность, которая выявляется при сравнении со спектрами исходных нитрилов (рис. 2). При замене нитрильной группы на тетразол-5-ильную происходит уменьшение константы спин-спинового взаимодействия и все классически расщепленные мультиплеты спектра преобразуются в плохо разрешенные уширенные сигналы. Данное явление обусловлено влиянием тетразольных ядер на геометрию молекулы в целом. Выяснение природы явления требует дополнительных исследований.

Тетразолы IIа—д являются многоосновными NH-кислотами. Проведенное потенциометрическое титрование показало, что значения  $pK_a$  этих соединений лежат в области 4,3...4,9. Обнаружена корреляционная зависимость [20] для моноядерных тетразол-5-илов между химическими сдвигами атомов <sup>13</sup>С и значениями  $pK_a$ , отражающими NH-кислотность тетразолов. Аналогичная тенденция выявлена и для разветвленных полиядерных тетразолов в воде (табл. 4). Исключением является 2,2,6,6-тетракис [2-(тетразол-5-ил)-этил]циклогексанон (IIв).

Таблица 4

| Соеди-<br>нение | Сигнал <sup>13</sup> С в тетра-<br>зольном цикле | рК <sub>а</sub> | Соеди-<br>нение | Сигнал <sup>13</sup> С в тетра-<br>зольном цикле | pKa  |
|-----------------|--------------------------------------------------|-----------------|-----------------|--------------------------------------------------|------|
| Па              | 155,1                                            | 4,37            | IIr             | 154,0                                            | 4,75 |
| Πб              | 155,4                                            | 4,35            | Пд              | 153,9                                            | 4,78 |
| Пв              | 156,1                                            | 4,99            |                 |                                                  |      |

Зависимость между сигналом тетразольного углерода в спектре ЯМР <sup>13</sup>С и значением *pK*<sub>a</sub> Таким образом, анализ пространственного строения и физико-химических свойств синтезированных полиядерных NH-тетразолов позволяет рассматривать их как перспективные полидентатные лиганды для связывания ионов металлов в устойчивые комплексы.

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР <sup>1</sup>Н и <sup>13</sup>С получены на спектрометре Bruker AC-200 при рабочих частотах 200 и 50,3 МГц соответственно, в растворе ДМСО-D<sub>6</sub>. ИК спектры зарегистрированы на приборе Specord M-80 в таблетках КВг. Кислотность исследуемых соединений определяли потенциометрическим титрованием. Кристаллографические расчеты проведены по комплексу программ SHELXTL-81.

**Трис (2-цианоэтил) нитрометан (Ia)**. К смеси 10 г (164 ммоль) нитрометана, 0,1 г (0,5 ммоль) бензилтриэтиламмонийхлорида, 0,02 г (0,5 ммоль) NaOH в 50 мл 1,4-диоксана и 2 мл воды при охлаждении по каплям добавляют 30,42 г (574 ммоль) акрилонитрила с такой скоростью, чтобы температура реакционной массы не превышала 40...45 °С. Реакционную массу выдерживают при комнатной температуре 2 ч, нейтрализуют разбавленной соляной кислотой, после чего выпавшие кристаллы отфильтровывают, промывают водой и сушат. Получают 23,8 г (66%) тринитрила Ia. Бесцветные игольчатые кристаллы с  $T_{IIII}$  114 °С (из этанола). Спектр IIMP: 2,29 (6H, т, J = 8,1 Гц, CH<sub>2</sub>C  $\equiv$  N); 2,61 м.д. (6H, т, J = 8,1 Гц, CH<sub>2</sub>C  $\equiv$  N). Спектр SMP <sup>13</sup>C: 119,5 (C  $\equiv$  N); 91,1 (C—NO<sub>2</sub>); 29,4 (<u>CH</u><sub>2</sub>CH<sub>2</sub>C  $\equiv$ N); 11,6 м. д. (CH<sub>2</sub>C  $\equiv$ N). ИК спектр: 2240 (C  $\equiv$ N), 1550, 1344 см<sup>-1</sup> (NO<sub>2</sub>). Найдено, %: C 54,90; H 5,84; N 25,55. C<sub>10</sub>H<sub>12</sub>N4O<sub>2</sub>. Вычислено, %: C 54,53; H 5,49; N 25,44.

Внимание: ввиду высокой экзотермичности реакции цианоэтилирования быстрая дозировка акрилонитрила может привести к сильному разогреву и выбросу реакционной массы.

**Диэтиловый эфир** бис (2-цианоэтил) малоновой кислоты (1б). К смеси 16 г (100 ммоль) диэтилмалоната, 0,1 г (0,5 ммоль) бензилтриэтиламмонийхлорида, 0,02 г (0,5 ммоль) NaOH в 50 мл 1,4-диоксана и 2 мл воды при охлаждении по каплям добавляют 13,25 г (250 ммоль) акрилонитрила с такой скоростью, чтобы температура реакционной массы не превышала 40...45 °С. Реакционную массу выдерживают при комнатной температуре 2 ч, нейтрализуют разбавленной соляной кислотой и выливают в 200 мл охлажденной до 5 °С воды. Нерастворимая в воде маслянистая жидкость постепенно кристаллизуется в бесцветные кубические кристаллы, которые отфильтровывают, промывают водой и сушат. Получают 23,64 г (89%) динитрила I6. Бесцветные игольчатые кристаллы с  $T_{\rm III}$  61...62 °С (из этанола). Спектр ПМР: 1,19 (6H, т, J = 7,3 Гц, CH<sub>3</sub> в OEt); 2,14 (4H, т, J = 7,3 Гц, CH<sub>2</sub>C  $\equiv$ N); 2,49 (4H, т, J = 7,3 Гц, <u>CH<sub>2</sub>CH<sub>2</sub>C</u> $\equiv$ N); 4,17 м. д. (4H, к, J = 7,3 Гц, CH<sub>2</sub> в OEt). Спектр ЯМР <sup>13</sup>С: 169,1 (C=O); 119,7 (C $\equiv$ N); 61,8 (CH<sub>2</sub> в OEt); 55,2 (С<sub>четв</sub>); 27,6 (<u>CH<sub>2</sub>CH<sub>2</sub>C  $\equiv$ N); 13,7 (CH<sub>2</sub>C  $\equiv$ N); 12,1 м. д. (CH<sub>3</sub> в OEt). ИК спектр: 2240 (C $\equiv$ N), 1740, 1720, 1690 (COO), 1465, 1445 (CH<sub>2</sub>), 1370, 1310, 1275, 1200, 1180, 1100, 1025, 865 см<sup>-1</sup>. Найдено, %: C 58,34; H 7,12; N 10,47. C<sub>13</sub>H<sub>18</sub>N<sub>2</sub>O4. Вычислено, %: C 58,64; H·6,81; N 10,52.</u>

2,2,6,6-Тетракис (2-цианоэтил) циклогексанон (IB). К смеси 9,8 г (100 ммоль) циклогексанона, 0,1 г (0,5 ммоль) бензилтриэтиламмонийхлорида, 0,02 г (0,5 ммоль) NaOH в 40 мл *t*-BuOH и 2 мл воды при охлаждении по каплям добавляют 26,5 мл акрилонитрила с такой скоростью, чтобы температура реакционной массы не превышала 40...45 °C. Реакционную массу выдерживают при комнатной температуре 2 ч, нейтрализуют разбавленной соляной кислотой, выпавшие кристаллы отфильтровывают, промывают водой и сушат. Получают 25,76 г (81%) тетранитрила Iв. Бесцветные кристаллы с  $T_{IIII}$  164...165 °C (из ацетона). Спектр IMP: 1,65 (6H, с, γ-CH<sub>2</sub> и 2  $\beta$ -CH<sub>2</sub> в циклогексаноне); 1,85 (8H, м, J = 14,6 Гц, акс. и экв. <u>CH<sub>2</sub>CH<sub>2</sub>C =N</u>); 2,33 м. д. (8H, т, J = 14,6 Гц, CH<sub>2</sub>C =N). Спектр ЯМР <sup>13</sup>С: 214,9 (C=O); 120,7 (C=N); 49,6 (C<sub>4CTB</sub>); 31,6 (*m*-CH<sub>2</sub> в циклогексаноне); 30,8 (<u>CH<sub>2</sub>CH<sub>2</sub>C =N</u>); 15,7 (γ-CH<sub>2</sub> в циклогексаноне); 11,6 м. д. (CH<sub>2</sub>C =N). ИК спектр: 2450 (C=N), 1720, 1675 (C=O), 1540, 1460 см<sup>-1</sup>. Найдено, %: C 69,47; H 7,36; N 17,99. C<sub>18</sub>H<sub>22</sub>N<sub>4</sub>O. Вычислено, %: C 69,65; H 7,14; N 18,05.

2,2'-Дицианодиэтиловый эфир (Ir). Смесь 26,5 г (500 ммоль) акрилонитрила, 25 мл 1,4-диоксана и 5 мл 10% водного раствора NaOH перемешивают 5 ч при температуре 45 °C. Реакционную массу нейтрализуют разбавленной соляной кислотой, диоксан отгоняют на роторном испарителе, остаток перегоняют при  $T_{\text{кип}}$  161...163 °C (5 мм рт. ст.). Получают 13 г (40%) динитрила Іг. Спектр ПМР: 2,70 (4H, т, J = 5,8 Гц, CH<sub>2</sub>C  $\equiv$  N); 3,66 м. д. (4H, т, J = 5,8 Гц, <u>CH<sub>2</sub>CH<sub>2</sub>C</u>  $\equiv$  N). Спектр ЯМР <sup>13</sup>C: 118,9 (C  $\equiv$  N); 65,2 (CH<sub>2</sub>CH<sub>2</sub>C  $\equiv$  N); 18,2 м. д. (CH<sub>2</sub>C  $\equiv$  N). ИК спектр: 2888 (CH<sub>2</sub>), 2248 (C  $\equiv$  N), 1484, 1416 (CH<sub>2</sub>), 1260, 1228, 1120 см<sup>-1</sup> (-O-). Найдено, %: C 57,80; H 6,71; N 22,34. C6H<sub>8</sub>N<sub>2</sub>O. Вычислено, %: C 58,05; H 6,50; N 22,57.

4-[Бис (2-цианоэтил)амино]-1,2,4-триазол (Цд). К раствору 8,4 г (100 ммоль) 4-амино-1,2,4-триазола и 0,1 г NaOH в 8 мл воды при охлаждении добавляют 13,25 г (250 ммоль) акрилонитрила таким образом, чтобы температура реакционной массы не превышала 40...45 °C. Образовавшуюся суспензию отфильтровывают и промывают этанолом. Получают 14,15 г (74%) динитрила Ід. Бесцветные игольчатые кристаллы с  $T_{пл}$  175,5...176,0 °C (из этанола). Спектр ПМР: 2,50 (4H, т, J = 6,2 Гц, CH<sub>2</sub>C=N); 3,40 (4H, т, J = 6,2 Гц, <u>CH<sub>2</sub>CH<sub>2</sub>C=N); 8,75 м. д.</u> (2H, с, триазольный CH). Спектр ЯМР <sup>13</sup>C: 142,1 (С-триазол); 118,6 (C=N); 53,2 (<u>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>C</u>=N); 15,8 м. д. (CH<sub>2</sub>C=N). ИК спектр: 3110, 2950 (CH<sub>2</sub>), 2270 (C=N), 1500, 1420, 1280, 1170, 1140, 1070, 1010, 880, 670 см<sup>-1</sup>. Найдено, %: C 50,71; H 5,24; N 44,50. СвН<sub>10</sub>N6. Вычислено, %: C 50,52; H 5,30; N 44,18.

Общая методика получения тетразолов (Па—д). Раствор 25 ммоль 2-цианоэтильного производного, 10% эквимольного избытка азида натрия и диметиламина гидрохлорида в расчте на каждую нитрильную группу субстрата в 50 мл ДМФА выдерживают 15...20 ч при 110...115 °C. Осадок хлорида натрия отфильтровывают, фильтрат упаривают, растворяют в 100 мл дистиллированной воды и подкисляют разбавленной соляной кислотой до pH<2. Выпавший осадок отфильтровывают, промывают дистиллированной водой, сущат и кристаллизуют из этанола или смеси этанол—ДМФА.

Трис [2-(тетразол-5-ил)этил]нитрометан (Па). Получают 5,25 г (60%). *Т*<sub>пл</sub> 211 °С (разл., этанол). Спектр ПМР: 2,55 (6H, упг. с, CH<sub>2</sub>T), 2,96 (6H, с, <u>CH<sub>2</sub>CH<sub>2</sub>T)</u>, 15,83 м. д. (3H, с, NH), Т — тетразол-5-ил. Спектр ЯМР <sup>13</sup>С: 155,1 (С-тетразол); 92,7 (С—NO<sub>2</sub>), 32,0 (<u>CH<sub>2</sub>CH<sub>2</sub>T</u>); 17,9 м. д. (CH<sub>2</sub>T). ИК спектр: 3200...3000 (NH), 1584, 1352 (NO<sub>2</sub>), 1432, 1240, 1108, 1048, 1024 см<sup>-1</sup> (тетразол). Найдено, %: С 34,79; H 4,19; N 52,61. С<sub>10</sub>H<sub>15</sub>N<sub>13</sub>O<sub>2</sub>. Вычислено, %: С 34,38; H 4,33; N 52,13.

Диэтиловый эфир бис[2-(тетразол-5-ил)этил]малоновой кислоты (Пб). Получают 4,50 г (51%). *Т*<sub>ПЛ</sub> 184 °C (разл., этанол). Спектр ПМР: 1,20 (6H, уш. с, CH<sub>3</sub> в OEt); 2,30 (4H, уш. с, CH<sub>2</sub>T); 2,80 (4H, уш. с, <u>CH</u><sub>2</sub>CH<sub>2</sub>T, 4H); 4,15 (4H, уш. с, CH<sub>2</sub> в OEt); 15,9 м. д. (2H, уш. с, NH). Спектр ЯМР <sup>13</sup>С: 170,1 (C=O); 155,4 (С-тетразол); 61,6 (CH<sub>2</sub> в OEt); 56,1 (С<sub>четв</sub>); 29,6 (<u>CH</u><sub>2</sub>CH<sub>2</sub>T); 18,3 (CH<sub>2</sub>T); 13,9 м. д. (CH<sub>3</sub> в OEt). ИК спектр: 3100...3000 (NH), 1720, 1648, 1552 (COO), 1444, 1240, 1192, 1088, 1048 см<sup>-1</sup> (тетразол). Найдено, %: С 44,88; H 6,16; N 31,33. С<sub>13</sub>H<sub>20</sub>N<sub>8</sub>O4. Вычислено, %: С 44,31; H 5,72; N 31,80.

2,2,6,6-Тетракис[2-(тетразол-5-ил)этил]циклогексанон (Шв). Получают 8,70 г (72%). *T*<sub>Шл</sub> 195 °С (разл., этанол—ДМФА). Спектр ПМР: 1,80 (6H, уш. с, γ-СН<sub>2</sub> и 2β-СН<sub>2</sub> в циклогесаноне); 1,95 (8H, уш. с, <u>СН</u><sub>2</sub>СН<sub>2</sub>T); 2,75 (8H, уш. с, СН<sub>2</sub>T); 15,8 м. д. (4H, уш. с, NH). Спектр ЯМР <sup>13</sup>С: 216,6 (С=О); 156,1 (С-тетразол); 50,3 (С<sub>четв</sub>); 33,9 (<u>CH</u><sub>2</sub>CH<sub>2</sub>T); 32,6 (β-СН<sub>2</sub>); 18,2 (СН<sub>2</sub>T); 16,3 м. д. (γ-СН<sub>2</sub>). ИК спектр: 3200...3000 (NH), 1778, 1690, 1660 (С=О), 1574, 1490, 1448, 1376, 1250, 1072 см<sup>-1</sup> (тетразол). Найдено, %: С 44,36; Н 5,77; N 45,95. С<sub>18</sub>Н<sub>26</sub>N<sub>16</sub>О. Вычислено, %: С 44,81; Н 5,43; N 46,45.

2,2'-Ди (тетразол-5-ил) диэтиловый эфир (Пг). Получают 2,75 г (52%).  $T_{\rm LP}$  198,5 °С (разл., этанол). Спектр ПМР: 3,10 (4H, уш. с, CH<sub>2</sub>T); 3,75 (4H, уш. с, <u>CH<sub>2</sub>CH<sub>2</sub>T)</u>; 15,90 м. д. (2H, уш. с., NH). Спектр ЯМР <sup>13</sup>С: 154,0 (С-тетразол); 67,2 (<u>CH<sub>2</sub>CH<sub>2</sub>T)</u>; 23,9 м. д. (CH<sub>2</sub>T). ИК спектр: 3200...3000 (NH), 1706, 1614, 1574, 1562, 1486, 1444, 1428, 1384, 1362, 1246, 1202, 1126, 1084, 1066, 1042 см<sup>-1</sup> (тетразол). Найдено, %: С 34,70; Н 4,85; N 53,60. С<sub>6</sub>H<sub>10</sub>N<sub>8</sub>O. Вычислено, %: С 34,28; H 4,79; N 53,31.

**4-Бис**[2-(тетразол-5-ил)этил]амино-1,2,4-триазол (IIд). Получают 5,07 г (73%). *Т*<sub>ШЛ</sub> 236 °С (разл., этанол—ДМФА). Спектр ПМР: 2,85 (4H, уш. с, CH<sub>2</sub>T); 3,60 (4H, уш. с, <u>CH</u><sub>2</sub>CH<sub>2</sub>T); 8,75 (2H, с, триазольный CH); 15,00 м. д. (2H, уш. с, NH). Спектр ЯМР <sup>13</sup>С: 153,9 (С-тетразол); 142,3 (С-триазол); 55,6 (<u>CH</u><sub>2</sub>CH<sub>2</sub>T); 21,5 м. д. (CH<sub>2</sub>T). ИК спектр: 3100...3000 (NH), 1616, 1560, 1508, 1464, 1444, 1280, 1248, 1216, 1160, 1120, 1096, 1048, 1000, 920, 888, 664 см<sup>-1</sup> (тетразол и 1,2,4-триазол). Найдено, %: С 35,10; Н 3,74; N 61,02. С<sub>8</sub>H<sub>12</sub>N<sub>12</sub>. Вычислено, %: С 34,78; Н 4,38; N 60,84.

Рентгеноструктурный анализ трис[2-(тетразол-5-ил)этил]нитрометана (Па). Необходимые для рентгеноструктурного исследования кристаллы были получены в виде тонких нитей из концентрированного водного раствора трис[2-(тетразол-5-ил)этил]нитрометана Па медленным испарением растворителя при комнатной температуре. Пространственная группа кристаллов — P212121, параметры элементарной ячейки:  $a = 6,623(1); b = 9,459(1); c = 24,695(3); \alpha = \beta = \gamma = 90°;$  V = 1547,1(0,6) Å<sup>3</sup>; Z = 4. Сбор экспериментальных данных и определение параметров элементарной ячейки проводили на автоматическом дифрактометре Nicolet P3 (метод  $\theta/2\theta$ -сканирования, МоК $\alpha$ -излучение). Структура решена прямым методом и уточнена полноматричным методом наименьших квадратов в изотропном приближении для атомов O, N, C. Положения атомов водорода определены из разностных синтезов Фурье. Окончательное значение фактора расходимости R = 4,9% по 340 рефлексам с  $I \ge 3\sigma$  (I). Относительно высокое значение R-фактора и небольшое число рефлексов обусловлены несовершенством и малыми размерами кристаллов (0,1×0,05×0,35 мм).

Авторы признательны Международному научному фонду (грант s96-3332, a97-2484 и 128p) за финансовую поддержку настоящего исследования, а также выражают благодарность В. А. Гиндину и сотрудникам за помощь в снятии и интерпретации спектров ЯМР<sup>1</sup>Н в <sup>13</sup>С.

### СПИСОК ЛИТЕРАТУРЫ

- Химия комплексов «гость-хозяин». Синтез, структуры и применения / Под ред. Ф. Фегтле и Э. Вебера. — М.: Мир, 1988. — 511 с.
- 2. Potvin P. G., Gau R., Unrau C. M., Gehl N. K. // Can. J. Chem. 1989. Vol. 67. P. 1363.
- 3. Hartshorn C. M., Steel P. J. // Austral. J. Chem. 1995. Vol. 48. P. 1587.
- 4. Колдобский Г. И., Островский В. А. // Успехи химии. 1994. Т. 63. С. 847.
- 5. Downard A., Steel P. J., Steenwijk J. // Austral. J. Chem. 1995. Vol. 48. P. 1625.
- 6. Островский В. А., Поплавский В. С., Колдобский Г. И., Ерусалимский Г. Б. // ХГС. 1992. № 9. С. 1214.
- 7. Jutsic B. S., Zdravkovski Z. // J. Mol. Struct. 1994. Vol. 312. P. 11.
- 8. Bruson H. A. // Org. React. 1949. Vol. 5. P. 79.
- 9. Bayer O. // Angew. Chem. 1949. Jg 61. S. 229.
- Терентьев А. П., Кост А. Н. Реакции и методы исследования органических соединений. М.: Госхимиздат, 1952. — Т. 2. — С. 47.
- 11. Бергман Э. Д., Гинзбург Д., Паппо Р. // Органические реакции. —М.: ИЛ, 1963. Т. 10. С. 181.
- 12. Bruson H. A., Riener T. W. // J. Amer. Chem. Soc. 1943. Vol. 65. P. 23.
- 13. Newkome G. R., Moorefield Ch. N., Theriot K. J. // J. Org. Chem. 1988. Vol. 53. P. 5552.
- 14. Bruson H. A., Riener T. W. // J. Amer. Chem. Soc. 1942. Vol. 64. P. 2850.
- 15. Кост А. Н., Генц Ф. // ЖОХ. 1958. Т. 28. С. 2773.
- 16. Буцкус П. Ф., Стоните Р. Ю., Денис Г. И., Буцкине А. И. // ЖОХ. 1962. Т. 32. С. 820.
- Kennard O., Watson D. G. Molecular Structures and Dimensions. Netherlands. 1972. -Vol. A1. - P. 47.
- Соколова М. М., Мельников В. В., Островский В. А., Колдобский Г. И., Мельников А. А., Гидаспов В. В. // ЖОрХ. — 1975. — № 11. — С. 1744.
- 19. Щипанов В. П. // ХГС. 1983. № 8. С. 1130.
- 20. Nelson J. H., Takach N. E., Henry R. A., Moore D. W, Tolles W. M, Gray G. A. // Magn. Res. Chem. 1986. Vol. 24. P. 984.

Санкт-Петербургский государственный технологический институт, Санкт-Петербург 198013

Поступило в редакцию 13.05.97

Институт молекулярной биологии РАН им. В. А.Энгельгарта, Москва 117984

Научно-исследовательский физико-химический институт им. Л. Я. Карпова, Москва 103062